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Abstract—Large, reliable and efficient storage systems are
becoming increasingly important in enterprise environments. Our
research in storage system design is oriented towards the exploita-
tion of commodity hardware for building a high performance,
resilient and scalable storage system. We present the design
and implementation of DHTbd, a general purpose decentralized
storage system where storage nodes support a distributed hash
table based interface and clients are implemented as in-kernel
device drivers. DHTbd, unlike most storage systems proposed to
date, is implemented at the block device level of the I/O stack,
a simple yet efficient design. The experimental evaluation of the
proposed system demonstrates its very good I/O performance, its
ability to scale to large clusters, as well as its robustness, even
when massive failures occur.

Index Terms—distributed storage; distributed hash tables;
resilient storage

I. INTRODUCTION

Storage systems based on commodity hardware represent
the state-of-the art in storage infrastructure, even for large
enterprise storage clusters. The main reason for this shift away
from proprietary hardware-based systems, is the drive for low
deployment and maintenance costs, as well as the desire for
scalability and decentralized operation, since proprietary sys-
tems are usually customized for specific storage environments,
scaling badly as the required storage space and number of
clients grow beyond the original deployment estimations.

Recent research work has mostly focused on storage sys-
tems implemented at the file level of an operating system.
These systems can be distinguished in two categories: dis-
tributed and shared file systems. Distributed file systems, such
as PVFS [1], Lustre [2], Ceph [3] and Panasas [4], usually
export a single file namespace to multiple end-users. These
systems tend to be very complex, as they must support all
file system related semantics in a distributed environment.
To control this complexity, they are built in a hierarchical
manner: a small number of servers store all file and direc-
tory metadata and the physical location of every file block,
while a potentially large number of storage servers store the
actual data. Most such systems cannot take advantage of the
processing and memory resources of storage servers, relying
instead on very powerful metadata servers. As a result, they do
not scale well, as the small number of metadata servers often
becomes a bottleneck and, more importantly, a single point of

failure. In addition, their hierarchical structure often dictates
a static view of the computer cluster, which also results in
potential scaling problems. Finally, distributed file systems
are usually optimized for specific application characteristics.
Disk access patterns change over time however, as applications
evolve, resulting in a continuous need for new file systems.
There even exist distributed applications, such as databases,
that bypass the file system layer, so as to avoid the overhead
associated with it, implementing their own shared-access file
systems. Such applications cannot be supported by any current
distributed file system.

Shared file systems, such as OCFS [5], GPFS [6] and GFS
[7], assume underlying storage devices that can be physically
shared across multiple storage nodes. In this manner they
can provide multiple hosts with shared access to a single
namespace using a distributed file locking mechanism. As
described below, shared file systems are complementary to
our proposed storage system.

Moving to the block level of an operating system, distributed
block level storage systems can be distinguished in two
categories: client-server block devices like NBD [8], GNBD [9]
and DRBD [10] and distributed block-level storage systems,
such as Petal [11], FAB [12], Sheepdog [13], Parallax [14]
and BLAST [15]. Client-server block devices are used to build
two-node clusters by mirroring data to a secondary storage
host. They cannot distribute data to multiple storage devices
and, thus, tend to be vulnerable to multiple disk failures, while
their performance is bounded by the maximum I/O throughput
provided by a single server.

In distributed block-level storage systems like Petal and
FAB, all system participants run the same software; the location
of each block is kept in a global data structure which must
be consistent across all storage servers, using an algorithm
such as [16]. This increases system complexity and potentially
bounds their performance. Sheepdog uses consistent hashing
to create storage volumes accessed by virtual machines (VMs),
supporting volume management features such as snapshot,
cloning, and thin provisioning. However, its architecture is
tailored to VM storage volumes and its design details, as
well as the supported replication mechanism, are not publicly
available. Parallax operates at the block level, providing a
block device interface to VMs, but it requires a shared global
block store and it is not appropriate for use with well known
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shared or single access file systems.
In this paper we present the design and implementation of

DHTbd, a storage system built from commodity hardware that
extends in many aspects our previous work, BLAST [15], an
early design and prototype implementation based on similar
principles. DHTbd is implemented at the block level of an
operating system, thus separating file system semantics and
policies from data distribution. This results in a simple yet
efficient storage platform, which is fully decentralized and
can scale well in terms of storage space, storage servers and
end-users. Decentralization is achieved by building the core
storage layer on top of a structured overlay network that
uses consistent hashing to organize itself and to distribute
client data across storage nodes. The interface with the storage
system is integrated into the operating system as a virtual disk
driver. Although this interface does not support shared-access
semantics, it can be used as a virtually shared device upon
which shared filesystems can be built, thus complementing
the file systems mentioned above. Dealing only with data
distribution simplifies the creation of mechanisms to support
system expansion and storage resilience.

We also present a thorough performance evaluation that
clearly indicates the potential of the proposed system. We
show that DHTbd’s performance is competitive compared
to well known cluster filesystems in a 14 node cluster, a
representative size for small and medium sized enterprises. We
also show that its performance sustains high levels in a cluster
of 140 virtual nodes (10 per physical host), despite the fact
that 10 JVMs ran in each host. Pastry [17], the DHT used for
DHTbd, scales logarithmically as the number of nodes in the
overlay grows. Therefore, we expect that deploying DHTbd in
a relatively larger cluster (e.g. 1000 nodes) would not severely
affect its performance. As we examine in section II-A, increas-
ing the number of storage nodes only affects the number of
hops required to find the storage node that stores a specific
chunk of data. Pastry’s experimental evaluation [17] shows
that the average number of required hops to deliver a message
in an overlay network consisting of 103 and 105 nodes is about
2.5 and 4, respectively. Finally, a brief evaluation of DHTbd’s
behavior is presented when multiple nodes join the storage
infrastructure or crash in close succession.

DHTbd exhibits two significant advances compared to
BLAST. First, in BLAST all storage nodes must be aware of
each other, leading to significant scalability limitations. In
contrast, DHTbd does not make any assumptions regarding the
size of the cluster, which can be arbitrarily large. A storage
node needs to know about a small number of other nodes (the
Pastry leafset whose size is usually 16 or 32), with which it
exchanges hartbeat messages periodically. Second, in BLAST
all blocks have to be sent first from a storage node to a
proxy node and then from a proxy node to a client (and vice-
versa when writing data), an approach very costly in terms
of bandwidth. In contrast, in DHTbd storage clients are fully
integrated in the operating system kernel, they are independent
of the storage layer and there is no need for a proxy node per
client in the storage overlay. As a result DHTbd’s performance
is doubled and the number of clients can be arbitrarily large,
as it does not affect the performance of storage nodes.

DHTbd can be used in various and, potentially, diverse
application scenarios in both cluster and grid computing
environments. As an example, a single access virtual block
device exported by DHTbd would be ideal for dividing a large,
distributed storage space to multiple users and applications.
A participant to this system, depending on the appplication
scenario, may or may not contribute its physical storage space.
Moreover, a single virtual disk could be shared by multiple
physical hosts that coordinate their access to the device using
one of the shared filesystems mentioned above. For example
an Oracle Real Application Cluster could be deployed on top
of a shared DHTbd block device, on top of which OCFS [5]
would provide the required file locking guarantees.

II. STORAGE SYSTEM DESIGN

DHTbd consists of two independent components, the Virtual
Disk Driver (VDD) and the Storage Node (SN). SNs are
organized in a structured overlay network, the Core Storage
Layer (CSL), using a Distributed Hash Table (DHT), such
as [18], [17] and [19], therefore decentralization is based on
exploiting the basic properties of these networks. From the
DHTs proposed to date, we chose Pastry for the following
reasons. First, the state that each node is required to maintain
to participate in a Pastry network matches the replication
and recovery model presented in this paper. Second, Pastry
supports proximity properties that can be useful when dealing
with clusters spaning multiple physical sites. Third, FreePastry
[20], a Java implementation of Pastry, supports an efficient
asynchronous mechanism for handling network I/O and is well
documented. VDDs are dynamically loadable kernel modules,
presenting the end-user with an illusion of a local disk. Each
physical host runs a VDD, i.e. an in-kernel module that acts
as a driver for one or more virtual disks.

A. The Core Storage Layer

The Core Storage Layer consists of SNs that form a struc-
tured, decentralized, overlay on top of the physical network; all
SNs run the exact same software. There is no global cluster
configuration, a fact that eases system administration: each
SN only needs to be aware of another SN, which acts as its
bootstrap node. For clusters spaning several physical sites, a
joining SN needs to be aware of an SN physically close to it.
SNs utilize their back-end storage devices to form a storage
infrastructure which is fully transparent to the clients.

Each SN exports a set of access methods to the clients. The
lookup() method returns to a VDD the set of SNs responsible
for a specified set of contiguous blocks. This is the only
method related to the overlay network; the VDD uses its
results to direct the remaining calls to SNs. The store() method
is used by a VDD to store a number of blocks, which, as
described in Section II-B, are grouped into larger data entities,
the data chunks. VDDs store data directly to the SNs without
any intervention from the overlay network. The retrieve()
method is used to retrieve one or more contiguous blocks
of data directly from an SN. The getChunkVersion() method
returns to a VDD the version of a data chunk currently stored
by an SN. Version numbers are associated with data chunks



PUBLISHED IN: PROCEEDINGS OF THE IEEE/ACM CCGRID 2011 3

in order to support storage resilience, as described in Section
III. Finally, the informUpdate() method is called by a VDD
to inform an SN that it has to synchronize a chunk (and its
version number) with one of the other replicas.

Each SN is assigned a unique 160 bit node ID, used to
indicate its position in a circular ID space. As the number of
SNs in a cluster storage infrastructure is tiny compared to the
ID space, there are no guarantees that IDs computed using
the SHA-1 function over an SN’s IP address, as in Pastry,
will be uniformly distributed. For this reason, node IDs can
be produced manually or semi-automatically by the system
administrator, depending on the size of the cluster and its
hardware heterogeneity. The diversity in terms of CPU and
memory resources in a system using commodity hardware can
be dealt with by running multiple virtual SNs in a physical
host. Note however that the IDs of these virtual nodes must
also be evenly distributed in the Pastry ring, otherwise a failure
of a single node may result in the loss of all available replicas
stored in the system for a specific ID, since replicas are stored
in nodes with adjacent IDs.

The basic Pastry property that we exploit is that given an
overlay network consisting of N SNs, a message with a given
destination ID can be routed to the node with the numerically
closest node ID in less than log2b N overlay hops, assuming a
stable system (b is a configuration parameter, normally a small
integer). A VDD sends a lookup request for one or more data
chunks whenever it receives a request by the client’s block
I/O subsystem. Each SN utilizes Pastry to answer the lookup
requests forwarded to it by the VDDs. For each lookup request,
the SN creates a unique chunk ID, computed as the SHA-1 hash
value of the concatenation of the VDD’s name along with the
requested chunk number, and passes a lookup message with
that ID to the overlay network. A VDD name may be used by a
single client accessing a private storage space or shared among
many clients accessing the same storage space. The message
is routed based on the Pastry algorithm and, depending on
the number of replicas that the CSL supports, the response
will contain one or more node handles to the SNs numerically
closer to the requested chunk ID.

Each SN maintains some local Pastry data structures,
namely the routing table and the leafset (FreePastry does not
support the neighborhood set). The routing table [17] contains
a number of node IDs along with their IP addresses, used to
route messages to their next overlay hop. The leafset contains
L nodes (L is a configuration parameter), whose node IDs are
numerically closer to the current node. The routing algorithm
guarantees that every message will be routed to a node whose
leafset contains the destination node or to the destination node
itself; this is the case even with concurrent SN failures, unless
if L nodes with adjacent node IDs fail simultaneously.

DHTbd is independent of the back-end storage that each
SN has access to; a local file or a local or shared block device
may be used. The only requirement for each SN is to maintain
a data structure for mapping the IDs of each chunk currently
stored by the node to the physical location of the data. The
current Java implementation of the CSL utilizes BerkeleyDB
to store these mappings in a B-Tree. The range ID queries
supported by B-Trees offer a performance boost when an SN

must identify the (adjacent) IDs that will be transferred to new
or recovering nodes, as explained in Section III.
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Fig. 1. Client architecture

B. Virtual Disk Drivers

Virtual Disk Drivers are implemented as in-kernel load-
able modules. Figure 1 shows an abstract view of the I/O
system of an operating system. As depicted in the figure,
DHTbd’s clients (VDDs) reside in the block layer of the I/O
stack and send all I/O requests via the netwok to the CSL.
Following such an approach, user applications are oblivious
of the underlying storage system, therefore DHTbd can be
integrated directly into a cluster storage environment without
any change to the OS or applications. Moreover, VDDs are file
system-neutral: they simply provide a mechanism to distribute
data to multiple SNs; file system related aspects are policies
implemented at a higher level. Recall that, as mentioned in
Section I, VDDs do not support any shared-access semantics;
these may be implemented by the file system mounted on top
of them. As shown in the figure, an Ext4 file system would be
adequate for single-access storage, while shared-access storage
would be supported by a file system such as GFS or OCFS,
using DHTbd as a virtually shared block device.

In this figure we also present how other categories of
systems are placed in the I/O stack. A client of a distributed
filesystem, like Lustre [2] or PVFS [1], bypasses the underlying
I/O system and directly communicates with a set of data
and metadata servers via the network interface. A shared
filesystem, like OCFS [5], directly access a shared physical
device via the network.

VDDs process I/O requests in terms of blocks, while the
CSL processes them in terms of larger data units, the data
chunks. The reason for grouping contiguous blocks into chunks
is twofold. First, the CSL uses unique IDs in order to discover
the nodes responsible for some data. A significant processing
cost hides behind the calculation of each ID, so we chose
to calculate IDs for groups of blocks. Second, by grouping
blocks into chunks we improve I/O performance since for each
request there is a network delay until the VDD discovers (by
querying an SN) the nodes responsible for the requested data.
Note also that in most I/O workloads, I/O requests contain
multiple blocks of data.

In order to explain how VDDs process I/O requests, we
present a simple example where the request queue of a VDD
contains the following write requests: blocks 0 - 63, 128 - 129
and 1036 - 1071. Let us also assume that I/O requests contain
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First Block: 0, Number of Blocks: 64

Chunk: 0 
C.Off: 0, R.Off: 0 Len: 32

Chunk: 1 
C.Off: 0, R.Off: 32 Len: 32

(a)

First Block: 128 
Number of Blocks: 2

Chunk: 4 
C.Off: 0, R.Off: 0 Len: 2

(b)

First Block: 1036, Number of 
Blocks: 36

Chunk: 32 
C.Off: 12, R.Off: 0 Len: 20

Chunk: 33 
C.Off: 0, R.Off: 20 Len: 16

(c)

Fig. 2. Mapping blocks to chunks: 1st request (a) , 2nd request (b), 3rd request (c)

1 KB data blocks and that the CSL processes requests for 32
KB chunks (or 32 blocks). Starting from the first I/O request,
the VDD must discover the set of SNs responsible for storing
the requested data. Assuming that no replication is supported,
a single SN is responsible for each chunk. The VDD maps
each I/O request to one or more requests for chunks using the
formula StartingBlock ÷ ChunkSize.

As shown in Figure 2(a), the first I/O request is mapped
to two chunks. The length of the first chunk (chunk 0) is
32 and its blocks are mapped to the first 32 blocks of the
original I/O request (chunk offset=0 and request offset=0). The
second chunk (chunk 1) contains 32 blocks that are mapped to
the last 32 blocks of the original I/O request (chunk offset=0
and request offset=32). The second I/O request is mapped, as
shown in Figure 2(b), to chunk 4; only the first 2 blocks of
the chunk are mapped to the blocks of the I/O request. Note
that only the mapped data of a chunk are actually stored to
or retrieved from the responsible SNs. The third I/O request
is mapped to two chunks as depicted in Figure 2(c). The first
block of the original request is mapped to block 13 in chunk 32
(chunk offset=12 and request offset=0); starting from block 21,
the remaining blocks are mapped to chunk 33 (chunk offset=0
and request offset=20).

After mapping an I/O request to the appropriate chunks,
the VDD sends a lookup request for each chunk to an SN in
the CSL. As described above, when an SN receives a lookup
request from a VDD, it calculates a unique 160 bit ID for
each chunk, using the chunk number and the VDD’s name,
and routes a message with this ID to the overlay network, in
order to discover the set of nodes responsible for that chunk.

Depending on the leafset size, the number of SNs in the
system and the replication factor supported, the number of
hops required until an SN is able to respond to the lookup
request may vary. To clarify this, assume that Figure 3 presents
a part of the Pastry ring and that the leafset size supported
by the system is 6, therefore the leafset of node G ranges
from node D to node J. Now, consider a lookup message
for the indicated chunkID arriving at node G. Although G
is not the closest node to the requested chunkID, it may
be capable of responding to the request, depending on the
system’s replication factor. If a single replica is stored, node
G can respond that E is the responsible SN. With two replicas,
node G responds that the closest SNs are E and D. However,
if more than two replicas are supported then G should route
the message to the destination node, E, since it is not aware
about node C that lies outside its leafset.

After discovering the SNs responsible for the requested
chunkID, the SN informs the VDD about them. The VDD

(

(
LeafSet(G)

msg(chunkID)chunkID

A
B

C
D

E F G H I
J

Fig. 3. Responding to a lookup request

then stores the requested data, now mapped to chunks, to
these SNs (store()). Each of these SNs stores the data and
increments the value of the chunk version it currently holds.
A VDD declares the completion of the I/O request to the upper
levels of the block I/O subsystem only when it has received
acknowledgements from all SNs involved in the request.

Read I/O requests are processed similarly. After retrieving
the responsible SNs for a specific chunk, the VDD asks
them for the version of the chunk that they currently hold
(getChunkVersion()) using the chunkID calculated during the
first step. After receiving all version numbers, the VDD gets
the blocks from a randomly selected SN that holds the newest
replica. Different versions of a chunk may exist in the CSL
due to previous failures of one or more SNs or VDDs. In such
cases, the VDD does not update the SN by itself because it
may not currently hold the entire chunk; recall that VDDs
map I/O requests to chunks but they only store or retrieve
the requested blocks. Therefore, the VDD just informs the
outdated nodes that they should update their chunk from an
SN known to the VDD (informUpdate()).

III. HANDLING NODE FAILURES AND NEW NODES

SNs are built from commodity hardware, therefore they are
expected to fail quite often. Moreover, in a cluster storage
infrastructure multiple SNs may stop responding simulta-
neously due to a network failure. Our system follows an
optimistic approach to handle node failures, based on a set
of assumptions. First, SNs only leave the CSL due to failures
or system reconfiguration, and they only join the CSL due
to preceding failures, system reconfigurations, expansions or
upgrades. Second, the replication factor is such that the
probability of always locating at least one up-to-date replica
per data chunk is very high. Third, if an SN fails, it cannot
rejoin the network before the CSL stabilizes. Finally, a failed
SN always rejoins the network after a time period that ensures
that the number of live replicas does not a fall below a certain
critical level; a backup standby SN may be used to ensure that
this is always the case.
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A. Handling node failures

To handle node failures, SNs exchange keep-alive messages.
Note that, even in a large deployment, nodes exchange such
messages only with their logical neighbors in their leafset, a
fact that does not limit system scalability as the number of SNs
grows. If an SN is unresponsive for a predefined time period,
it is presumed failed. When all nodes whose leafset contained
the failed node realize the failure, the overlay network is
stable again. Routing entries are lazily updated, as analyzed in
[17]. During the overlay reconfiguration process, some routing
entries may point to failed nodes, therefore special attention
has to be paid to ensure data consistency. On the other hand,
while at certain time periods one or more SNs may hold
outdated versions of chunks, as long as an updated version
exists VDDs, will never retrieve outdated data.

The inherent decentralization of DHTbd means that SN
failures do not affect all other SNs; only the L neighbors
of a failed node must take action in order to stabilize their
state by updating their leafsets. A node failure affects system
operation when an SN is the responsible node for a specific
chunk ID or is part of the path towards the responsible node.
In both cases, such a failure will cause a timer to expire in the
source SN and the message to be rerouted. FreePastry supports
automatic message rerouting using a randomly selected SN
from the present SN’s leafset as the first hop. As a result, the
probability that the lookup message will end up in a node able
to respond to the request is significantly increased. In the worst
case the source SN will keep rerouting the message until the
overlay is stabilized. Note that when the replying SN is not
aware of the responsible SN’s failure, the response sent to the
VDD after a lookup request may contain the failed SN; we
explain below how VDDs handle this.

When SNs are aware of a node failure, DHTbd behaves
differently. When the failure has been noted by the overlay
neighbors, a lookup request will end up either in the node with
the closest ID to the message ID or in a node able to respond
to the lookup request. In DHTbd, chunk responsibility never
changes due to node failures; it only changes when new nodes
join the CSL (i.e. during system startup or system expansion).
The SNs implement this policy by keeping a second leafset,
apart from that required by Pastry, which we call the shadow
leafset. When no failed nodes exist in the overlay network,
the shadow leafset is identical to the regular leafset. When
nodes fail however, each node that realizes the failure records
the failed nodes in its shadow leafset. Therefore, the shadow
leafset is a superset of the Pastry leafset. Shadow leafsets
are never used for routing; an SN that receives a lookup
request only uses its shadow leafset to check if it is capable
of responding to it, even when no failures have occurred.

LeafSet(G): [C E F [G] H I J]
ShadowLeafSet(G): [C D E F [G] H I J]

msg(chunkID)chunkID

A
B

C
D

E F G H I
J

Fig. 4. Shadow leafset usage

In order to explain how shadow leafsets are used, we present

a simple scenario where the indicated lookup request arrives at
node G in Figure 4. We assume that node D has failed, node G
is aware of its failure and the supported leafset size is 6. Since
node G knows about D’s failure, the shadow leafset contains
D, unlike the regular leafset. The closest node to the requested
chunkID is the failed node D. Since chunk responsibility never
changes when nodes fail, G can respond to the lookup request
if the replication factor is up to 3. If the replication factor
is 1, it is obvious that all chunks stored in node D are now
offline and, therefore, an I/O error will occur. If the replication
factor is 2, node E is holding a replica of the requested chunk
and so G’s response will contain E. If the replication factor
is 3, G’s response will contain nodes E and C. On the other
hand, if the supported replication factor is 4, node G is not
capable of responding because it cannot know whether node
B is closer to the chunk ID than F, since it is not aware of B at
all. In this case the message has to be routed to the destination
node, which, according to the leafset (not the shadow leafset),
is node E. The SN replying to a lookup request will never
include SNs that are known to have failed.

After describing how SN failures are managed by the CSL,
we now turn to the VDDs. In general, when an SN fails
while processing a request, the VDD that sent the request
will realize the failure after a timeout. If the request was a
lookup, the VDD will simply direct the lookup to another
SN. If the request is a read or a write, it will lead to an I/O
error if a single replica is kept for each chunk. However, if
multiple replicas are kept, an SN failure during a write can
be simply ignored, hoping that the writes to the other replicas
will succeed, while an SN failure during a read causes the
VDD to direct the request to another replica of the data.

Apart from the SNs, VDDs may also fail, potentially leaving
the storage system in an inconsistent state. A VDD may
fail during a write request, therefore there is a chance that
different versions of a chunk will reside in the system. To
handle such inconsistencies, each chunk stored in the system
is accompanied by a version number so that VDDs can always
retrieve its newest replica. Chunk versions are also used to
protect VDDs from outdated replicas when previously failed
nodes rejoin the overlay network. In general, using versions
to maintain system consistency can become tricky. However,
in our system a chunk cannot be simultaneously accessed by
multiple VDDs. If shared access to a virtually shared block
device is required, then a shared filesystem must be used over
DHTbd. As a result, chunk versions can guarantee system
consistency when SNs or VDDs crash or join the system, since
a VDD will always retrieve chunks from an up-to-date SN even
when node failures have previously occurred.

An extreme scenario where system consistency is still
maintained is as follows. A VDD writes a chunk, but one
replica is currently not available due to a temporarily broken
connection. Therefore the version of this replica will not be
increased. If the connection is quickly repaired, no failure will
be detected. Assume now that when the next write occurs
that replica is available, therefore it performs the write and
increases its version. Its version is now out of sync with
the others and its chunk may be out of date due to the
missed update (recall that writes may affect part of a chunk).
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The SN will synchronize this chunk upon a VDD’s request
(informUpdate()) when part of or the whole chunk must be
read, since VDDs always check the version numbers received
by the SNs. When this chunk is rarely read, the SN will
continue to hold an out-of-sync replica. To address this issue,
SNs periodically exchange synchronization messages with
their neighbors in the ID space for the chunk versions they hold
and update them if required. Again this message exchanging
does not affect system scalability, since, regardless of the
number of SNs in the system, a node exchanges messages
with the nodes in its leafset only.

B. Handling new nodes

When an SN joins the overlay network, it must initialize
its routing table and leafset and also inform other SNs of its
presence [17]. The initialization procedure refers to the stabi-
lization of the overlay network to account for the newly joined
node. Depending on whether the new node had previously
crashed or not, further actions must be taken by a number
of SNs to bring the system to a consistent state. The SNs
that updated their leafsets due to the newly arrived node can
distinguish between previously failed nodes and newly added
nodes by checking their shadow leafsets.

When an SN joins the overlay network for the first time, the
responsibility for a set of chunks must be transferred from its
neighbors to it. The new SN calculates the ID range for which
it is responsible, based on the replication factor supported
by the system. A simple example of the aforementioned
calculation is presented in Figure 5. When a single replica for
each chunk is supported, the new node N is responsible for the
chunkIDs numerically closer to it. When the replication factor
is 2, this range is extended and contains the IDs for which the
new node is numerically closer compared to nodes A and D.
After calculating the ID range, the new node requests from the
r+1 numerically closer nodes to inform it of the set of chunks
included in its ID range that they currently hold, as well as
their version numbers. As mentioned in Section II-A, each SN
maintains a local B-Tree that maps chunkIDs to their physical
location in the local storage device. This index eases the
discovery of the set of adjacent chunks in the ID space, since
B-Trees support efficient processing of range queries. After
retrieving this information, the new SN lazily requests the
latest versions of the appropriate chunks from its neighbors.
We chose to incorporate such a configurable approach to be
able to adjust the degree of performance degradation that
VDDs realize when changes to the storage system take place.
During this process the new SN processes store and retrieve
requests sent by VDDs normally. Recall that a retrieve request
follows a version request and, therefore, a new node that
receives a retrieve request must have already acquired the latest
chunk version. On the other hand, recovering nodes only need
to retrieve from their neighbors the chunks for which they
currently hold an outdated version.

When a new node joins, some SNs are no longer responsible
for some chunks due to the new SN. Therefore, they delete
them from their local storage device, after being notified by
the new SN that it is fully updated. The deletion of a set of

N

A

B C
D

R = 1

R = 2

Fig. 5. ID Range Calculation

chunks is quick since only a mapping is deleted. The storage
space in the local storage device will be reused when new
chunks have to be stored.

IV. EXPERIMENTAL EVALUATION

The current implementation status of our system is briefly
described below. SNs are implemented in Java, incorporating
the FreePastry code to support Pastry operations. The back-end
storage is implemented as a regular local file in each SN, since
Java does not support direct access to raw devices without
JNI. ChunkIDs are mapped to the file offset where the actual
data are stored using BerkeleyDB. VDDs are implemented as
Linux kernel modules for kernel version 2.6.27 and higher.
They implement the block device interface provided by the
kernel and directly communicate with the SNs using TCP
socket connections. Network I/O is implemented by registering
callbacks to each socket connection so that software interrupts
are fired whenever socket buffers have space for writing or data
for reading. Software interrupts are processed immediately and
the actual network I/O is deferred for later processing using
the workqueue interface provided by the Linux kernel.

The experimental evaluation of our system was conducted
in a cluster of 14 identical PCs with dual core CPUs running
at 1.2 GHz, 1 GB RAM, 1 HDD spinning at 7200 rpm and
1 Gbps Ethernet cards. All PCs were directly connected to a
Gigabit Ethernet switch (HP ProCurve 1810g). The bandwidth
measurement benchmarks conducted in the evaluation environ-
ment using netperf indicate a maximum data rate between
two PCs (full-duplex) of about 800 Mbps. For all systems
tested, except Lustre, we used the Ubuntu 10.04 distribution
(2.6.32 Linux kernel). For Lustre we used Ubuntu 8.10 with
the patched kernel provided in the Lustre web site (2.6.22).

A. I/O Throughput Comparison

In this subsection we evaluate the I/O performance of
DHTbd under basic I/O workloads against the performance of
three popular distributed file systems, Lustre [2], PVFS [1] and
Ceph [3]. In order to keep the measurements as comparable
as possible we used simple I/O workloads (i.e. sequential and
random access patterns). Our system is implemented in the
block level of the I/O stack, whilst creating complex I/O work-
loads (e.g. metadata heavy I/O patterns) mostly affects the way
filesystems behave. The goal of this comparison is therefore
not to find the “best” system, since DHTbd is implemented at
the block level, while the other systems are implemented at
the file level. Moreover, DHTbd clients mount a single access
filesystem (Ext3 with journaling) on top of the VDD, therefore
a direct comparison with the distributed file systems that
support shared namespaces is not possible. Nevertheless, the
comparison gives us clear indications regarding the potential
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Fig. 6. I/O Throughput Comparison (AIO)

of our system, whose major characteristic is the complete
decentralization and the absence of any kind of metadata. Note
that the implementation of other systems implemented at the
block level, such as Petal [11] and FAB [12], is not publicly
available, therefore we could not evaluate them.

The measurements were captured using the IOzone tool.
In order to make the results as comparable as possible, each
system was configured as follows. Our system used 13 SNs
and a single VDD, on top of which we mounted an Ext3
file system. The leafset size of each SN was 16, therefore
all SNs were aware of each other and no overlay routing
was required; in the next subsection we present measurements
for a larger deployment (140 SNs) where routing is required.
The deployment did not support chunk replication. For all
distributed filesystems, we used 13 storage devices, 1 metadata
server running on a host that also acts as a storage device, and
a single client. In all cases, clients ran in a dedicated PC and
no other network traffic was produced simultaneously.

The chunk size supported by our system was configured to
be 256 KB, the same as the file stripe size for Lustre and PVFS.
We also measured Lustre performance with no file striping
at all. Ceph’s current implementation does not support stripe
configuration, therefore we used the default of 1 MB. For that
reason, as observed below, in some cases Ceph outperforms

all other systems. Ceph’s present deployment was configured
to store a single copy of each file stripe. Finally, we point
out that experiments were conducted multiple times and the
average values are presented in all figures and tables.

Figure 6 presents performance with various asynchronous
I/O workloads. Lustre256 and Lustre0 represent Lustre with
and without striping, respectively. The X-axis represents the
size of the file used in each experiment, ranging from 400
MB to 2 GB, while the Y-axis depicts the I/O throughput in
MB/sec. Note that in asynchronous I/O mode all systems take
advantage of the caching provided by the operating system,
except for PVFS which bypasses the caching subsystem, and
was therefore not included in these measurements.

In order to produce these measurements, we configured
IOzone to first sequentially write an entire file to the file
system exported by the storage system (in our case, a local
Ext3 file system mounted on top of the VDD) and then
sequentially read the entire file back. Afterwards, IOzone
writes random parts of the file (128 KB each) in the storage
system and, finally, reads random parts of the same size. The
request size that IOzone passes to the filesystem for the
sequential part of the experiment was also 128 KB; this size
did not dramatically affect the results due to the asynchronous
nature of the I/O. For all systems and workload types, we
observe that as the size of the file grows, measurements tend
to reach a stable throughput value. This is due to the caching
effect fading out as the size of the data involved in the
experiment grows. We do not present measurements for file
sizes less than 400 MB for write I/O and 600 MB for read
I/O; for these sizes the throughput rates are extremely large
due to the fact that I/O is done almost entirely in RAM. For
all workload types we notice that DHTbd performs similarly
or even better than the distributed filesystems, especially when
large files that exceed RAM size are involved in the I/O. It is
worth noticing that Lustre write performance without striping
is bounded by the maximum I/O capacity of a single hard
disk (Figures 6(a) and 6(c)). Ceph performs best overall since,
as mentioned above, the supported file stripe is much larger
compared to all other systems.

In Figure 7 we present the performance of each system
considered when IOzone uses direct I/O. Direct I/O is
preferred by applications such as database systems that require
control over the way data are written to the back-end storage.
For direct I/O the size of the file does not affect performance,
as no caching is provided by the operating system. What is
critical for the performance in this case is the request size
that IOzone passes to the file system for reading or writing.
Therefore, our measurements were produced using the same
procedure as above, albeit we kept the file size constant (200
MB) and measured performance for several I/O request sizes
(depicted in the X-axis). Note that PVFS is included in these
measurements, even though it does not support direct I/O,
as PVFS bypasses the caching mechanism provided by the
operating system, effectively emulating direct I/O operation.

As observed in Figure 7(a), DHTbd performs equally well
as PVFS and much better than Ceph and Lustre when dealing
with sequential write workloads. The maximum throughput
achieved for very large request sizes is bounded by the maxi-
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Fig. 7. I/O Throughput Comparison (DIO)

mum network throughput (about 95 MB/s). The performance
of Lustre and Ceph is poor (about 18 MB/s); performing file
operations directly for each filesystem request seems to be
costly for these systems, unlike DHTbd on top of which we
mounted a single access file system. DHTbd’s performance for
the sequential read workload is comparable to Ceph and much
better than Lustre. It is also noticeable that PVFS performance
collapses for request sizes larger than the supported file
striping size. This is more likely due to TCP incast [21], a well
studied problem in high performance data centers. Finally, note
that even though in some cases PVFS performs better than our
system, it does not actually support direct I/O and, therefore, a
direct comparison between these two systems is not possible.
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Fig. 8. Multiple clients - Sequential Write (AIO)

B. System Scalability

In this subsection we evaluate the scalability of our system.
In particular, we measure the total system throughput when
multiple clients access the storage system simultaneously as
well as the I/O throughput of a single client when accessing a
much larger deployment of the CSL. In order to measure total
system throughput we used the xdd tool which supports dis-
tributed I/O benchmarking when multiple synchronized clients
access the storage system simultaneously. We configured xdd
so that in each step of the experiment a number of clients,
increased by 2 in each step, sequentially writes and, then, reads
a file for 30 s. All clients are synchronized to a timeserver

in the cluster. For each step we calculate the sum of the
I/O throughput rates for each client. In the presented figures,
measurements represent the average values of multiple runs
per experiment. The deployment details for each system are
the same as in the previous subsection, except for the fact
that all 14 hosts are used as storage devices. The maximum
number of clients is 14, representing the extreme case where
all physical hosts run a storage server as well as a client.

Figure 8 presents total system throughput when multiple
clients simultaneously write a file using asynchronous I/O.
DHTbd behaves very well, sustaining a write throughput of
about 300 MB/s, while Ceph barely reaches the value of 180
MB/s. The most scalable deployment is that of Lustre when no
file striping is supported, since for each client an idle storage
device is assigned for file storage and, therefore, system
performance increases linearly. Again, we did not include
PVFS in these experiments. We do not show read performance,
since local caching makes the results incomparable.
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Figure 9 depicts the total throughput of DHTbd when
performing direct sequential writes (9(a)) and reads (9(b)) for
request sizes ranging from 4 to 512 KB. We observe that in all
cases the total throughput scales well, reaching the value of
220 MB/s for writes and 330 MB/s for reads when the request
size is 512 KB. To keep the diagram readable, we omit the
performance for larger request sizes but note that the measured
performance was slightly better.

In all these measurements a single SN runs in each physical
host and, therefore, the maximum number of SNs in the
CSL is limited to 14. With a leafset size of 16, each SN is
aware of all other nodes and no routing is required. However,
in larger deployments the CSL may consist of hundreds or
even thousands of nodes. DHTbd is fully decentralized and,
therefore, each node does not have to be aware of all others.
The cost for this decentralization is the need to route the
lookups sent by VDDs. In order to evaluate this cost, for the
next set of measurements we created a topology consisting of
140 nodes, by running 10 virtual nodes in each host in separate
Java virtual machines. The leafset size remained 16, therefore
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many lookups required overlay routing in order to reach a
node capable of responding. The measurements below were
captured using the IOzone tool and the presented workloads
include direct sequential writes and reads for a single client
and request sizes ranging from 4 to 1024 KB.

Comparing the measurements with 140 SNs (Figure 10)
with the measurements for 13 SNs (Figure 7) we conclude that
the performance of a single client does not change significantly
when accessing a system almost 11 times larger. We omit
the results for asynchronous I/O as they support the same
conclusion. It is not clear whether the slight performance
decrease is due to the overlay routing in the larger system or to
the extra overhead, in terms of CPU and memory, required to
run 10 Java virtual machines per physical host. Note also that
this is an extreme case: the system is 11 times larger but only
a single client accesses it. Increasing system size translates to
more storage space and processing resources and, potentially,
more aggregate bandwidth (compared to Figures 8 and 9).
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Fig. 10. I/O Throughput in a large deployment

C. Replication and Self-Organization

In this subsection we discuss the performance of our system
when replication is supported as well as during node failures
and joins. Starting with replication, out of all the distributed
file systems discussed above, only Ceph supports replication,
therefore it is the only one that can be compared to our system.
Apart from the replication level, the system deployments are
identical to the ones presented in the beginning of this section.
In the diagrams below, systemX refers to each system when X
instances of each piece of data are stored.

Figure 11 shows that with asynchronous sequential writes
Ceph saturates the uplink of the client, with our system
performing slightly worse. Since the Ceph stripe size is 4
times larger than the chunk size supported by our system,
we expect that performance would be similar if both systems
grouped date in pieces of the same size. On the other hand,
the performance of our system with asynchronous direct writes
is exceptional compared to Ceph. We omit measurements for
read workloads since replication does not significantly affect
the performance results already presented in subsection IV-A:
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Fig. 11. I/O Throughput for various replication levels

the client’s VDD only needs to read a single replica of each
chunk and the measured cost for reading the versions first
was negligible. Obviously, DHTbd’s performance drops when
more replicas are stored since more bandwidth is required to
support the I/O operations.

Finally, we turn to the behavior of our system when nodes
join or fail. To capture the actual performance of our system,
we used Xdd for direct sequential I/O operations with a
request size of 16MB, thus avoiding the local caching of
asynchronous I/O. Figure 12(a) shows the I/O performance of
a single client captured every 1s. Initially, the CSL contains 7
SNs storing 4 GB of data without replication. After approx-
imately 20 s the remaining 7 SNs join the overlay network.
The figure shows that client I/O performance is degraded until
all data are migrated from the existing SNs to the new ones,
as described in section III-B. The performance degradation
depends on the rate that existing SNs transfer chunks to the
new ones (in this case, chunks are sent every 1 ms).

In Figure 12(b) we repeat the experiment starting with 14
SNs in the CSL, storing 2 instances of each chunk of data. At
approximately 8 s we stop 7 SNs (one after the other). The
SNs stopped are selected so as to leave one instance of each
chunk in the CSL. In this case system operation seizes for
about 20 s; this time is determined by the timeout period of
the kernel client. For demonstration purposes only, we set this
value to 15 s, with multiple failures increasing the downtime to
20 s. Apart from that timer, nothing prevents the system from
continuing its operation. Note also that since after the failure
the CSL contains half of the initial SNs, only 1 instance of
each chunk is stored and, therefore, we observe an increase in
client I/O performance.

V. CONCLUSION

We have presented the design and implementation of
DHTbd, a completely decentralized distributed storage system
that exploits the basic properties of the Pastry overlay network.
Storage clients are implemented as Linux kernel modules
that can be dynamically loaded into the operating system,
providing applications with transparent access to a storage
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infrastructure that is resilient to multiple node failures and self-
organized. The unique combination of a block level storage
interface with a decentralized storage infrastructure makes
our system self-organized as well as independent of any file
system and, therefore, suitable for storage environments where
multiple file systems, local or shared, must be supported.

The evaluation of our system proves its feasibility. More-
over, we have shown that the I/O performance of a single
client is comparable or in many cases better than the one
measured for other popular distributed file systems. The pre-
sented evaluation demonstrates that the performance of our
system sustains high levels even when multiple clients access
the storage system simultaneously or for a deployment of
140 storage nodes. The latter is very important, since the
number of required hops in the CSL scales logarithmically
with the number of SNs, meaning that we would expect similar
performance even for much larger deployments. Finally, we
presented experiments that show the feasibility of the proposed
self-organization mechanism when new nodes join the system
or fail. A significant observation was the fact that our system
continued operating even after half of the SNs crashed.
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