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Abstract
Many popular systems for processing “big data” are im-
plemented in high-level programming languages with
automatic memory management via garbage collection
(GC). However, high object churn and large heap sizes
put severe strain on the garbage collector. As a result, ap-
plications underperform significantly: GC increases the
runtime of typical data processing tasks by up to 40%.

We propose to use region-based memory management
instead of GC in distributed data processing systems. In
these systems, many objects have clearly defined life-
times. Hence, it is natural to allocate these objects in
fate-sharing regions, obviating the need to scan a large
heap. Regions can be memory-safe and could be in-
ferred automatically. Our initial results show that region-
based memory management reduces emulated Naiad ver-
tex runtime by 34% for typical data analytics jobs.

1 Introduction
Memory-managed languages dominate the landscape
of systems for computing with “big data”: Hadoop,
Spark [22], DryadLINQ [21] and Naiad [15] are only
some examples of systems running atop a Java Virtual
Machine (JVM) or the .NET common language runtime
(CLR). Managed languages are attractive as they of-
fer strong typing, automated memory management and
higher-order functions. These features improve the pro-
ductivity of system developers and end-users.

However, these benefits do not come for free. Data
processing tasks stress the runtime GC by allocating a
large number of objects [4, 17]. This results in long
GC pauses that reduce application throughput or cause
“straggler” tasks [14, 18]. In §2, we show that the impact
of GC on job runtime can range between 20 and 40%.

In this paper, we argue that a different approach can be
used in distributed data processing systems. Their oper-
ation is highly structured: most such systems are based
on an implicit or explicit graph of stateful data-flow op-
erators executed by worker threads. These operators per-

form event-based processing of arriving input data, and
therefore behave as independent actors. For example,
at any one time, MapReduce runs a “map” or “reduce”
function (i.e., operator) in each task [5], Dryad [11] and
Naiad [15] execute a “vertex” per worker thread, and
Spark runs an “action” per task [22]. Each data-flow op-
erator’s objects live at most as long as the operator itself.
Moreover, they are often grouped in logical batches –
e.g., according to keys or timestamps – that can be freed
atomically. This architecture presents an opportunity to
revisit standard memory-management, because:

1. Actors explicitly share state via message-passing.
2. The state held by actors consists of many fate-

sharing objects with common lifetimes.
3. End-users only supply code fragments to system-

defined operators, which makes automatic program
transformations and region annotations practical.

In §3, we illustrate these points with reference to Naiad.
Region-based memory management [19] works well

for sets of related objects in the absence of implicit shar-
ing. While writing programs using regions is difficult in
the general case, this old concept is a good fit for the
restricted domain of distributed data processing systems
(§4). In addition, region-based allocation can offer mem-
ory safety and may be as transparent to the user as GC-
based memory management. We sketch how this can be
achieved in a distributed data processing system in §5.

Using Broom, a proof-of-concept implementation of
region-based memory allocation for Naiad vertices, we
show that region-based memory management eliminates
the overheads of GC and improves execution time by up
to 34% in memory-intensive operators (§6).

2 Motivation
We illustrate the effect of GC on Naiad’s performance
using two simple experiments:

1. We measure the fraction of job runtime spent in GC
for two data-intensive batch jobs: TPC-H Q17 and
a join-heavy business analytics workflow (§2.1).
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Figure 1: The Naiad TPC-H Q17 and “shopper” work-
flows spend 20–40% of their total runtime on GC, inde-
pendent of the young generation heap size.
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Figure 2: Increasing the young generation heap trades
more minor collections for fewer major collections in
TPC-H, and reduces total collections for “shopper”.

2. We measure the effects of GC stalls when com-
puting strongly connected components, an iterative
workflow with frequent synchronization (§2.2).

We run Naiad v0.4 on Linux using Mono v2.10.8.1 with
the generational GC (sgen) enabled.

2.1 Batch processing workflows

We run two typical batch processing workflows with high
object churn on a single machine.1 The first is query 17
from the TPC-H benchmark and the second is “shopper”,
a business intelligence workflow that selects users from
the same country who bought a specific product (a JOIN–
SELECT–JOIN workflow). In these experiments, Naiad
uses eleven worker threads on the 12-core machine.

With the default GC configuration, we found that the
TPC-H workflow spends around 25% of its runtime in
GC, while the “shopper” workflow reaches about 37%
(Figure 1). This makes sense: “shopper” generates many
small objects that are subsequently freed in minor col-
lections of the 4 MB young generation heap. Increasing
the size of the young generation heap reduces the num-
ber of objects promoted to the next generation in “shop-
per”, and thus the overall number of collections (Fig-
ure 2). This reduces the time spent on GC for “shopper”

1AMD Opteron 4243 (12× 3.1 GHz) with 64 GB of DDR3-1600.
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Figure 3: Trace of incremental strongly connected com-
ponents in 24 parallel Naiad processes: uncoordinated
GC pauses (orange and green bars) delay synchroniza-
tion barriers (gray vertical lines).

(where many objects die young), but the increased young
generation heap size does not help TPC-H Q17 (which
uses stateful JOINs). In fact, the number of minor col-
lections in TPC-H Q17 increases with young generation
heap size as they are traded for major ones (Figure 2).

This experiment looked at the GC behavior of a sin-
gle data-intensive process that does not communicate. In
the next experiment, we show that the problem is exacer-
bated when dependencies exist between processes.

2.2 Synchronized iterative workflow

We run an incremental strongly connected components
workflow on a graph of 15M vertices and 80M edges.
Each incremental step changes one random edge in the
graph. The computation synchronizes all nodes after ev-
ery graph change. We collect a trace of 24 Naiad pro-
cesses on four machines (six per machine) by logging the
timestamps of the synchronization steps and the times at
which the processes run their GC.

Figure 3 shows a subset of the trace, with each gray
vertical bar corresponding to a synchronization step at
the end of an iteration. GC pauses are shown as horizon-
tal bars for major (orange) and minor (green) collections.
It is evident that GC invocations sometimes delay a syn-
chronization by tens of milliseconds.

It is also worth observing that a GC in one process is
occasionally immediately followed by another GC in a
different process (e.g. at times 170–180, 430–460, 530–
560 and 720–750). This occurs because some changes
to the graph affect state in several processes. Down-
stream processes may trigger a GC as soon as they re-
ceive messages from upstream ones that have just fin-
ished their GC. In other words, the GCs are effectively
serialized when a parallel execution would offer better
performance.



3 Case study: Naiad
We illustrate the memory management patterns common
in distributed data processing by example of Naiad. List-
ing 1 shows the code of the Naiad Aggregate vertex
that groups and aggregates input data. The inputs to
the vertex are batched in Message objects, each asso-
ciated with a logical timestamp. The results of the ag-
gregation are stored in a dictionary keyed by the logical
timestamp (line 2). Upon receiving a message, Naiad
calls the user-provided OnReceive method (ln. 4). The
method processes the input and applies the Aggregate

function to each entry (ln. 12), storing the results. Fi-
nally, the OnNotify method is called once the actor is
guaranteed to receive no more messages with a logical
timestamp less than or equal to the one passed (ln. 15).
When OnNotify is called, all data held in the dictionary
for the timestamp received by OnNotify can be freed.

Generational garbage collectors make the assumption
that “most objects die young” [13]. This is true in gen-
eral applications, but in Naiad most objects can only be
collected after their logical timestamp is notified. Con-
sequently, there is no point in a GC traversing these ob-
jects. Moreover, objects’ lifetime depends on the events
triggered by other processes (e.g., OnReceive calls).

While the details of this example are specific to Na-
iad, other systems exhibit similar behavior. For example,
MapReduce and Spark, retain intermediate data for a key
until all the records with this key have been seen. Like-
wise, stream processing systems (e.g., Storm, S4 [16],
Spark Streaming [23]) have “windowed” operators that
accumulate state for a fixed amount of time.

4 Broom: out with the GC!
General purpose garbage collectors are not tuned to spe-
cific application patterns. While specialized concurrent
real-time garbage collectors eliminate GC pauses [1, 3],
these collectors still have to scan a large heap. Instead,
we propose a radically different approach.

Region-based memory management works well when
similar objects with known lifetimes are handled. This
information is available in distributed data processing
systems. Many such systems are based on a model of
actors communicating via message-passing. This sig-
nificantly simplifies the use of regions: data sharing is
explicit, and an object’s lifetime does not exceed the al-
locating actor’s unless the object is sent in a message.
Moreover, only system developers write object manage-
ment code: users merely supply limited user-defined
functions that access objects with defined lifetimes.

Hence, only three types of regions are required for dis-
tributed data processing using communicating actors:

1. Transferable regions are used for messages. Their
lifetime can extend over the lifetimes of multiple
actors. However, only one actor (the current owner)

1 public class AggregateActor {

2 private Dictionary<Time, Dictionary<K, V>> state;

3

4 public void OnReceive(Time time, Message msg) {

5 if (state[time] == null) {

6 state[time] = new Dictionary<K,V>();

7 NotifyAt(time);

8 }

9 foreach (var entry in msg) {

10 var key = SelectKey(entry);

11 state[time][key] =

12 Aggregate(state[time][key], entry);

13 }

14 }

15 public void OnNotify(Time time) {

16 // Remove state for timestamp time

17 state.remove(time);

18 Send(outgoingMsg);

19 }

20 }

Listing 1: Example of a Naiad aggregate actor.

can access the objects in a transferable region.
2. Actor-scoped regions are private to the owning ac-

tor. Their lifetime is equal to the actor’s lifetime.
They are used to store long-lived state.

3. Temporary regions are short-lived scratchpad
memory blocks that are lexically scoped and cannot
persist across method boundaries. They are useful
when temporary data are generated and only a small
subset of them is passed in messages or retained.

We have implemented these three types of regions in
Broom, which extends the Bartok compiler [12, p. 75]
with region-based memory management. In Listing 2,
we demonstrate how Naiad’s Aggregate actor imple-
mentation from Listing 1 is extended with regions.

In order to allocate within a region, a user must first
get a handle to the region (e.g., ln. 7). Using the
handle, an allocation context can be opened by calling
OpenAlloc() (e.g., ln. 8). All objects created in an al-
location context are stored in the corresponding region.2

The aggregate actor demonstrates the use of two re-
gion types: transferable and actor-scoped regions. In the
actor scoped region (actorRegion, ln. 4), we keep two
dictionaries (regions and state, ln. 2–3) that are alive
for the entire duration of the computation. These dictio-
naries are indexed by logical timestamps and store region
handles or references to data stored in those regions.

The data corresponding to each logical timestamp are
stored in a transferable region (regions[time], ln. 14).
This region is created when a Message with a new times-
tamp is received. After we create it, we store the re-
gion handle in the regions dictionary for reuse upon re-
ceipt of another message with the same timestamp. The
OnNotify method is called by Naiad when it can guar-

2We piggy-back the manipulation of runtime region stacks onto
C#’s existing using mechanism for nested scopes.



1 public class RegionAggregateActor {

2 private Dictionary<Time, <Dictionary<K, V>> state;

3 private Dictionary<Time, Region> regions;

4 private Region actorRegion; // actor-scoped region

5

6 public RAggregateActor (...) {

7 actorRegion = RegAlloc.NewRegion(ACTOR);

8 using (RegContext.OpenAlloc(actorRegion))

9 state = new Dictionary();

10 }

11 public void OnReceive(Time time, Message msg) {

12 if (state[time] == null) {

13 using (RegContext.OpenAlloc(actorRegion)) {

14 regions[time] = RegAlloc.NewRegion(TRANS);

15 // open transferable region for allocation

16 using (RegContext.OpenAlloc(regions[time]))

17 state[time] = new Dictionary();

18 }

19 NotifyAt(time);

20 }

21 foreach (var entry in msg) {

22 // open state[time] region for object access

23 using (RegContext.OpenAlloc(regions[time]))

24 state[time][key] =

25 Aggregate(state[time][key], entry);

26 }

27 }

28 public void OnNotify(Time time) {

29 // send message, free state[time]

30 Send(state[time]);

31 RegAlloc.FreeRegion(regions[time]);

32 }

33 }

Listing 2: Region-based Naiad aggregate actor.

antee that no new messages with a timestamp smaller or
equal to time are going to be received (ln. 28). In this
method, we send out the aggregated data (ln. 30) and free
the memory used by that particular timestamp (ln. 31).

Readers may notice that any allocations that
Aggregate() (ln. 25) induces are now part of the
transferable region regions[time]. This may be
undesirable as it pollutes the transferable region. Alter-
natively, the Naiad developer could create a statically
scoped temporary region around the call to Aggregate.
In this case, she must clone the result of Aggregate

from the temporary to the transferable region.

5 Discussion
Regions are non-trivial to use, and while they have attrac-
tive benefits, they also introduce some challenges. How-
ever, we believe that many of these challenges have sim-
ple solutions in the context of distributed data processing.

Memory safety. References across objects residing in
the different regions make it challenging to maintain
memory safety. Broom therefore restricts the allowable
relationships between objects in different region types.
Figure 4 shows the allowed points-to relationships:

(1) Objects in a temporary region can point to objects

Actor-
scoped TransferableTemporary

Figure 4: Allowed points-to relationship between the
different region types.

in the same region or any other temporary region that out-
lives it. They are also allowed to point to objects in the
related actor-scoped region and to objects in a transfer-
able region if both regions are owned by the same actor.

(2) An actor-scoped region can include references to
its own objects. It can also include references to trans-
ferable region handles, as long as they have the same
owner. However, objects in actor-scoped regions must
not reference objects inside a transferable region.

(3) Every transferable region needs to be self-
contained and can only hold references to objects allo-
cated in itself. Otherwise, transferring the ownership to
another actor can lead to dangling pointers.

Our prototype does not yet enforce these restrictions
on object references. We plan to enforce them through a
combination of static and dynamic checks.

Programmability. The traditional downside of region-
based memory management is the additional complexity
of working with regions. However, end-users who write
high-level data processing queries (e.g. LINQ queries)
for the systems we are concerned with do not need to be
aware of regions at all. Instead, region annotations occur
only in the implementation of the system-provided Na-
iad vertices (actors). By contrast, data processing system
developers must still explicitly use the Broom API for
region-based memory management. To reduce the an-
notation burden on system developers, we are working
on techniques that infer regions and their types automat-
ically using static analysis. As distributed data process-
ing systems already perform complex source-to-source
transformations and just-in-time compilation, even oth-
erwise expensive analyses can be amortized.

GC compatibility. Regions can co-exist with a GC’ed
heap, as long as the garbage collector does not traverse
objects allocated inside regions. Furthermore, actor-
scoped regions may use a local GC within the region.

6 Preliminary results
As a proof of concept, we measure Broom’s allocation
performance and emulate several Naiad vertices after ex-
tending them with region support. All experiments were
run on an AMD Opteron 2373 (4× 2.1 GHz) with 32GB
RAM, running Windows Server 2012 R2.

Potential gain from using regions. Garbage collec-
tors are most challenged by complicated structures of



10 40 90 160 250 360
Millions of objects

0

50

100

150

200

250

300
R

un
tim

e
[s

ec
]

CLR GC
Broom regions

(a) Best-case approximation: an
allocation-heavy micro-benchmark
completes 59% faster with regions.

SE
LE
CT

AG
GR
EG
.
JO
IN

-40%

-30%

-20%

-10%

0%

10%

R
un

tim
e

re
la

tiv
e

to
G

C
(b) Stateful in-memory
Naiad vertices benefit
most from regions.

Figure 5: Runtime reduction attained by Broom regions
micro-benchmark (a) and emulated Naiad vertices (b).

many tightly cross-referenced objects: they must traverse
the structure on each collection and might need to copy
objects between generations. By contrast, no traversal is
required when using regions.

This allows us to empirically estimate an approximate
upper bound on the performance benefit that regions can
offer. To do so, we allocate lists of lists of basic objects,
ensuring that the GC must visit every object. Each list
contains n objects and there are n lists, with n ranging
between 500 and 3000. Figure 5a shows the total time
taken to allocate and free 40 such lists-of-lists as a func-
tion of the total number of objects allocated. Region-
based memory management yields a 59% reduction in
runtime for this micro-benchmark.

Naiad vertices with regions. To estimate the bene-
fits that a real-world Naiad computation would experi-
ence from using regions instead of GC, we implemented
region-based memory management for several widely-
used Naiad vertices (SELECT, AGGREGATE and JOIN).

In the following experiments, we run a single-threaded
Naiad vertex (actor) on two synthetic, incrementally gen-
erated inputs: the documents data set receives 500,000–
600,000 new entries per time epoch, and the authors

data set receives 10–20 new entries per time epoch.
For each vertex, Figure 5b shows the reduction in run-

time after 40 epochs using regions compared to using
GC. Using epochs is always beneficial, but the magni-
tude of the benefit varies:

• Mostly stateless vertices (e.g. SELECT) stream data
through, so objects are short-lived. Regions do not
help much in this case, although there is some ben-
efit (13% runtime reduction).

• The AGGREGATE vertex stores, for each time epoch,
a Dictionary<Key, Values>. This contains a set
of partial aggregation results and can be freed in one

go when the time epoch ends. Regions offer a 20%
runtime reduction compared to GC, which must tra-
verse all dictionaries on collection.

• Highly stateful vertices such as JOIN store their
complete input data (two large dictionaries per time
epoch for JOIN). This is where regions help the
most: runtime is reduced by 36% compared to GC.

This confirms our expectations: computations with large
collections of fate-sharing objects benefit the most from
regions, coming close to the estimated upper bound.

Compared to the results of our batch processing ex-
periments on Mono (§2.1), these results are plausible:
the shopper workflow, which consists of two JOINs and a
SELECT spends 20–40% of its time in GC; regions would
likely reduce this overhead significantly.

Yet, these experiments can only be indicative of real-
world gains as they simplify matters somewhat. The
single-threaded vertex case does not consider thread con-
tention, network message delays or skew in data volume
across workers. Analysing the effects of these on a real
Naiad implementation is the subject of future work.

7 Related work
Facade [17] introduces a program transformation that
splits applications’ objects into (a) control objects stored
on the GC’ed heap and (b) data objects stored in a per-
iteration region. While Facade does not require changes
to data processing systems themselves, end-users must
identify “boundary classes” and annotate their code.

Berger et al. demonstrated that freeing individual ob-
jects in region-based memory management can be im-
plemented efficiently [2]. Their work targets general pro-
grams, but similar techniques could be applied in Broom.

Like Broom, real-time Java [3] offers three types of
memories: the GC heap, singleton immortal regions and
statically scoped regions, but does not have transferable
regions with dynamic lifetime.

ML Kit, based on the Tofte-Talpin static type sys-
tem [20] introduces statically-scoped regions and static
region inference. Later work extends it by combining GC
and regions [9]. Cyclone [8] is a C variant with regions
which relies on a strong type system for safety and region
inference, and supports static and dynamic regions [10].
Dynamic enforcement of memory safety for regions is
also covered by Gay and Aiken [6, 7].

8 Conclusions
It’s time to revisit regions! They are an excellent
match for big data runtimes in modern high-level lan-
guages. Domain-specific knowledge of object lifetimes
and region-agnostic LINQ interface to end-users can ad-
dress traditional usability difficulties. The performance
benefits are worthwhile and motivate further work on
memory safety alongside with programmability.
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