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Abstract—We envision new communication paradigms, using
physical dynamic interconnectedness among people. Delay
Tolerant Networks (DTNs) are a new communication paradigm
to support such network environments, and our focus is a
type of DTN that provides intermittent communication for
humans carrying mobile devices: the Pocket Switched Network
(PSN). Information propagation in PSNs is highly influenced
by human connectivity networks, i.e. social networks.

In our previous work, we have exploited constructing
weighted networks using characteristics of pair connections
such as the duration of contact time and frequency of contacts
from time series of human connectivity network traces. The
approach we took is based on empirical and heuristic and the
focus is finding a single aggregated logical network structure.
The physical network topology in the real world is time de-
pendent and it is a complex task to describe its dynamics. This
paper aims to identify dynamics of meeting groups in human
connectivity traces, where meeting groups are expected to be
a group interacting among the nodes in physical space. Thus,
we define ‘meeting group’ differently from ‘community’. We
exploit statistical approach that provides quantitative attributes
to uncover meeting groups. We identify the power law behavior
of meetings that is important for supporting to understanding
dynamics of information flow between meeting groups and
building group oriented communication protocol.
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I. I NTRODUCTION

Increasing numbers of mobile computing devices form dy-
namic networks in daily life. In such environments, the
nodes (i.e. laptops, PDAs, smart phones) are sparsely dis-
tributed and form a network that is often partitioned due
to geographical separation or node movement. We envision
new communication paradigms, using dynamic interconnect-
edness among people, leading towards a world where digital
traffic flows as people pass each other [13]. Delay Tolerant
Networks (DTNs) [8] are a new communication paradigm
to support such network environments, and our focus is
a type of DTN that provides intermittent communication
for humans carrying mobile devices: the Pocket Switched
Network (PSN) [3].

Efficient forwarding algorithms for such networks are
emerging, mainly based on epidemic protocols where mes-
sages are simply flooded when a node encounters an-
other node. Epidemic information diffusion is highly robust
against disconnection, mobility and node failures, and it is

simple, decentralized and fast. However, careful tuning to
achieve reliability and minimize network load is essential. To
reduce the overhead of epidemic routing, various approaches
have been reported, ranging from count-, timer- or history-
based controlled flooding to location-based strategies.

We have previously reported an approach that uses a
logical connection topology, and that uncovers hidden stable
network structures, such as social networks [12] [23], from
the human connectivity traces. We have shown improved
performance by applying these extracted social contexts toa
controlled epidemic strategy [11]. During this work, we have
realized that further understanding of network models is
essential, because the properties of human contact networks
– such as community and weight of interactions – are
important aspects of epidemic spread.

A series of studies has shown the statistical properties
of social networks such as the small-world and power-
law degree distributions. For community detection, various
methods have been reported. Clustering of networks, where
network nodes sometime form cliques or loose connections
from time to time is a significant property in human move-
ment. In our previous work, we have exploited community
detection from the human connectivity traces by constructing
weighted networks using characteristics of pair connections
such as the duration of contact time and frequency of
contacts also exploited spectral properties of the graph as
well as Laplacian matrix [22]. Mostly, the approach we
took is based on empirical and heuristic and the focus
is finding a single aggregated logical network structure
called ‘community’. For dynamic graph mining, Berger-
Wolf et. al. show the study of community evolution based
on node overlapping [2]. The evolution of subgraphs over
time in biological networks has been discussed, however,
these studies are based on static network setting and fairly
small scale. The traces described in the next section are more
complex with thousands of updates per day.

We define ‘meeting group’ differently from ‘community’.
Actual meeting among the member of the community may
occur at certain time or location for possibly predictable
duration. The number of participating members may not
be 100% of the community members. Thus, it is important
that the concept of community differs from ‘meeting group’.
Meeting groups can be the base of inferring the community.



Experimental data set MIT UCSD CAM INFC06
Device Phone PDA iMote iMote

Network type Bluetooth WiFi Bluetooth Bluetooth
Duration (days) 246 77 11 3

Granularity (seconds) 300 600 120 120
Number of Experimental Devices 97 274 36 78

Table I
Characteristics of the experiments

Tracking the dynamics of the meeting should show the inter-
relationship of members within the community.

Our goal is inferring dynamics of meetings in human
connectivity networks based on the traces collected human
connectivity by sensors. Our empirical data based approach
will give real insight of time-dependent dynamic network
modeling. However, we encounter several problems to infer
‘meeting group’ from the human connectivity traces such as
too many missing edges between nodes.

Thus, we claim our contribution in this paper is two-fold:
1) sharing the issues we encounter for inferring dynamics of
meeting groups 2) as preliminary result, we show the power
law behavior of meetings and the significance of meeting
groups using simpler methods. This demonstrates duration of
meetings and inter-meetings for predicting network capacity
or the limit of synchronisation mechanism. Even with noisy
data, we believe that the result can lead to understanding
dynamics of information flow between meeting groups. The
rest of this paper is structured as follows. We introduce the
experimental data sets in Section 2, and then describe the
proximity detection mechanism by Bluetooth communica-
tion in Section 3. In Section 4, we analyse the duration of
meetings and inter-meetings followed by brief discussion of
related works. Finally, we conclude the paper with a brief
discussion and future works in Section 6.

II. REAL WORLD HUMAN CONNECTIVITY TRACES

The quantitative understanding of human dynamics is
difficult and has not yet been explored in depth. The
emergence of human interaction traces from online and
pervasive environments allows us to understand details of
human activities. For example, the Reality Mining project
[7] collected proximity, location and activity information,
with nearby nodes being discovered through periodic
Bluetooth scans and location information from cell tower
IDs. Several other groups have performed similar studies.
Most of these [7] [6] [19] use Bluetooth to measure device
connectivity, while others [10] rely on WiFi. The duration
of experiments varies from 2 days to over one year, and
the numbers of participants vary. We have analysed various
traces from the Crawdad database [4] listed below, and
Table I summarises the configuration.

MIT: in the MIT Reality Mining project [7], 100
smart phones were deployed to students and staff at MIT
over a period of 9 months. These phones were running
software that logged contacts.

UCSD: in the UCSD Wireless Topology Discovery [21],
approximately 300 wireless PDAs running Windows
CE were used to collect WiFi access point information
periodically for 11 weeks.
CAM: in the Cambridge Haggle project [14], 40 iMotes
were deployed to 1st year and 2nd year undergraduate
students for 11 days. iMotes detect proximity using
Bluetooth.
INFC06: 78 iMotes were deployed at the Infocom 2006
conference for 4 days [3].

III. PROXIMITY DETECTION WITH BLUETOOTH

Bluetooth is a low-power open standard for Personal Area
Networks (PANs) and has gained its popularity due to its
emphasis on short-range, low-power and easy integration
into devices. The platform used in the Haggle experiments
is the Intel Mote ISN100-BA (known as the iMote). The
iMote runs TinyOS and is equipped with an ARM7TDMI
processor operating at 12MHz, with 64kB of SRAM, 512kB
of flash storage, and a multi-colored LED, and a Bluetooth
1.1 radio. The specifications lists the radio range to be 30
meters.

It is a complex task to collect accurate connectivity traces
using Bluetooth communication, as the device discovery
protocol may limit detection of all the devices nearby. Blue-
tooth uses a special physical channel for devices to discover
each other. A device becomes discoverable by entering the
inquiry substate where it can respond to inquiry requests.
The inquiry scan substate is used to discover other devices.
The discovering device iterates (hops) through all possible
inquiry scan physical channel frequencies in a pseudo-
random fashion. For each frequency, it sends an inquiry
request and listens for responses. Therefore, a Bluetooth
device cannot scan for other devices and be discoverable
at the same time. Bluetooth inquiry can only happen in1.28

second intervals. An interval of4 × 1.28 = 5.12 seconds
gives a more than 90% chance of finding a device. However,
there is no data available when there are many devices and
many human bodies around. The Bluetooth standard [18],
recommends being in the inquiry scan substate for 10.24
seconds in order to collect all responses in an error-free
environment. The power consumption of Bluetooth also lim-
its the scanning interval, if devices have limited recharging
capability. The iMote connectivity traces in Haggle use a
scanning interval of approximately 2 minutes, while the
Reality Mining project uses 5 minutes. The ratio of devices
with Bluetooth enabled to the total number of devices is
around only an average 15% of population.

Bluetooth for proximity detection is widely available and
a lot of people carry a Bluetooth enabled mobile phone
with them. Thus, it is possible to detect a certain amount
of peoples phones without handing a special device to each
of them, which makes Bluetooth appealing for experiments
involving a large quantity of people. The range of Bluetooth
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Figure 1. Distribution of Meeting Times - Aggregated all K results

varies between 10m and 100m, depending on the device
class. In mobile phones, the range is usually 10m. We have
observed the devices can be detected in 20m range if there is
no obstacles, while if there is any obstacles such as a thick
wall it limits to 5m range.

The logged data from the above experiments are used to
reconstruct the time-dependent connectivity informationto
study the distribution of contact times, inter-contact times,
and their statistical properties, where we constructed discrete
event traces of pair interactions of 600 seconds interval. We
have aggregated raw data within 600 seconds time units to
avoid uncertainty of device detection from various Bluetooth
based mechanism. For the MIT data, part of around 8 months
is used.

IV. M EETING TIME AND INTER-MEETING TIME

In this section, we show results for the analysis of meeting
dynamics and focus on meeting time and inter-meeting
time statistics. We have used various community detection
algorithms in our previous work [11] and found K-CLIQUE
[20] shows stable results for different types of human con-
tact traces. Thus, we demonstrate inferring physical group
meetings using K-CLIQUE algorithm in this paper. The
inter-contact time is the time interval between two contacts.
Inter-contact time is the duration from when one contact
finishes and the next one begins, it determines how often a
communication is possible. Shorter inter-contact time means
that the two people see each other quite often. If two people
have short inter-contact time, then it means that we can wait
for the next contact and send data directly. For longer inter-
contact times, we need to rely on other media to transfer
the data instead of waiting unreasonably long. The number
of such contacts and the distribution of contact durations is
an important factor in determining the capacity of oppor-
tunistic networks. It gives insight on how much data can be
transferred at each opportunity. This concept of pair node
relationship can apply on the relationship between meeting
groups, which helps building group oriented communication
protocols.

In [3], we have shown that the distribution of inter-contact
times of pair nodes follows an approximate power law over a
large time range, where most nodes have fairly short interval

time between subsequent connections. The nature of the
distribution affects the choice of suitable forwarding algo-
rithms to be used to maximize the successful transmission of
messages in a bounded delay. This result demonstrated that
opportunistic transmission schemes could be significantly
improved by using limited redundant transmissions.

We envision potential applications over PSNs will be
more group oriented such as sharing information among the
social groups or location based groups. Thus, understanding
the dynamics of groups such as the duration of meetings
calledmeeting timeand the interval between meetings called
inter-meeting timeare important values, which address the
following questions:

• When will a meeting occur again?
• How likely is it that there is sufficient time for shar-

ing information or transmitting data among a meeting
group?

A. Inferring Meetings by K-CLIQUE

Palla et al. define a k-clique community as a union of all
k-cliques (complete subgraphs of size k) that can be reached
from each other through a series of adjacent k-cliques [20].
Two k-cliques are said to be adjacent if they share k - 1
nodes. This definition is based on their observation that an
essential feature of a community is that its members can
be reached through well-connected subsets of nodes, and
that there could be other parts of the whole network that are
not reachable from a particular k-clique, but they potentially
contain further k-clique communities.

A problem with using k-cliques for detecting meetings is
that of uniqueness. A cluster of nodes might have more than
one overlapping k-clique embedded in it. For example, the
largest k-clique size in a cluster might be five, but there can
still be two overlapping 5-cliques, and by definition, each
of those 5-cliques has embedded within it 5 overlapping 4-
cliques and so on. Thus one must not only be careful about
counting only one of the two 5-cliques, but also not to count
the 4-cliques and 3-cliques that are subsets as well.

The figures 1-3 demonstrate how the overlapping problem
affects the statistical analysis. In Figure Fig.1 shows theCDF
distribution of meeting times, where detected meetings from
K=3 to K=max are aggregated. These thus include overlaps
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Figure 2. Distribution of Meeting Time - Individual K results

of each clique, thus a 5-clique would also be counted five
times as a 4-clique, and so on. The distribution is then for
the sum of these K-clique counts.

In more detail, Figure Fig.2 shows the individual distribu-
tion with all clique of size k including overlaps. We note that
larger cliques exhibit more power-law behaviour in the MIT
dataset, whilst for the INFC06 dataset it is more power-law
in behaviour for lower clique sizes.

Fig.3 shows the distribution, where overlapping cliques
are removed. We try to remove overlapping sub-cliques by
working backwards from a high-clique base and removing
all sub-cliques from the results. For example, when the
base K=7, in CAM data, all subgraphs in K=6 to K=3
are removed for the duration of a 7-clique meeting. This
ensures that cliques of size k are only counted once as size
k. The figure shows a more clear power law distribution
with a reduced rms error in the fit. We note however
that, in the presence of noise, removing subgraphs is not
a straightforward process without knowing the detection
failure rate. For example, nodes a-b-c may form a 3-clique
from times 1-10, then a 4-clique a-b-c-d from times 11-15,
then b-c-d from times 10-20. The clique elimination used
here was to count higher cliques as having precedence. Thus

the duration of the cliques in this example detects times 11-
15 as a 4-clique, and separately detects times 1-10 and 15-20
as 3-cliques.

B. Discussion

Fig.4 shows the distribution of the inter-meeting time for
several K values in K-Clique based meeting detection. We
immediately note that the bulk of inter-meetings times are
within 24 hrs. However, the distribution does not appear
very power-law in its nature, except perhaps for the early
head of the distribution. While the interaction times between
nodes is not power-law, the duration of meetings does
appear to be. We can explain this discrepancy by noting
that meetings involve many nodes and that counting these as
pairs of interactions leads to weighting the meeting duration
by the (often large) number of pairs, thus skewing the
distribution. Furthermore, the iMote data is noisy, which can
make estimating the contiguous duration of an interaction
unreliable, with the probability of a break due to noise
growing with the length of the meeting. This thus also skews
pairwise interactions to be shorter than they actually are.By
tracking the cluster instead, noise can be better toleratedthus
more reliably estimating the meeting duration.
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Figure 3. Distribution of Meeting Time without duplication

V. RELATED WORKS

Emerging wireless technologies are creating physical net-
work in the actual physical space along online commu-
nication (e.g. social network services). Understanding this
new pervasive network as a time-dependent dynamic human
network (i.e. DTNs and PSNs) is still an open research area.
Social relationships and interactions is gaining importance,
which gives significant impact to design such networks.
New results in the area of complex network theory[1] give
new insight into this new generation of networks (i.e. social
context).

The connectivity traces can be represented by weighted
graphs – also called contact graphs – in which the weight
of an edge represents thecontact durationand contact fre-
quencyfor the two end vertices. Many real world networks
are weighted, but due to complexity, little analysis has been
done in this area. The seminal work is a weighted network
analysis paper by Newman [16]. A weighted graph can be
converted into a multi-graph with many unit edges. We only
consider symmetric edges, on the other hand, edges can be
symmetric (undirected) or asymmetric (directed), possibly
with a different strength in either direction.

Community detection in complex networks has attracted
a lot of attention in recent years. Community structures are
usually substructures/subgraphs corresponding to important
functions, and examples can be found in many areas, such
as World Wide Web [9], biological social networks [17],
and also the Internet [15]. The recent reviews [17] and [5]
may serve as introductory reading in community detection
methods. Besides the methods mentioned in the two re-
views papers, we also introduce thek-CLIQUE community
detection method by Pallaet al. [20] and the weighted
community analysis methods by Newman [16]. The main
goal of these algorithms is to cluster nodes, while what
we aim in this paper is inferring dynamic meeting group,
which may eventually form communities. Our aim is also
different from the concept of network evolution, where the
evolution addresses the change of form. The work presented
in this paper is a basic step to obtain clear understanding of
dynamic human topology based on physical proximity.

VI. CONCLUSIONS ANDFUTURE WORKS

We have shown the dynamics of meeting and inter-meeting
time in this paper. The work presented in this paper has
wide future extensions. Uncovering temporal and dynamics
of meeting groups can be used as a signature for constructing
synthetic network generation with the information of sub-
graph structure and dynamics. Most importantly extracted
model must be validated in some way of real experiments.
The iteration of modelling and experiments will uncover
further understanding of time-dependent complex human
connectivity networks. Future works include: identifyingthe
significance of meeting using transitivity, classifying behav-
ior of nodes in the core/transient meetings, and dynamics of
flow between meetings.
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