
Workshop on Generative Technologies 2010

Statically-typed value persistence for ML

Thomas Gazagnaire

Citrix Systems R&D
Building 101, Cambridge Science Park, Milton Road,

Cambridge CB4 0FY, UK
thomas.gazagnaire@citrix.com

Anil Madhavapeddy

Computer Laboratory, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK

avsm2@cl.cam.ac.uk

Abstract

We present a set of extensions to the OCaml language which add support for statically generating typed
accessor functions for persisting and communicating a large subset of OCaml types. The extensions do not
require any compiler modifications and are implemented using the camlp4 AST transformer. We describe
our utility libraries which permit analyzing OCaml values and type declarations from library code without
the complexity of a fully-staged system such as MetaOCaml.

Keywords: ocaml, metaprogramming, generative, database, network, sql

1 Introduction

ML compilers can generate very efficient code due to their use of static typing and
simple run-time requirements, making them ideal for constructing reliable, high-
performance servers [6]. However, conversions between the variety of values that
these servers manipulate is a largely manual process that can be tedious and error-
prone. It can be automated via staged programming to generate and execute code
fragments as part of the compilation process [10], but introducing N-stage languages
such as MetaOCaml introduces additional complexity in the tool-chain.

We describe a simpler 2-stage transformer that is sufficient for generating ef-
ficient storage code for ML programs. Our implementation uses OCaml [5] and
camlp4 to: (i) parse a large subset of OCaml types and values to a more suc-
cinct form than the syntax tree which camlp4 provides; (ii) implement an Object-
Relational Mapping (ORM) which defines an efficient conversion to and from SQL;
(iii) provide a syntax extension to augment type definitions in existing code.

End-user programmers use the same types and values as they did previously,
but additional functions are generated to persist and retrieve these values from the

Gazagnaire and Madhavapeddy

database. Parts of the extension have been developed for use in the Xen [2] control
toolstack—a large, complex OCaml application that has been developed since 2006.
The Xen toolstack runs in an embedded Linux distribution and controls virtual
machine activity across pools of physical machines, and so requires efficient storage
and I/O. One of the benefits of our approach is that it works as a library to the
standard OCaml distribution.

In the remainder of the paper, we first describe the type parsing (§2) and value
introspection libraries (§3). Then we show its use in the ORM layer (§4), and finally
an example of a simple photo gallery (§5).

2 Type Introspection

In this section we describe type-of, a library which make type introspection available
in OCaml. It uses the type-conv framework [8] to convert an ML type definition
annotated with the keyword type_of into a finite ML value representing that type
and usable at runtime. For a given type t, the library will generate a value named
type_of_t of type Type.t defined as follows:

module Type = struct OCaml

type t =
| Unit | Bool | Float | Char | String
| Int of int option
| Arrow of t × t
| Option of t
| Enum of t
| Tuple of t list
| Dict of (string × [‘RW|‘RO] × t) list
| Sum of (string × t list) list
| Ext of string × t
| Rec of string × t
| Var of string

end

2.1 Basic Types

The basic types are similar to the usual OCaml basic types, i.e. Bool, Float, Char
and String which can be composed using Arrow. Integers have an addition bit-
width range parameter that can be 31-, 32-, 63- or 64-bit depending on the exact
OCaml type and host architecture, or unlimited for BigInt types. These basic
types can be composed to form either a tuple with Tuple, a record or an object
with Dict, or a (polymorphic) variant with Sum.

For example, consider the basic type definitions:

type tuple = int32 × string with type of OCaml

type record = { mutable foo : string } with type of
type variant = Foo | Bar of bool with type of

These definitions will generate the following ML code:

let type of tuple = Ext (“tuple”, Tuple [Int (Some 32); String]) OCaml

let type of record = Ext (“record”, Dict [(“foo”, ‘RW, String)])
let type of variant = Ext (“variant”, Sum [(“Foo”, []) ; (“Bar”, [Bool])])

2

Gazagnaire and Madhavapeddy

2.2 Type Variables

Types variables are handled quite naturally, by induction on the type
structure in which they are used. Hence, a recursive type definition as
type t = x option with type_of will generate the following ML expression :
let type_of_t = Ext ("t", Option type_of_x). In this case, type_of_x has
to be defined for the program to compile. This definition may have either been
automatically generated previously using the type-of library, or have been defined
by the user. The later option makes the type-of library easily extensible, especially
for abstract types.

2.3 Recursive Types

Recursive types are handled carefully in order to always keep a finite representa-
tion of the ML type. This is done using the constructors Rec(v,t) and Var v.
Rec(v, t) can be understood as the binding of the type variable v to the type
expression t; Var v always appears in the scope of a corresponding Rec(v,t) and
is equivalent to the substitution of Var v by t in t.

The following example show the code which is automatically generated for simple
recursive types:

(? User-defined datatype ?) OCaml

type t = { x : x } and x = { t : t } with type of

(? Auto-generated code ?)
let type of t = Rec (“t”, Dict [“x”, Ext (“x”, Dict [“t”, Var “t”])])
let type of x = Rec (“x”, Dict [“t”, Ext (“t”, Dict [“x”, Var “x”])])

3 Value Introspection

The purpose of the value library is to make runtime value introspection avail-
able in OCaml. This library uses camlp4 and type-conv to associate to any
ML type definition annotated with the keyword value a pair of functions which
will marshall/unmarshall any value of that type into a simpler and well-defined
ML value, which is especially designed to make introspection easier. Hence, for a
given type t, the library generates two functions value_of_t : t -> Value.t and
t_of_value : Value.t -> t, where Value.t is defined as follows:

module Value = struct OCaml

type t =
| Int of int64 | Bool of bool | Float of float | String of string
| Arrow of string
| Enum of t list
| Tuple of t list
| Dict of (string × t) list
| Sum of string × t list
| Null
| Value of t
| Ext of (string × int64) × t
| Rec of (string × int64) × t
| Var of (string × int64)

end

3

Gazagnaire and Madhavapeddy

3.1 Basic Types

Value.t mimics the way ML values are represented in the heap and exposes that
representation at runtime to the user. It defines a structure similar to the one defined
by type-of. The differences are that the value library is building values instead of
types, so for example the integer 42 is represented as Int 42L. Functional values
are (un-)marshaled using the built-in OCaml Marshal.{from_string,to_string}
functions. As for the type-of library, the basic values can be composed to form either
a tuple with Tuple, a record or an object with Dict or a (polymorphic) variant with
Sum.

For example, when the basic types defined in section 2.1 are annotated with the
keyword value, they will generate ML expressions equivalent to:

(? Auto-generated code for ”type tuple = ... with value” ?) OCaml

let value of tuple (i,j) =
Ext((“tuple”, 0), Tuple [Int (Int64.of int32 i); String j])

let tuple of value = function
| Ext ((“tuple”,), Tuple [Int i; String j]) → (Int64.to int32 i, j)
| → failwith ”runtime error”

(? Auto-generated code for ”type record = ... with value” ?)
let value of record t =

Ext ((“record”, 0), Dict [“foo”, String t.foo])

let record of value = function
| Ext ((“record”,), Dict d) when List.mem assoc “foo” d → { foo = List.assoc “foo” d }
| → failwith ”runtime error”

(? Auto-generated code for ”type variant = ... with value” ?)
let value of variant = function
| Foo → Ext ((“variant”, 0), Sum (“Foo”, []))
| Bar b → Ext ((“variant”, 0), Sum (“Bar”, [Bool b]))

let variant of value = function
| Ext ((“variant”,), Sum (“Foo”, [])) → Foo
| Ext ((“variant”,), Sum (“Bar”, [Bool b])) → Bar b
| → failwith ”runtime error”

3.2 Type Variables

Values whose type uses a type variable are built by induction on that type. As for
the type-of library, the value library is easily extensible: for a type variable t, the
user can choose to modify the type definition of t in order to add the keyword value
and let the value library generate the value_of_t and t_of_value functions, or
manually write these two functions.

Hence, in the following example, value_of_x and x_of_value might either be
function generated from the definition of t or be user-defined:

(? User-defined datatype ?) OCaml

type t = x option with value

(? Auto-generated code ?)
let value of t = function
| None → Ext ((“t”, 0), Null)
| Some x → Ext ((“t”, 0), Value (value of x x))

let t of value = function
| Ext((“t”,), Null) → None
| Ext((“t”,), Value x) → Some (x of value x)
| → failwith ”runtime error”

4

Gazagnaire and Madhavapeddy

3.3 Recursive Types

The first argument (of type string * int64) of type constructors Ext, Rec and
Var is called a variable. Its first component (of type string) is the name of the
type it comes from; the second one (of type int64) is an unique identifier which can
be seen as the memory address in the heap of the corresponding value; however,
this identifier is unique inside that value only so it cannot be used to do quick
comparisons between two different values of type Value.t.

A value of type Value.t is well-formed if any Var v appears only in the scope of
a recursive declaration; i.e. if we can find a upper-expression Rec(v, e) such that
Var v is a free variable in e. In this case, Var v can be bound to the expression e
and it can be substituted to it without changing the semantics of the term.

Furthermore, a value which has a recursive type does not necessary mean that
value is recursive, the best example being tree-like structures. To make that dis-
tinction clear, a value Rec(v,e) means that Var v is free and appears in e; thus
bounding v to e makes that value recursive. In the other hand, a value Ext(v,e)
means that Var v does not appear in e.

For example, consider the following recursive type definition and the associated
auto-generated code, where free_vars : Value.t -> (string * int64) list
computes the free variables of an expression:

(? User-generated datatype ?) OCaml

type t = { x : x } and x = { t : t} with value

(? Auto-generated code ?)
let value of t, value of x =

let rec value of t aux xs ts t =
if List.mem assq t ts then

Var (“t”, List.assq t ts)
else begin

let id = new id () in
let res = Dict (“x”, value of x aux xs ((t,id) :: ts) t.x)

if List.mem (t,id) (free vars res) then
Rec ((“t”,id), res)

else
Ext ((“t”,id), res)

end
and value of x aux xs ts x = ... in
value of t aux [] [], value of x aux [] []

We do not detail here how the functions t_of_value and x_of_value are gen-
erated, but the idea is quite similar: the algorithm needs to keep track of which ML
value is associated to the unique identifiers stored into the Rec and Var construc-
tors and reconstruct the ML value accordingly. It may also need to use some unsafe
functions from the Obj module to initialize the induction.

4 SQL backend

We now show how to use the type-of and value libraries to build an integrated SQL
backend to persist ML values. This backend is integrated seamlessly with OCaml:
the user does not have to worry about writing SQL queries manually.

5

Gazagnaire and Madhavapeddy

For each type definition t annotated with the keyword orm, a tuple of functions
to persist and access the saved values are automatically generated:

(? User-defined datatype ?) OCaml

type t = ... with orm

(? Auto-generated signatures ?)
val t init: string → (t, [‘RW]) db
val t init read only: string → (t, [‘RO]) db
val t get: (t, [< ‘RW | ‘RO]) db → ... → t list
val t save: (t, [‘RW]) db → t → unit
val t delete: (t, [‘RW]) db → t → unit

The t_get function has a part of its signature left unspecified; this is because
the type of the query arguments are parameterized by t (see §5 for an example of
query arguments). As an additional layer of type-safety, the database handle has a
phantom polymorphic variant [‘RO|‘RW] that distinguishes between mutable and
immutable database handles. This causes a compilation error if, for example, an
attempt is made to delete a value to a read-only database.

4.1 Database Initialization

In this section, we explain how SQL schema can be derived using the type-of library.
We define N as a collection of names closed under the following operations:

• ⊥ ∈ N ;
• string ⊂ N ;
• if n ∈ N and i ∈ N then ni ∈ N ;
• if n ∈ N and m ∈ N , then nm ∈ N .

The SQL schema syntax is then defined as follows, where i ∈ N and n ∈ N :

type ::= I(i) | R | T | B
field ::= 〈n : type〉
table ::= n ` {field, . . . , field}

Such schema can be easily translated into an SQL query to create the appropriate
tables in a database. First, type is translated into SQL with the following rule:

• I(i)→ INTEGER if i ≤ 64;
• I(i)→ TEXT if i > 64;
• R→ REAL;
• T → TEXT;
• B → BLOB.

Second, each value of the SQL schema domain corresponds naturally to an SQL
query for creating a table in a given database. For example the schema T ` {〈f1 :
R〉, 〈mn : T 〉} can be intuitively associated to the following SQL query:

CREATE TABLE T SQL

(id INTEGER PRIMARY KEY AUTOINCREMENT, f 1 REAL, m n TEXT)

6

Gazagnaire and Madhavapeddy

where __id__ is an internal field which is used to uniquely identify each row in
a given table and f__1 and m__n are a possible translations of names f1 and mn to
avoid name-clashes (we assume here that __ is not used by the programmer).

We have shown how to derive an SQL query from an SQL schema. We now
derive the SQL schema from an ML type Type.t, depicted in Figures 1 and 2. The
purpose of this is to obtain consistent SQL tables in which a value of type Value.t
can be stored naturally instead of manual conversion by the programmer.

J n, Int(i) KF = { 〈n : I(i)〉 }(1)

J n, Float KF = { 〈n : R〉 }(2)

J n, String KF = { 〈n : T 〉 }(3)

J n, Arrow KF = { 〈n : B〉 }(4)

J n, Option t KF = { 〈n0 : I(1)〉 } ∪ J n0, t KF(5)

J n, Enum t KF = { 〈n : I(64)〉 }(6)

J n, Tuple(
Y

i∈[1..I]

ti) KF =
[

i∈[1..I]

J ni, ti KF(7)

J n, Dict(
Y

i∈[1..I]

(mi, ti)) KF =
[

i∈[1..I]

J nmi , ti KF(8)

J n, Sum(
X

i∈[1..I]

(mi,
Y

j∈[1..Ji]

ti,j)) KF = { 〈n0 : T 〉 }
[

i∈[1..I]

[
j∈[1..Ji]

J nmij
, ti,j KF(9)

J n, Ext (, t) KF = { 〈n : I(64)〉 }(10)

J n, Rec (, t) KF = { 〈n : I(64)〉 }(11)

J n, Var (, t) KF = { 〈n : I(64)〉 }(12)

Fig. 1. Field semantics

Figure 1 shows how to inductively build the collection of fields from a name
and an element of Type.t, i.e. it defines a function J.KF : N × Type.t→ {field}.
Equations (1)-(4) translates basic constructors of Type.t into simple fields with
the appropriate type; equation (5) adds a new internal field to store if the value is
set or not; moreover the current name is changed and that changed is propagated
through the induction. Equations (6) and (10)-(12) means that enumeration and
type variables are stored in separate tables and thus the row ID of this foreign table
need to be stored in the current table. Finally, equation (7)-(9) fold the induction
through the sub-terms of the current term of type Type.t, and propagate the name
changes (i.e. we ensure that each sub-induction call has a different field name).

Figure 2 shows how to build the set of SQL tables from a name and ele-
ment of Type.t, i.e. it defines a function J.KT : N × Type.t → {table}. In
equations (13)-(17), basic constructors of Type.t and option type do not affect
the set of tables (they are handled in the previous field semantics). Equations
(18)/(22)-(24) create foreign tables, which are referenced as int64 integers from
the field semantics in Equations (6)/(10)-(12). Moreover, equation (18) add the
fields {〈next : I(64)〉, 〈size : I(64)〉} to the collections of fields computed by J·KF :
an enumeration is stored as a simply linked list in the database. Equations (19)-(21)
also fold the induction through the current term as with the semantics in (7)-(9).

7

Gazagnaire and Madhavapeddy

J n, Int(i) KT = ∅(13)

J n, Float KT = ∅(14)

J n, String KT = ∅(15)

J n, Arrow KT = ∅(16)

J n, Option t KT = ∅(17)

J n, Enum t KT = J n0, t KT ∪ { n0 ` {〈next : I(64)〉, 〈size : I(64)〉} ∪ J ⊥, t KF }(18)

J n, Tuple(
Y

i∈[1..I]

ti) KT =
[

i∈[1..I]

J ni, ti KT(19)

J n, Dict(
Y

i∈[1..I]

(mi, ti)) KT =
[

i∈[1..I]

J nmi , ti KT(20)

J n, Sum(
X

i∈[1..I]

(mi,
Y

j∈[1..Ji]

ti,j)) KT =
[

i∈[1..I]

[
j∈[1..Ji]

J nmij
, ti,j KT(21)

J , Ext (n, t) KT = { n ` J ⊥, t KF } ∪ J n, t KT(22)

J , Rec (n, t) KT = { n ` J ⊥, t KF } ∪ J n, t KT(23)

J , Var (n, t) KT = { n ` J ⊥, t KF } ∪ J n, t KT(24)

Fig. 2. Table semantics

Finally, the table semantics of a type t can then be defined as J⊥, tKT .
At the OCaml interface layer, the initialization function connects to the database

and dynamically confirms that it has the expected set of tables. If it creates a new
database, it also saves the full Type.t in a special __Types__ table for this purpose
in the future. Some changes in the types between database initialization and use
are safe due to the abstraction provided by type-of; records can be converted into
objects, or polymorphic variants [3] can become normal ones. We are investigating
automated database migration between differing schemas as a topic of future work.

5 Example: Photo Gallery

Due to space constraints, we do not explain the full semantics of queries and writes
in this paper. Instead, we choose to illustrate the capabilities of the ORM library
by constructing a simple photo gallery. We start that example by defining the basic
ML types corresponding to a photo gallery:

type image = string OCaml

and gallery = {
name: string;
date: float;
contents: image list;

} with orm

We hold an image as a binary string, and a gallery is a named list of images.
First, initializations functions are generated for both image and gallery:

val image init : string → (image, [‘RW]) db OCaml

val gallery init : string → (gallery, [‘RW]) db
val image init read only : string → (image, [‘RO]) db
val gallery init read only : string → (gallery, [‘RO]) db

8

Gazagnaire and Madhavapeddy

Intuitively, calling gallery_init will:
(i) use type-of to translate the type definitions into:

let type of image = Ext (“image”, String) OCaml

let type of gallery =
Ext(“gallery”, Dict [(“name”, String); (“date”, Float) ; (“contents”, Enum type of image)])

(ii) use the rules defined by Figures 1 and 2 to generate the database schema:

CREATE TABLE image (id INTEGER PRIMARY KEY, contents TEXT); SQL

CREATE TABLE gallery (id INTEGER PRIMARY KEY, date REAL, contents INTEGER);
CREATE TABLE gallery contents (id INTEGER PRIMARY KEY,

next INTEGER, size INTEGER, contents INTEGER);

Second, using the value library, any value of type image or gallery can be
translated into a value of type Value.t. Using rules similar to the ones defined in
Figures 1 and 2, saving functions can be then defined, having as signature:

val image save : (image, [‘RW]) db → image → unit OCaml

val gallery save : (gallery, [’RW]) db → gallery → unit

Finally, using type-of, functions to access the database are generated, with the
following signature:

val image get : (image, [< ‘RO | ‘RW]) db → OCaml

?value:[‘Contains of string | ‘Eq of string]] →
?custom:(image → bool) →
image list

val gallery get : (gallery, [< ‘RO | ‘RW]) db →
?name:[‘Eq string | ‘Contains string] →
?date:[‘Le float | ‘Ge float | ‘Eq float | ‘Neq float] →
?custom:(gallery → bool) →
gallery list

For both types, we are generating: (i) arguments that can be easily translated
into an optimized SQL queries; and (ii) a more general (and thus slow) custom query
function directly written in OCaml. On one hand, (i) is achieved by generating
optional labelled arguments with the OCaml type corresponding to the fields defined
by Figure 1. This allows the programmer to specify a conjunction of type-safe
constraints for his queries. For example, the field name is of type string which is
associated to the constraint of type [‘Eq of string | ‘Contains of string].
Values of this type can then be mapped to SQL equality or the LIKE operator. On
the other hand, (ii) is achieved using a SQLite extension to define custom SQL
functions—in our case we register an OCaml callback directly. This is relatively
slow as it bypasse the query optimizer, but allows the programmer to define very
complex queries.

let db = gallery init ”my gallery.db” in OCaml

let i = new image () in
let gallery = { name=“WTG2010”; date=today(); contents=[i] } in
gallery save db gallery;
match gallery get name:(Eq “WTG2010”) db with
| [g] → printf ”Found 1 gallery: %s” g.name
| → failwith ”Wrong numver of galleries”

9

Gazagnaire and Madhavapeddy

The above code snippet saves a gallery named ”WGT2010” containing an unique
fresh image in a database called my_gallery.db. It then queries all the galleries
whose name is strictly equal to “WGT2010”. It expects to find exactly one gallery
with this name; otherwise it throws an error.

6 Related Work and Conclusions

There are a number of extensions to functional languages to enable general meta-
programming, such as Template Haskell [9] and MetaOCaml [10]. MetaHDBC [1]
uses Template Haskell to connect to a database at compile-time and generate code
from the schema; in contrast, we derive schemas directly from types in order to make
the use of persistence more integrated with existing code. We avoid a dependency on
MetaOCaml by using camlp4 in order to fully use the OCaml toolchain (particularly
ARM and AMD64 native code output), and also because we only need a lightweight
syntax extension instead of full meta-programming support. We believe that our
work is simpler and easier to extend than Yallop’s deriving [11] which is inspired
by the construct in the same name in Haskell [4]. Language-integrated constructs
to manipulate databases is also an active topics for mainstream languages, such as
the LINQ [7] library for the .NET framework. The small syntax extension we are
proposing in this paper is more naturally integrated with the host language.

We have shown how a type and value introspection layer using the AST trans-
former built into OCaml can be used to create useful persistence extensions for the
language that does not require manual translation. As future work, we are building
libraries for network and parallel computation using the same base libraries. The
library is open-source and available at: http://github.com/mirage/orm.

References

[1] Metahdbc, 2009.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), pages 164–177, New York, NY, USA, 2003. ACM Press.

[3] J. Garrigue. Code reuse through polymorphic variants. In Workshop on Foundations of Software
Engineering, Sasaguri, Japan, November 2000.

[4] S. L. P. Jones, editor. Haskell 98 Language and Libraries: The Revised Report. Cambridge University
Press, April 2003.

[5] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system, 2005.

[6] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and R. Sohan. Melange: creating a ”functional” internet.
SIGOPS Oper. Syst. Rev., 41(3):101–114, 2007.

[7] E. Meijer, B. Beckman, and G. M. Bierman. Linq: reconciling object, relations and xml in the .net
framework. In S. Chaudhuri, V. Hristidis, and N. Polyzotis, editors, SIGMOD Conference, page 706.
ACM, 2006.

[8] M. Mottl. type-conv: a library for composing automated type conversions in ocaml, 2009.

[9] T. Sheard and S. Peyton Jones. Template metaprogramming for Haskell. In M. M. T. Chakravarty,
editor, ACM SIGPLAN Haskell Workshop 02, pages 1–16. ACM Press, Oct. 2002.

[10] W. Taha. A gentle introduction to multi-stage programming. In Domain-Specific Program Generation,
volume 3016 of Lecture Notes in Computer Science, pages 30–50, Dagstuhl Castle, Germany, March
2004. Springer.

[11] J. Yallop. Practical generic programming in ocaml. In ML ’07: Proceedings of the 2007 workshop on
Workshop on ML, pages 83–94, New York, NY, USA, 2007. ACM.

10

http://github.com/mirage/orm

	Introduction
	Type Introspection
	Basic Types
	Type Variables
	Recursive Types

	Value Introspection
	Basic Types
	Type Variables
	Recursive Types

	SQL backend
	Database Initialization

	Example: Photo Gallery
	Related Work and Conclusions
	References

