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Abstract
Conventional tools yield expensive and inflexible software.
By requiring that software be structured as plug-compatible
modules, tools preclude out-of-order development; by treat-
ing interoperation of languages as rare, adoption of innova-
tions is inhibited. I propose that a solution must radically
separate the concern ofintegration in software: firstly by
using novel tools specialised towards integration (the “in-
tegration domain”), and secondly by prohibiting use of pre-
existing interfaces (“interface hiding”) outside that domain.

Categories and Subject Descriptors D.2.3 [Coding Tools
and Techniques]; D.2.12 [Interoperability]

General Terms Languages

1. Introduction
Software is expensive: expensive to develop, and expensive
to modify or change because of its inherentinflexibility. By
the latter I refer both to the difficulty ofmaintainingsoftware
and also to software’s tendency togrow in silos. Software
grows as islands of functionality, founded on infrastructure
including programming languages, UI toolkits, development
“frameworks”, extensible applications (browsers like Fire-
fox, editors like Emacs) and so on. The same functionality
is frequently found replicated across many silos of a given
class, at considerable expense—this is strong evidence for
the underlying inflexibility of software. To fix these prob-
lems requires changes to bothtools and practices—where
these two are highly interdependent.
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Toolchains—encompassing compilers, linkers, stub gen-
erators and more—have grown organically into a design
which informs much of common practice. However, this de-
sign originates from an idealised conception of development
as an activity with central planning (enabling coordination
of interfaces among cooperating modules), linear progress
(enablingdepended-uponinterfaces to be finalised before
their dependents are coded) and perfect anticipation (ensur-
ing that earlier decisions need never be reversed). Unfortu-
nately, the resulting tools embody several false assumptions,
giving them designsoptimisedtowards building inflexible,
siloed software, and whichpenalisethe development of flex-
ible and easily-interoperable software. However, when con-
sidered from afar, these assumptions are absurd. Specifically,
I identify and refute the following latent assumptions:

• that software is structured asplug-compatiblemodules,
grown “in order” from low-level dependencies upwards;

• that language interoperation is an exceptional case;

• that information hiding is a sufficient strategy against
coupling.

I will argue that simpler and more flexible software is pos-
sible with tools designed in conscious avoidance of these as-
sumptions. Specifically, I propose a radical two-step change
in tools and practices of software construction:

• an integration domain—there is a fundamental need for
languages and tools specialised towards composition of
software, and moreover, these shouldnot resemble con-
ventional languages;

• the practice of interface hiding—information hiding
should be extended to a new level in which components
are constructed whilepurposely and completely ignoring
the interfaces of all foreign components, and where this
is enforced by tools.

I begin by reviewing the concept of theintegration con-
cern, which will underpin most of the subsequent discussion.



2. The integration concern
All useful software has some interaction with its environ-
ment. Even if simply printing out a response, returning an
exit status, or adjusting some output signal, software is never
an island. As such, software incorporates knowledge, or as-
sumptions, about the nature of its environment—what inter-
action mechanisms are available, and what conventions are
to be adopted in their use. Mechanisms might include proce-
dure calls or byte-stream communication, and conventions
include the signatures of those procedures or the syntax of
the valid byte-stream exchanges (together with semantics
in both cases). It is not possible to interact without some
such assumptions; these are a fundamental and recurring
hindrance to software, in that they are precisely the source
of coupling.

The same functionality can be useful in many different
environments. For example, a spell checker might be some-
how useful in a word processor, an e-mail application, a
batch document processor or a voice recognition engine. Of
course, the developermust inescapably assumesomeenvi-
ronment in order to write code. The common result is soft-
ware that is strongly coupled to one specific environment—
consisting of whatever pre-existing components the devel-
oper preferred or knew about. Consequently, reimplementa-
tion abounds: similar functionality is replicated for eachop-
erating system, each programming language, each desktop
environment, each text editor and so on.1

I refer to code’s embodied knowledge or assumptions
about the environment asintegration details, and to their
collected intent within a piece of software as theintegra-
tion concern. To avoid the expense of reimplementation, we
would clearly like toseparatethe concern of integration, by
modularising integration details separately from functional-
ity as far as possible. This will lessen the problem of cou-
pling and improve the flexibility of our software. However,
in common practice this has only been pursued to a limited
extent (albeit an important one) in the practice ofinforma-
tion hiding [Parnas 1972]. This is acoupling minimisation
technique: it limitshow manydecisions concerning the en-
vironment are visible to a module. However, we have es-
tablished thatsomecoupling is unavoidable. There has been
relatively far less progress on how tomitigate, through tools
and languages, whatever coupling cannot be eliminated. (As
I will argue, what work does exist either provides only a
clean-slatesolution or presents inadequate abstractions.)

In domains other than software, separation of the integra-
tion concern is already established practice. Figure 1 illus-
trates two of these pictorially. In circuit design, engineers
do not expect that their integrated circuits to be wired to-
gether directly with other ICs. Instead there is a whole vo-

1 Meanwhile, it also seems likely that a significant proportion of the soft-
ware industry is occupied by development of web interfaces,billing sys-
tems, business process models and various other common projects, each
instance overlapping substantially in functionality.

Figure 1. Integration in circuit design and technical writing

cabulary of glue components, including resistors and ca-
pacitors and small logic arrays, constituting a separate in-
tegration domain. Separating the integration concern simpli-
fies the IC’s design, reduces cost and improves flexibility
with respect to other use contexts.2 As a second example,
consider that in technical writing authors invariably define
their own terminology up-front without any obligation for
consistency with other authors.3 The primary concern is to
choose a set of definitionsconvenient for the author’s work,
meaning one which make the work precise and comprehen-
sible. The concern of integration is addressed separately—
the reader, when reviewing and comparing different pieces,
is well accustomed to the need to relate differing definitions.

Given these precedents, the ways of software seem bizarre.
As with separation of concerns generally, practice is highly
dependent on tool support, which conventionally is ex-
tremely limited [Tarr et al. 1999]. In the following section
I will examine the assumptions in existing toolchains and
resulting practices. (Note that I am describing assumptions
latent in the design of tools—not necessarily in the mind of
any particular developer.)

3. Myths and realities
3.1 Plug-compatibility and in-order development

Toolchains implicitly assume that software consists of mod-
ules whose interfaces match directly and precisely. This de-
pends on the lemma that codeprovidingsome functionality
exists beforethe coderequiring that functionality—at least
to the extent that its interface is known. For example, when
using libraries, clients of a library are written after the in-
terface of that library is determined, so that they can tar-
get that interface in aplug-compatibleway.4 The in-order
myth is subject to the classic caveat that it works only if we
make correct judgementsab initio which continue to hold

2 It is no coincidence that with ICs there is a very tangible cost to on-chip
complexity, whereas in software the cost of added complexity from mixing
integration concerns appears more abstractly (in payroll,downtime, etc.).
3 Although agreement is of course helpful, writers would find it far too
restrictive to be limited to preexisting definitions.
4 Usually interfaces change often enough through early evolution of a com-
ponent’s implementation that in practice, much of the target component
must exist before a stable implementation of any client can be produced.
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Figure 2. In-order growth of software stacks.

over time. It is clearly falsified byevolutionof interfaces, by
decentralised development(essentially evolution in parallel)
and byporting or retrofitting, which inherently concernin-
compatibleinterfaces.

Cost Retrofitting tasks may seem rare, but they do happen.
To pick one visible example, the entire KDE desktop suite
recently migrated from the DCOP IPC system to D-BUS5, at
huge effort. DCOP details pervaded the source code of KDE
applications, entailing huge changes. (It is also interesting
that the standardisation effort was motivated by the desire
to interoperate between previously siloed applications, such
as the GNOME desktop suite.) Tellingly, the less desirable
alternative to porting, namely reimplementation, is anecdo-
tally more common—despite obvious disadvantages.

Research perspectives Previous authors have noted the
in-order assumption, sometimes calledprovider–consumer
asymmetry[Reid et al. 2000, Arbab and Mavaddat 2002].
In-order development is common because targetting existing
concrete interfaces is the simplest and most expedient struc-
turing technique—but there are others. Designs featuring
intermediate abstraction layers are often devised, for exam-
ple in libraries where multiple back-ends are anticipated.6

These designs are inherently more resilient to changes in
depended-upon code. It may therefore seem unreasonable
to cite in-orderedness as a weakness of toolchains, when
with more foresight a better design can be produced using
current tools. However, foresight is rare. Better tool support
can enable better-abstracted designsnaturally, by default,
rather than as a special case requiring up-front effort which
is rarely made. The key strategy, already proposed in prior
research work [DeLine 2001] is a division of responsibility
in toolchain design between functionality and integration.

Vision Current practice is not our only concern. Not only
might better tool support simplify existing development sce-
narios, or enable more successful instances of decentralised
development or porting. More boldly, I claim it can also

5http://dbus.freedesktop.org/
6 Textbook examples include cross-platform windowing toolkits
such as wxWidgets,http://www.wxwidgets.org/ or Java’s SWT,
http://eclipse.org/swt.

C extern i n t Foo foo ( char ∗ ) ;

Java foo . Foo f = new foo . Foo ( ) ; / / i m p l i c i t

Haskell import Foo ( foo )

Python from foo import Foo

Figure 3. Module imports implying homogeneity.

cause paradigm shifts. Placing high-level tool support forin-
tegration and adaptationclose to the user, for example within
web application mashup platforms and browser extensions7

has already led to added-value innovations8) which could
not have been anticipated by the creators of the underlying
software. In my ultimate vision, the techniques I propose
here could enable the same for potentiallyall software—
experienced users could straightforwardly mash together en-
tire applications or pieces thereof, to meet their desired func-
tionality, in a fuller realisation of the elusive Unix vision of
user-defined compositions of functionality.

3.2 Homogeneity

Figure 3 shows declarations of external modules in several
different languages. In each case the foreign module ex-
poses equivalent functionality. Implicitly, that module must
be written in the same language. Toolchain support when
this isnot the case comes as an ad-hoc selection of intricate
and unwieldy “language interoperability” features. As I will
argue, their unwieldiness persists because of an unstated as-
sumption that such requirements are a rareexceptional case.

Cost Are such requirements really rare? New program-
ming languages continue to emerge, and are seen as a
promising longer-term solution to the expense of software.
However, adoption by practitioners lags far behind the state
of the art. Other authors have already speculated on the rea-
sons for this [Wadler 1998], but one key factor is the dif-
ficulty of incrementaladoption. This is essential because it
is rare to write an entire application from scratch. Unfor-
tunately, conventional treatments of inter-language linking
have several weaknesses, rooted in the “exceptional case”
assumption, which discourage multi-language development.

Firstly, there isno encapsulation of language decisions.
If a foreign module isnot defined in the same language, any
importstatements must betray this—for example, in Java the
native keyword is required, in C anextern declaration, and
in Haskell aforeign import declaration. This clearly a failure
of information hiding, yet is questioned little because of the
exceptional casemyth.

Secondly, language interoperability schemes such as
Java’s JNI [Liang 1999] or Haskell’s FFI [Chakravarty et al.
2002] are convoluted from the desire for auniversal map-

7 e.g. Mozilla Ubiquity, http://ubiquity.mozilla.com/, Greasemonkey,
http://www.greasespot.net/
8 e.g.http://www.shiftspace.org/, http://www.housingmaps.com/



ping between interface definitions in two languages—that
is, one defined forall interfacesand implementable forall
possible implementationsallowed by those languages. This
has little benefit for the programmer, who is working with
specific interfaces and, in practice, probably interested in
only a subset of conceivable language implementations. (An
interesting departure from universality is in the GNU imple-
mentation of Java [Bothner 2003]. By foregoing universality,
GCC provides CNI, a much more natural alternative to JNI.)

Thirdly, C ia nearly always chosen as the unifying medium
for expressing glue logic. A unifying medium is clearly
useful because it converts problem of sizen

2—mapping
all languages to all other languages—into one apparently
of size2n. However, C is a poor unifier: manual resource
management, reliance on mutable storage and machine- and
compiler-dictated object layout present a low-level medium
for glue code, while the lack of run-time checks greatly
complicates debugging. Joining two higher-level languages
together is accordingly often special-cased (e.g. Jython9).

Finally, it is telling that if some new languageX is
adopted, it is always accompanied by considerable reim-
plementation of tool functionality “forX”. Consider that
practically every programming language has alex-like tool.
Why should this be? Alex-generated lexer, being a sepa-
rate module from its client, should be invokable from any
client language, with the language of the generated code an
encapsulated concern.10

Research perspectives Much research work concentrates
on theoretical aspects of interoperability, by asking how
reasoning mechanisms, such as type systems and run-time
checks, can be extended to preserve their guarantees in the
presence of foreign-language modules [Wadler and Findler
2009]. This work is valuable but is not our concern here.

Existingpracticalapproaches are largely found in imple-
mentations. Microsoft’s CLR [Meijer 2002] defines an in-
termediate abstraction, roughly par with an object-oriented
garbage-collected language, and having standardised data
representations. This is a reasonable butclean-slateap-
proach: it excludes all code lying outside that standard.

Generative tools are available to ease the task of creat-
ing JNI and similar glue code. Wrapper generators such as
JunC++tion 11 generate proxies presenting a more natural in-
terface than that of the underlying interoperability interface
(in this case JNI). Swig [Beazley 1996] provides an anno-
tation language for customising the generated proxy’s in-
terface, where annotations correspond to macros expanded
within the C or C++ glue. These tools demonstrate the feasi-

9http://www.jython.org/
10 I choselex not yacc becauselex has less need for semantic actions—but
the continued popularity of these tools’ designs is a mystery, given how
they advocate such a thorough mixing of application logic with the concern
of language recognition. This contrasts with more modern approaches like
Antlr [Parr and Quong 1995]).
11http://codemesh.com/products/junction/

bility of taking code in some fairly relaxednatural styleand
then, in a separate step, adapting that code to fit a different
interface. However, both approaches are limited: to specific
languages (one side restricted C or C++) and in their flexi-
bility (either none, or in the case of Swig, to definition of
new “typemap” macros—a highly involved task, owing to
the brittleness of macro expansions, the potential for feature
interactions, and so on).

Vision The homogeneity assumption may appear unavoid-
able. One property of a language is that it defines a model of
some universe. Therefore, perhaps by definition it cannot ex-
press references to artifacts that lie outside that universe, in
some other language. I call this the “model problem”, but it
is not actually a problem. It is overcome by the ability toin-
terpretone piece of codeas if it were something else—where
defining interpretations of foreign code is a fundamental re-
quirement of integration. The “universal mappings” of in-
teroperability schemes are simply one interpretation froma
wide space—a space we would like to open up fully to the
programmer. This concept ofsubjectivity[Harrison and Os-
sher 1993, Batory] appears throughout software.12

Referencing some foreign entity within code does not
determinewhat that entity should bebut only how it must
appear. At present, toolchains13 do not support the inter-
position necessary to effect this transformation fromwhat
to how—compilers and linkers understand only one view of
any given code, and tool support fordefiningandtransform-
ing views is lacking. The scope for such support is huge.
Consider a command-line tool with itsexecve() interface.
One interpretation of this interface showsexecve()’s argu-
ments as arrays of strings. Another shows them as a dis-
joint union of options and typed arguments, reflecting the
command’s syntax. Tool support must permit stackable de-
scriptions of these interpretations, each described in terms
of lower-level conversions and rooted in primitives akin to
atoi(). (As I will describe in Section 4,relationsare one con-
venient abstraction for describing these and other instances
of subjectivity.)

3.3 Doing better than information hiding

Information hiding [Parnas 1972] is rightly considered a
fundamental strategy for reducing coupling between mod-
ules. It is supported by all contemporary programming lan-
guages. As described in Section 4, itminimisescoupling by
limiting the visibility of implementation decisions between
modules. However, I have described howsome coupling is
inevitable. Conventional languages do nothing to mitigate
that coupling: on whatever implementation decisionsareex-
posed, modules are expected to agree. Where incompatibili-

12Network filesystems are a classic example in operating systems, and
the adaptor pattern [Gamma et al. 1995] is well known in object-oriented
programming.
13 . . . and also runtime systems, including operating systems.



ties arise, the only recourse is to edit the code to regain com-
patibility, or to code an adaptor.14

Cost When the plug-compatibility myth fails—for exam-
ple in porting tasks—any coupling to an incorrect environ-
ment must somehow be worked around. Invasive editing
of code is common, but yields a fork or patchset which is
highly syntactic and inherently fragile. Black-box adaptors
are more modular, but are labour-intensive to create and,
while less fragile, still nontrivial to maintain. Sometimes a
mixture of both techniques is used—for example in the KDE
migration mentioned in Section 3.1, a black-box abstraction
layer (QtDBus) was designed to resemble the earlier DCOP
API, while still differing both abstractly in a few ways and
concretely in many (including most function names).

Vision To continue the example, if KDE source code had
been kept abstract and avoided embedding DCOP-specific
details, invasive porting would have proved unnecessary.
Perhaps the developers proceeded byimagining that some
minimally sufficient IPC interface was available, ignoring
the issue of whether any implementation was available un-
til later. Subsequently, a separate layer of software, mapping
abstract KDE references to concrete DCOP or D-BUS refer-
ences, would be required. As with information hiding, such a
design requiresdisciplineto keep the original code abstract.
Just as toolsenforceinformation hiding, so can tools en-
force this stronger sense of modularity—bypreventing the
import of any concrete interface, and using integration tools
to bridge the resulting gap between the abstract and the con-
crete. The remainder of this paper discusses techniques for
realising this two-stage approach.

4. The integration domain—what and why
An integration domain is simply a set of languages or tools
for performing integration of software. Informally, many
ad-hoc special-purpose integration domains have emerged
in conventional practice—for example scripting languages
(like the Unix shell), patching tools (like Unix’sdiff) and
stub generators (as in various RPC implementations [Birrell
and Nelson 1984]). Each of these is highly specialised and
highly constrained, but hint at the more general and power-
ful tools which my arguments so far have motivated. Two
questions remain: why are conventional programming lan-
guages not sufficient for this domain, and what form should
the alternative take?

4.1 An example: the Cake linking language

I begin by giving an example from my ongoing work of
one tool, the Cake linking language compiler, which fulfils a
small part of the vision I have outlined. It is described more
fully in an earlier short paper [Kell 2009]. Figure 4 shows a
fragment of Cake code relating function calls and the values
they exchange across a mismatched interface.

14These arewhite-boxandblack-boxapproaches, respectively.

switch ↔ libgtk20 { /∗ old interface ↔ new interface ∗/
gtk window setpolicy (win, shrink , grow, ) →
( if shrink then gtk window set size request (win, 0, 0)else void;
if grow then gtk window set resizable (win, TRUE)else void);

(preview window ::) gtk signal connectobject ( i , d, ch , data )→
g signal connectdata ( i , d, ch , data , null , {});

values {
GtkWindow↔GtkWindow{
type as GtkWindowType↔type as GtkWindowType;

window hasfocus↔ hasfocus ;
auto shrink ← const 0;

useuposition → needdefault position ;
useuposition → needdefault size ;
useuposition ← ( needdefault position || needdefault size );

}}}

Figure 4. Relating function calls and data structures in Cake

The details of the code are not important here, but I draw
attention to several properties of the language. It is adopt-
able, largely because it chooses a unifying abstraction al-
ready satisfied by substantial existing codebases (namely re-
locatable object code). It complements component program-
ming languages: plug-compatible compositions can trivially
be expressed as “no-op” Cake descriptions similar to linker
invocations in a makefile. Once plug-compatiblity is violated
or retrofitting is desired, Cake’s adaptation features can be
invoked. It is high-level, declarative and minimal: it simply
expresses relations between runtime values, optionally pred-
icated on the context in which they occur (including func-
tion calls, but extending to call contexts, call sequences,sur-
rounding data structures and beyond).

Why are these good properties? What makes Cake better
than a conventional programming language for integration
tasks? I now address these questions.

4.2 Why an integration domain?

Glue code is different from other code. The split has been
characterised in many ways: unstable versus stable [Nier-
strasz and Achermann 2000], coordination versus compu-
tation [Arbab and Mavaddat 2002], or functionality versus
packaging [DeLine 2001]. Here I argue specifically thatal-
ternative languagesare not only useful for notationallysep-
arating the integration concern, but areessentialfor maxi-
mally abstracting it.

Expressivity and abstraction Component programming
languages are a poor notation for adaptation tasks; they in-
variably offer the wrong abstractions or the wrong level of
abstraction. Typically, adaptation logic is algorithmically
simple. It defines few or no new data types, few new func-
tions except for wrappers around existing ones, and likely
makes relatively little use of looping or recursion. Rather,
it is concerned withrecognisingand relating the interac-



(Note: Evariable and EfunCall extend off the chart.)

Figure 5. AST node frequencies in glue and non-glue code

tions defined by twoexistingmismatched interfaces. When
written in conventional languages, it most often contains the
following kinds of code: case analysis (pattern-matching,
switch statements orif–then–else), data movement (by as-
signment or parameter passing), multiplexing and demul-
tiplexing, look-up tables, dynamic mappings (like dictio-
naries or other key-value stores), simple computations (for
re-encoding of messages; usually already found in libraries),
simple buffering, state machines, and (sometimes) concur-
rency control operations (like fork–join patterns, threadwait
conditions, and so on).

A simple experiment lends some empirical credence to
this assertion. Figure 5 shows relative frequencies of various
syntactic features in C and C++ code from thegtk-theme-
switch Cake case study [Kell 2009]. One series measures
the glue code (∼8000 lines, partially autogenerated), the
other the main source code of the application (∼1000 lines).
Although the data is far from conclusive, notice how loop
constructs are relatively far less common in glue code, while
switch andcase statements appear more often. (The lower
glue frequency ofif and assignments is perhaps explained
by the skewed nature of the adaptations required by this case
study; clearly further experiments would be helpful.)

Unfortunately, these are mostly features for which con-
ventional languages are not optimised towards abstracting.15

Consider a language such as Java—possibly a good choice
for coding some set of components, but it may be poor for
adapting those same components, perhaps because it lacks
pattern-matching or curried functions (for demultiplexing
function calls). Meanwhile, a language such as Haskell,
while having these features, could be awkward if, say, some
previously stateless adaptation logic was to be made stateful
by addition of a state machine or dynamic map. (This is a

15There is similarity between this set of programmatic features and the
logic contained within a table-driven parser. Both are alsoexamples of code
which are far more suited to being generated from a higher-level represen-
tation than being coded in a conventional language. Although recursive de-
scent, meanwhile, is a reasonable fit for conventional languages, choosing
recursion as the means of expressing the grammar is far more constraining.

complex change to realise in Haskell because adding state
requires profound changes to type annotations.) The argu-
ment here is not that these are necessarily weaknesses in
the languages, but merely that the languages were designed
for abstraction of algorithms and data structures, and not
abstractions ofrelationsamong messages or interactions.

Automation and reasoning Being computationally sim-
pler than other code, glue code is potentially more tractable
for purposes of automatic reasoning and even automatic syn-
thesis. Protocol adaptation—one of the most well-explored
kinds of adaptation [Yellin and Strom 1997, Passerone et al.
2002, Reussner 2003, Bracciali et al. 2005]—is invariably
implemented using only finite-state abstractions (either in-
terface automata or replication-free pi calculus). This is
strictly less powerful than a Turing-complete abstraction,
but appears to be sufficiently useful for a very wide range of
tasks. Crucially, its lesser computational complexity makes
it more amenable to automatic reasoning—hence the auto-
matic or semi-automatic nature of the cited tools. In general
this suggests that the computational power required in glue
logic is, in a reasonable proportion of cases, likely to be less
than Turing-powerful.16 Future work will no doubt increase
the space of synthesisable adaptation logic. Although it is
likely that much of the overall space will remain essentially a
manual task (but still with the potential for better abstraction
through improved languages), keeping integration details
separately modularised, and expressed in a purpose-built
notation, allows for constraining the computational power
of the notation and increases the potential for identifying
and implementing synthesis and/or verification techniques.

4.3 What: relations, not scripts or circuits

Research work has proposed several new integration do-
mains: coordination languages [Arbab and Mavaddat 2002],
“delta” languages [Keller and Holzle 1998] and semantic
patching tools [Padioleau et al. 2008], linking languages
[Reid et al. 2000], orchestration languages [Misra and Cook
2006] and formally grounded scripting languages [Acher-
mann and Nierstrasz 2001]. Only time and experience can
truly prove the worth of these. However, scripting-style no-
tations alone are clearly limited, because they are so simi-
lar to conventional languages. Dynamism alone cannot ab-
stract the integration domain; meanwhile, the similarity will
likely lead to leakageof application concerns into integra-
tion logic. Deltas and patches suffer from a restrictive “sec-
ond class” conceptual asymmetry—one cannot easily apply
a delta to a delta, say. Data-flow networks as in Reo, while
useful for scenarios where concurrency is paramount, are
surprisingly difficult to design or explain17 and currently of-

16The kinds of additional specifications required by these techniques are
already being incorporated into practical tools, and theirbenefit is likely to
outweigh any burden.[Barnett et al. 2005, Flanagan et al.]
17Testament to this is the difficulty faced by Clarke et al [Clarke et al.
2007] in concisely explaining the operation of a very simpleexclusive



fer no means of expressing simple data-dependent behaviour
(for example, rearranging the fields in a structured message).

The choice of relations, as exemplified by Cake, has sev-
eral benefits. Simple relations on values are expressed in-
tuitively as pattern-matching. More complex relations can
be built up by incorporating contextual guards in patterns:
contexts may be either spatial (e.g. relations applying only
to values within certain function calls, or at certain points
within a larger data structure) and temporal (relations spe-
cialised towards values as they occur within particular se-
quences of function call exchanges—this is protocol adap-
tation). Analogously with grammars, greater context depen-
dency can bring arbitrarily higher expressivity, but one hopes
that a practically useful level of expressivity can be reached
using only a very restricted degree of context dependency.

5. Interface hiding
Suppose an expressive integration domain is available. What
strategy might best avoid coupling? My suggestion, strange
as it may seem, is to avoid directly importing any foreign in-
terface whatsoever. Similar to the integrated circuits example
in Section 2, each component may define its own interface
to the outside, designed to keep the component simple and
comprehensible. It is a separate task, supported by integra-
tion tools, to glue components into a functional ensemble.

5.1 Motivational experiment—complexity inheritance

Latent in this argument is the assumption that targetting con-
crete interfaces increases the complexity of code. Software
depending on some concrete interface is clearly moulded by
the details of that interface; a more general or complex inter-
face may force the client to incorporate unwanted complex-
ity, even if that client exercises only a small subset of the
library’s functionality. If so, the clientinheritsthe complex-
ity of the interface it targets. I conducted a small experiment
to demonstrate this phenomenon.

I used open source libraries to perform two different
tasks—one storage-oriented (writing a persistent key-value
set describing the program memory map) and one compu-
tational (video decoding). In each task the same function-
ality was implemented twice, using different C libraries—
the second chosen to be substantially more complex (and
more general) than the first, yet offering a similar level of
abstraction. The library pairs were firstlylibmpeg2 andffm-
peg (comprisinglibavcodec and libavformat) and secondly
Berkeley DB andsqlite’s BTree interface. Table 1 presents
simple summary measurements of the libraries’ public in-
terfaces, the API subset (or “slice”) exercised by the client,
and the clients’ source code. The key observation is that the
client of the more complex library is itself more complex.

router circuit (page 4). The unintuitive arrangement of channels is said to
“conspire to” ensure exclusivity.

mpeg2 ffmpeg db sqlite
API function count 24 151 208 214
mean signature size3 3.3 4.3 2.8 4.3
API structures count 10 26 252 12
mean structure size4 5.6 19 172 8.0
slice function count 5 14 5 12
mean signature size 2.8 3.1 6 4
slice structures count 3 6 2 4
client size (LoC) 71 93 51 75
client API calls 5 14 5 13
helper calls5 2 1 6 3
mean call size 3.4 3.2 4.9 3.9
2 imprecise owing to undocumented public–private division
3 signature size= 1+ number of in or out parameters
4 simple total of all public fields
5 C library calls necessitated indirectly by API usage

Table 1. Measurement of complexity inheritance

5.2 Mitigating complexity

Using interface hiding, complexity inheritance clearly would
not occur. Instead, the additional complexity would appearin
the integration domain. As I described in Section 4.3, there
are two major reasons why this complexity can be better han-
dled from such a domain: firstly, the availability of higher-
level notations tailored to the task ofrelatingcorresponding
interface elements, more suitable than glue code; and sec-
ondly, the potential for automatic or semi-automatic synthe-
sis of these descriptions.

5.3 Additional benefits of interface hiding

A second payoff of interface hiding is in comprehensibility
of client code. Since complexity is not inherited, substan-
tially more readable code may result. Separately, interface
hiding forces an explicit statement ofrequirements. Sym-
metric with explicitprovidesinterfaces,requiresinterfaces
have been advocated by several component-oriented pro-
gramming practices [Councill and Heineman 2001] but have
yet to appear in conventional practice.

Interface hiding does not require extensive changes to
any programming languages. Certain languages—including
C and C++—already allow foreign interfaces to be explicitly
defined (e.g. by defining new prototypes rather than doing
an #include of existing ones). In other languages, some
small changes will be necessary to separate the concepts of
imports(implying a foreign component already exists) from
adeclarationof a view onto the outside world.

Tools also require theteeth to enforceinterface hiding.
Analogously to the enforcement ofprivate and protected
modifiers, this requires prohibiting imports of concrete ex-
ternal interfaces (except where explicitly overridden).

Clearly, there is a limit to how far interface hiding can
be taken. Perhaps truly ubiquitous interfaces, like POSIX,
should not be hidden. There is also a risk that the program-
mer will design an external interface which cannot be satis-
fied by any foreign components, or which unduly strains the
expressivity of the integration domain. In practice, no doubt



some iteration will be required to find the optimal modular-
isation of logic between the integration domain and compo-
nent internals. These, and other practical questions, mustbe
the subject of future work.

6. Conclusions
I have motivated a two-pronged redesign of software tools
and practices with the goal of drastically improving the flex-
ibility of software, and ultimately reducing its cost. Firstly,
we require anintegration domain—tools and languages spe-
cially designed for integration of mismatched software, and
different from conventional languages. Secondly, we require
practices which exploit these tools to maximise separation
of the integration concern—interface hidingexploits the in-
tegration domain to reduce complexity of components and
improve their flexibility.
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