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Abstract Toolchains—encompassing compilers, linkers, stub gen-
erators and more—have grown organically into a design
which informs much of common practice. However, this de-
sign originates from an idealised conception of develogmen
as an activity with central planning (enabling coordinatio
of interfaces among cooperating modules), linear progress
(enablingdepended-upointerfaces to be finalised before
their dependents are coded) and perfect anticipation (ensu
ing that earlier decisions need never be reversed). Unfortu
nately, the resulting tools embody several false assumgtio
giving them designsptimisedtowards building inflexible,

Categories and Subject Descriptors  D.2.3 [Coding Tools siloed software, and whigbenalisehe development of flex-

Conventional tools yield expensive and inflexible software
By requiring that software be structured as plug-compatibl
modules, tools preclude out-of-order development; byttrea
ing interoperation of languages as rare, adoption of innova
tions is inhibited. | propose that a solution must radically
separate the concern aftegrationin software: firstly by
using novel tools specialised towards integration (the “in
tegration domain”), and secondly by prohibiting use of pre-
existing interfaces (“interface hiding”) outside that dmim

and Techniquds D.2.12 [Interoperability] ible and easily-interoperable software. However, when con
sidered from afar, these assumptions are absurd. Spdgifical
General Terms Languages | identify and refute the following latent assumptions:

1. Introducti e that software is structured gdug-compatiblemodules,
- Introduction grown “in order” from low-level dependencies upwards;

Software is expensive: expensive to develop, and expensive

to modify or change because of its inheranritexibility. By

the latter | refer both to the difficulty ahaintainingsoftware * that information hiding is a sufficient strategy against

and also to software’s tendency goow in silos Software coupling

grows as islands of functionality, founded on infrastruetu

including programming languages, Ul toolkits, developmen

“frameworks”, extensible applications (browsers liked-ir

fox, editors like Emacs) and so on. The same functionality

is frequently found replicated across many silos of a given
class, at considerable expense—this is strong evidence for anintegration domain-there is a fundamental need for

e that language interoperation is an exceptional case;

I will argue that simpler and more flexible software is pos-
sible with tools designed in conscious avoidance of these as
sumptions. Specifically, | propose a radical two-step clbang
in tools and practices of software construction:

the underl_ying inflexibility of software. To fi_x these prob- languages and tools specialised towards composition of
lems requires changes to bdibols and practices—where software, and moreover, these shonitt resemble con-
these two are highly interdependent. ventional languages;

e the practice ofinterface hiding—information hiding
should be extended to a new level in which components
o . _ _ are constructed whilpurposely and completely ignoring
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Next we define when one program con

the behavior of another.

sntainment) For the
(notated ry C r2) if fo

2. The integration concern = ‘

All useful software has some interaction with its environ- | ‘ i
ment. Even if simply printing out a response, returning an BEESESESBEREEEEE | | Definition 6 (Approximation)
exit status, or adjusting some output signal, softwarevene iy e o o bt ithont ot
an island. As such, software incorporates knowledge, or as- T3 e
sumptions, about the nature of its environment—what inter- =
action mechanisms are available, and what conventions are teH
to be adopted in their use. Mechanisms mightinclude proce- [[I|
dure calls or byte-stream communication, and conventions a i deition reavires the extension 103
include the signatures of those procedures or the syntax of
the valid byte-stream exchanges (together with semantics
in both cases). It is not possible to interact without some
such assumptions; these are a fundamental and recurringabulary of glue components, including resistors and ca-
hindrance to software, in that they are precisely the sourcepacitors and small logic arrays, constituting a separate in
of coupling tegration domain. Separating the integration concernlsimp
The same functionality can be useful in many different fies the IC’s design, reduces cost and improves flexibility
environments. For example, a spell checker might be some-with respect to other use conteXt#\s a second example,
how useful in a word processor, an e-mail application, a consider that in technical writing authors invariably defin
batch document processor or a voice recognition engine. Oftheir own terminology up-front without any obligation for
course, the developenustinescapably assumsmeenvi- consistency with other authotsThe primary concern is to
ronment in order to write code. The common result is soft- choose a set of definitiom®nvenient for the author's woyk
ware that is strongly coupled to one specific environment— meaning one which make the work precise and comprehen-
consisting of whatever pre-existing components the devel- sible. The concern of integration is addressed separately—
oper preferred or knew about. Consequently, reimplementa-the reader, when reviewing and comparing different pieces,
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Figure 1. Integration in circuit design and technical writing

tion abounds: similar functionality is replicated for eanh is well accustomed to the need to relate differing defingion
erating system, each programming language, each desktop Given these precedents, the ways of software seem bizarre.
environment, each text editor and so'on. As with separation of concerns generally, practice is kighl

| refer to code’s embodied knowledge or assumptions dependent on tool support, which conventionally is ex-
about the environment aategration details and to their tremely limited [Tarr et al. 1999]. In the following section
collected intent within a piece of software as tinéegra- I will examine the assumptions in existing toolchains and
tion concern To avoid the expense of reimplementation, we resulting practices. (Note that | am describing assumption
would clearly like toseparatehe concern of integration, by  latent in the design of toolsnot necessarily in the mind of
modularising integration details separately from funutib any particular developer.)
ity as far as possible. This will lessen the problem of cou-
pling and improve the flexibility of our software. However, 3. Myths and realities
in common practice this has only been pursued to a limited
extent (albeit an important one) in the practicerdbrma-
tion hiding [Parnas 1972]. This is eoupling minimisation ~ Toolchains implicitly assume that software consists of mod
technique: it limitshow manydecisions concerning the en-  ules whose interfaces match directly and precisely. This de
vironment are visible to a module. However, we have es- pends on the lemma that copeovidingsome functionality
tablished thasomecoupling is unavoidable. There has been €xists beforehe coderequiring that functionality—at least
relatively far less progress on howtitigate through tools to the extent that its interface is known. For example, when
and languages, whatever coupling cannot be eliminated. (Asusing libraries, clients of a library are written after time i
| will argue, what work does exist either provides only a terface of that library is determined, so that they can tar-
clean-slatesolution or presents inadequate abstractions.)  get that interface in @lug-compatibleway.* The in-order

In domains other than software, separation of the integra- Myth is subject to the classic caveat that it works only if we
tion concern is already established practice. Figure %-illu Make correct judgementb initio which continue to hold
trates two of these pic_to_rially. In CirC-Uit quign' enginee 21t is no coincidence that with ICs there is a very tangiblet ¢oson-chip
do not e_xpect thfat their integrated circuits t(_) be wired to- complexity, whereas in software the cost of added comglésaim mixing
gether directly with other ICs. Instead there is a whole VO- integration concerns appears more abstractly (in paytotyntime, etc.).

3 Although agreement is of course helpful, writers would findar too

3.1 Plug-compatibility and in-order development

1 Meanwhile, it also seems likely that a significant proportaf the soft- restrictive to be limited to preexisting definitions.
ware industry is occupied by development of web interfabding sys- 4Usually interfaces change often enough through early &oolwf a com-
tems, business process models and various other commagtisrogach ponent’s implementation that in practice, much of the tagmmponent

instance overlapping substantially in functionality. must exist before a stable implementation of any client eaprbduced.



time A C extern int Foo_foo(char x);

2005

Java foo.Foo f =new foo.Foo(); // implicit

Haskell import Foo(foo)

2003

Python from foo import Foo

2001

W Tuby python Figure 3. Module imports implying homogeneity.
cause paradigm shifts. Placing high-level tool supporirfor
tegration and adaptatiahose to the usefor example within

Figure 2. In-order growth of software stacks. web application mashup platforms and browser extensions

has already led to added-value innovatfnshich could

over time. It is clearly falsified bgvolutionof interfaces, by ~ Not have been anticipated by the creators of the underlying
decentralised developmef@issentially evolution in parallel) ~ software. In my ultimate vision, the techniques | propose

and byporting or retrofitting, which inherently conceiin- here could enable the same for potentiadly software—
compatibleinterfaces. experienced users could straightforwardly mash together e

o tire applications or pieces thereof, to meet their desived f
Cost  Retrofitting tasks may seem rare, but they do happen. iiqnjity, in a fuller realisation of the elusive Unix visiof
To pick one visible example, the entire KDE desktop suite |,qar_defined compositions of functionality.

recently migrated from the DCOP IPC system to D-BUS
huge effort. DCOP details pervaded the source code of KDE 3.2 Homogeneity

applications, entailing huge changes. (It is also inté1gst  Figyre 3 shows declarations of external modules in several
that the standardisation effort was motivated by the desire yitferent languages. In each case the foreign module ex-

to interoperate between previously siloed applicationshs poses equivalent functionality. Implicitly, that moduleist

as the GNOME desktop suite.) Tellingly, the less desirable pe yritten in the same language. Toolchain support when
alternative to porting, namely reimplementation, is amwecd  thjs isnotthe case comes as an ad-hoc selection of intricate
tally more common—despite obvious disadvantages. and unwieldy “language interoperability” features. As llwi

Research perspectives Previous authors have noted the argue, their unwieldiness persists because of an unstated a
in-order assumption, sometimes callpavider—-consumer ~ sumption that such requirements are a exteeptional case

asymmetry[Reid et al. 2000, Arbab and Mavaddat 2002]. cog Are such requirements really rare? New program-
In-order developmentis common because targetting egistin ming languages continue to emerge, and are seen as a
concrete interfaces is the simplest and most expediemtstru promising longer-term solution to the expense of software.
turing technique—but there are others. Designs featuring However, adoption by practitioners lags far behind theestat
intermediate abstraction layers are often devised, fomexa  of the art. Other authors have already speculated on the rea-
ple in libraries where multiple back-ends are anticipéted.. sons for this [Wadler 1998], but one key factor is the dif-
These designs are inherently more resilient to changes inficyity of incrementaladoption. This is essential because it
depended-upon code. It may therefore seem unreasonablg; rgre to write an entire application from scratch. Unfor-
to cite in-orderedness as a weakness of toolchains, whenynately, conventional treatments of inter-languageitigk
with more foresight a better design can be produced usinghave several weaknesses, rooted in the “exceptional case”
current tools. However, foresight is rare. Better tool subp  5ssumption, which discourage multi-language development
can enable better-abstracted desigaurally, by default, Firstly, there isno encapsulation of language decisions
rather than as a special case requiring up-front effortwhic |t 5 foreign module isiot defined in the same language, any

is rarely made. The key strategy, already proposed in prior jjmportstatements must betray this—for example, in Java the
research work [DeLine 2001] is a division of responsibility native keyword is required, in C asxtern declaration, and

in toolchain design between functionality and integration i Haskell aforeign import declaration. This clearly a failure

Vision Current practice is not our only concern. Not only Of information hiding, yet is questioned little becauselu t
might better tool support simplify existing developmergsc ~ €xceptional casenyth. . 3
narios, or enable more successful instances of deceettalis ~ Secondly, language interoperability schemes such as

development or porting. More boldly, | claim it can also Java's JNI [Liang 1999] or Haskell's FFI [Chakravarty et al.
2002] are convoluted from the desire fouaiversal map-

5http://dbus.freedesktop.org/
6Textbook examples include cross-platform windowing  tislk 7e.g. Mozilla Ubiquity, http://ubiquity.mozilla.com/, Greasemonkey,
such as wxWidgets,http: //www.wxwidgets.org/ or Java’s SWT, http://www.greasespot.net/

. ; 8 . : . :
http://eclipse.org/swt. e.g.http://www.shiftspace.org/, http://www.housingmaps.com/




ping between interface definitions in two languages—that bility of taking code in some fairly relaxemiatural styleand

is, one defined foall interfacesand implementable foall then, in a separate step, adapting that code to fit a different
possible implementatioralowed by those languages. This interface. However, both approaches are limited: to sgecifi
has little benefit for the programmer, who is working with languages (one side restricted C ar)Cand in their flexi-
specific interfaces and, in practice, probably interested i bility (either none, or in the case of Swig, to definition of
only a subset of conceivable language implementations. (Annew “typemap” macros—a highly involved task, owing to
interesting departure from universality is in the GNU imple the brittleness of macro expansions, the potential foufeat
mentation of Java [Bothner 2003]. By foregoing univergalit  interactions, and so on).

GCC provides CNI, a much more natural alternative to JNI.)

Thirdly, C ia nearly always chosen as the unifying medium Vision = The homogeneity assumption may appear unavoid-
for expressing glue logic. A unifying medium is clearly able. One property of a language is that it defines a model of
useful because it converts pr0b|em of szé_mappmg some universe. Therefore, perhaps by definition it cannot ex
all |anguages to all other |anguages_into one apparenﬂy press references to artifacts that lie outside that UI’W@HS
of size 2n. However, C is a poor unifier: manual resource Some other language. | call this the “model problem”, but it
management, reliance on mutable storage and machine- anés not actually a problem. It is overcome by the abilityirte
compiler-dictated object layout present a low-level mediu  terpretone piece of codas if it were something elsewhere
for glue code, while the lack of run-time checks greatly defining interpretations of foreign code is a fundamental re
complicates debugging. Joining two higher-level langsage duirement of integration. The “universal mappings” of in-
together is accordingly often special-cased (e.g. Jyjhon teroperability schemes are simply one interpretation feom

Finally, it is telling that if some new languag¥ is wide space—a space we would like to open up fully to the
adopted, it is always accompanied by considerable reim- pProgrammer. This concept stibjectivity{Harrison and Os-
plementation of tool functionality “forX”. Consider that  Sher 1993, Batory] appears throughout softwére.
practically every programming language has:xalike tool. Referencing some foreign entity within code does not
Why should this be? Aex-generated |exer’ being a sepa- determinewhat that entlty should bbut Only how it must
rate module from its client, should be invokable from any appear At present, toolchairt$ do not support the inter-

client language, with the language of the generated code anPOsition necessary to effect this transformation fromat
encapsulated concetf. to how—compilers and linkers understand only one view of

any given code, and tool support fdefiningandtransform-
Research perspectives Much research work concentrates ing views is lacking. The scope for such support is huge.
on theoretical aspects of interoperability, by asking how Consider a command-line tool with itscecve() interface.
reasoning mechanismsuch as type systems and run-time One interpretation of this interface showsecve()’s argu-
checks, can be extended to preserve their guarantees in thenents as arrays of strings. Another shows them as a dis-
presence of foreign-language modules [Wadler and Findlerjoint union of options and typed arguments, reflecting the
2009]. This work is valuable but is not our concern here. command’s syntax. Tool support must permit stackable de-

Existingpracticalapproaches are largely found in imple-  scriptions of these interpretations, each described imger
mentations. Microsoft's CLR [Meijer 2002] defines an in- of lower-level conversions and rooted in primitives akin to
termediate abstraction, roughly par with an object-ogént  atoi(). (As | will describe in Section 4glationsare one con-
garbage-collected language, and having standardised datgenient abstraction for describing these and other insgnc
representations. This is a reasonable blaan-slateap- of subjectivity.)
proach: it excludes all code lying outside that standard.
Generative tools are available to ease the task of creat-3.3 Doing better than information hiding

ing JNI and similar glue code. Wrapper generators such as
JunG+tion 1! generate proxies presenting a more natural in-
terface than that of the underlying interoperability ifaee
(in this case JNI). Swig [Beazley 1996] provides an anno-
tation language for customising the generated proxy’s in-
terface, where annotations correspond to macros expande
within the C or G+ glue. These tools demonstrate the feasi-

Information hiding [Parnas 1972] is rightly considered a
fundamental strategy for reducing coupling between mod-
ules. It is supported by all contemporary programming lan-
guages. As described in Section 4mitnimisescoupling by
(IJ'nmiting the visibility of implementation decisions betee
odules. However, | have described heame coupling is
inevitable Conventional languages do nothing to mitigate
that coupling: on whatever implementation decisiaresex-
posed, modules are expected to agree. Where incompatibili-

http://www.jython.org/

10| choselex notyacc becausdex has less need for semantic actions—but
the continued popularity of these tools’ designs is a mysigiven how

they advocate such a thorough mixing of application logithwhie concern 12Network filesystems are a classic example in operating systand
of language recognition. This contrasts with more modepr@axrhes like the adaptor pattern [Gamma et al. 1995] is well known in dbjeiented
Antlr [Parr and Quong 1995]). programming.

ttp://codemesh.com/products/junction ...and also runtime systems, Including operating systems.
11h demesh d juncti 1 dal ti t includi ti t



tles_ a_r_lse, the only recourse is to edit the code to regain com switch — libgtk20 { /+ old interface < new interface +/
patibility, or to code an adaptdf. gtk_window_setpolicy (win, shrink, grow,.) —

" . (if shrink then gtk .window_setsizerequest (win, 0, O)else void

COSt_ Wh?” the plug-compatlb_lhty myth _fa|ls—for exa_m' if grow then gtk window_setresizable (win, TRUERIse void);
ple in porting tasks—any coupling to an incorrect environ-
ment must somehow be worked around. Invasive editing (previewwindow :) gtksignalconnectobject (i, d, ch, data)—
of code is common, but yields a fork or patchset which is ~ 9-Signalconnectdata (i, d, ch, data, null, {});
highly syntactic and inherently fragi_le. BIa_lck—box adapto  5jues {
are more modular, but are labour-intensive to create and, Gtkwindow — GtkWindow {
while less fragile, still nontrivial to maintain. Sometima type as GtkWindowType—type as GtkWindowType;
mixture of both techniques is used—for example in the KDE , .

. . . . . . window_hasfocus <~ hasfocus ;
migration mentioned in .Sectlon 3.1, a black-box a.bstramctlo autashrink — const O:
layer (QtDBus) was designed to resemble the earlier DCOP
API, while still differing both abstractly in a few ways and useuposition — needdefaultposition ;

; : - - useuposition — needdefaultsize ;
concretely in many (including most function names). useuposition « ( needdefaultposition || needdefaultsize );

Vision To continue the example, if KDE source code had }}}
been kept abstract and avoided embedding DCOP-specific— - . -
details, invasive porting would have proved unnecessary. Figure 4. Relating function calls and data structures in Cake
Perhaps the developers proceededrbgginingthat some

minimally sufficient IPC interface was available, ignoring  The details of the code are not important here, but | draw
the issue of whether any implementation was available un- attention to several properties of the language. It is adopt
til later. Subsequently, a separate layer of software, im@p  aple, largely because it chooses a unifying abstraction al-
abstract KDE references to concrete DCOP or D-BUS refer- ready satisfied by substantial existing codebases (namely r
ences, would be required. As with information hiding, such a |gcatable object code). It complements component program-
design requiredisciplineto keep the original code abstract. ming languages: plug-compatible compositions can tivial
Just as toolenforceinformation hiding, so can tools en-  pe expressed as “no-op” Cake descriptions similar to linker
force this stronger sense of modularity—pgeventing the  jnyocations in a makefile. Once plug-compatiblity is viekt
import of any concrete interfacand using integration tools oy retrofitting is desired, Cake’s adaptation features aan b
to bridge the resulting gap between the abstract and the coninyoked. It is high-level, declarative and minimal: it sitpp
crete. The remainder of this paper discusses techniques fo"expresses relations between runtime values, optionaly-pr

realising this two-stage approach. icated on the context in which they occur (including func-
) ) . tion calls, but extending to call contexts, call sequenses,
4. The integration domain—what and why rounding data structures and beyond).

An integration domain is simply a set of languages or tools ~ Why are these good properties? What makes Cake better
for performing integration of software. Informally, many than a conventional programming language for integration
ad-hoc special-purpose integration domains have emergedasks? | now address these questions.
in conventional practice—for example scripting languages
(like the Unix shell), patching tools (like Unix'diff) and
stub generators (as in various RPC implementations [Birrel Glue code is different from other code. The split has been
and Nelson 1984]). Each of these is highly specialised and characterised in many ways: unstable versus stable [Nier-
highly constrained, but hint at the more general and power- strasz and Achermann 2000], coordination versus compu-
ful tools which my arguments so far have motivated. Two tation [Arbab and Mavaddat 2002], or functionality versus
questions remain: why are conventional programming lan- packaging [DeLine 2001]. Here | argue specifically thht
guages not sufficient for this domain, and what form should ternative languageare not only useful for notationalkep-
the alternative take? arating the integration concern, but aessentiaffor maxi-
mally abstracting it.

4.2 Why an integration domain?

4.1 Anexample: the Cake linking language

Expressivity and abstraction Component programming
languages are a poor notation for adaptation tasks; they in-
variably offer the wrong abstractions or the wrong level of
abstraction. Typically, adaptation logic is algorithnliga
simple. It defines few or no new data types, few new func-
tions except for wrappers around existing ones, and likely
makes relatively little use of looping or recursion. Rather
14These aravhite-boxandblack-boxapproaches, respectively. it is concerned withrecognisingand relating the interac-

| begin by giving an example from my ongoing work of
one tool, the Cake linking language compiler, which fulfils a
small part of the vision | have outlined. It is described more
fully in an earlier short paper [Kell 2009]. Figure 4 shows a
fragment of Cake code relating function calls and the values
they exchange across a mismatched interface.




complex change to realise in Haskell because adding state
requires profound changes to type annotations.) The argu-
ment here is not that these are necessarily weaknesses in
the languages, but merely that the languages were designed
for abstraction of algorithms and data structures, and not

abstractions ofelationsamong messages or interactions.

M switch O glue code

Automation and reasoning Being computationally sim-
pler than other code, glue code is potentially more traetabl

relative frequency (%)
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% REEE é § 5 2 é 245 E é for purposes of automatic reasoning and even automatic syn-
N, w! 2 2 o g o o § 2 S thesis. Protocol adaptation—one of the most well-explored
w w o kinds of adaptation [Yellin and Strom 1997, Passerone et al.
ASTnode type 2002, Reussner 2003, Bracciali et al. 2005]—is invariably
(Note: Evariable and EfunCall extend off the chart.) implemented using only finite-state abstractions (either i

strictly less powerful than a Turing-complete abstraction

. ' . . ) but appears to be sufficiently useful for a very wide range of
tions d?f'ned by t\_NCEX|st|ngm|smat.ched interfaces. When tasks. Crucially, its lesser computational complexity esak
Wr|tter_1 n cgnventlonal languages, it mpst often contaimis_t it more amenable to automatic reasoning—hence the auto-
following kinds of code: case analysis (pattern-matching. yatic or semi-automatic nature of the cited tools. In genera
switch statements oif—then—else), data movement (by as- g gugqgests that the computational power required in glue
S.'gnmem or parameter passmg)., m“'“p'?x'“g :_;\nd qer,““" logic is, in a reasonable proportion of cases, likely to Iss le
t|p|§X|ng, look-up tables, dynamic mappings (like _d'Ct'o' than Turing-powerful® Future work will no doubt increase
naries or_other key-value stores), simple compu_tat_lons_(fo the space of synthesisable adaptation logic. Although it is
re-encoding of messages; usually already found in libsarie oy that much of the overall space will remain essenyiall
simple buffering, state machines, and (sometimes) coNCur-a 4| task (but still with the potential for better absticre
rency f:ontrol operations (like fork—join patterns, threzit through improved languages), keeping integration details
cond|t|_ons, and SO,On)' . separately modularised, and expressed in a purpose-built
_A S|mpl_e experiment lends some empirical _credencg 10 notation, allows for constraining the computational power
this assertion. Figure 5 shows relative frequencies obuari ¢ 4o otation and increases the potential for identifying

syptactic features in C and-Ccode from thegt_k-theme_ and implementing synthesis and/or verification techniques
switch Cake case study [Kell 2009]. One series measures

the glue code 8000 lines, partially autogenerated), the 4.3 What: relations, not scripts or circuits
other the main source code of the applicatied Q00 lines).
Although the data is far from conclusive, notice how loop
constructs are relatively far less common in glue code,avhil
switch andcase statements appear more often. (The lower
glue frequency off and assignments is perhaps explained
by the skewed nature of the adaptations required by this cas
study; clearly further experiments would be helpful.)
Unfortunately, these are mostly features for which con-
ventional languages are not optimised towards abstratting

Research work has proposed several new integration do-
mains: coordination languages [Arbab and Mavaddat 2002],
“delta” languages [Keller and Holzle 1998] and semantic
patching tools [Padioleau et al. 2008], linking languages
Reid et al. 2000], orchestration languages [Misra and Cook
006] and formally grounded scripting languages [Acher-
mann and Nierstrasz 2001]. Only time and experience can
truly prove the worth of these. However, scripting-style no

tations alone are clearly limited, because they are so simi-

Consider a language such as Java—possibly a good choic . .
. ) ar to conventional languages. Dynamism alone cannot ab-
for coding some set of components, but it may be poor for . : L . o
stract the integration domain; meanwhile, the similaritly w

adapting thosg same components, perhaps becaqse 't. Iadﬁﬁ@ly lead toleakageof application concerns into integra-
pattern-matching or curried functions (for demultiplein tion logic. Deltas and patches suffer from a restrictivec*se

function calls). Meanwhile, a language such as Haskell, ” .
. ) . ond class” conceptual asymmetry—one cannot easily apply
while having these features, could be awkward if, say, some . i
a delta to a delta, say. Data-flow networks as in Reo, while

previously stateless adaptation logic was to be made statef ' .
o : . o useful for scenarios where concurrency is paramount, are
by addition of a state machine or dynamic map. (This is a - . .
surprisingly difficult to design or explathand currently of-

15There is similarity between this set of programmatic fesguand the
logic contained within a table-driven parser. Both are alsamples of code
which are far more suited to being generated from a highe-iepresen- alread_y being incorporated into practical tools, and theiefit is likely to
tation than being coded in a conventional language. Althaegursive de- outweigh any burden.[Barnett et al. 2005, Flanagan et al.]

scent, meanwhile, is a reasonable fit for conventional laggs, choosing 17Testament to this is the difficulty faced by Clarke et al [Réaet al.
recursion as the means of expressing the grammar is far ronstraining. 2007] in concisely explaining the operation of a very simpielusive

16The kinds of additional specifications required by thesérigpies are



fer no means of expressing simple data-dependent behaviou mpeg2 | ffmpeg || db sqlite
(for example, rearranging the fields in a structured megsage | API function count 24 151 208 214
The choice of relations, as exemplified by Cake, has sev- zslagtrsljgt”u?t:srijf; i-: 3-63 g; ‘1‘-23
er.all benefits. Simple relapons on values are expressed Nt ean structure sife || 5.6 19 172 8.0
tuitively as pattern-matching. More complex relations can [—sjice function count 1| 5 12 5 10
be built up by incorporating contextual guards in patterns: | mean signature size || 2.8 3.1 6 4
contexts may be either spatial (e.g. relations applying onl | slice structures count)| 3 6 2 4
to values within certain function calls, or at certain psint g::gm /S;IZD?C(;ESC) ;1 ?2 21 Ig
within a larger data structure) and temporal (relations spe | nhepper calls 2 1 6 3
cialised towards values as they occur within particular se- | mean call size 3.4 3.2 4.9 3.9

guences of function call exchanges—this is protocol adap-
tation). Analogously with grammars, greater context depen
dency can bring arbitrarily higher expressivity, but onpé®
that a practically useful level of expressivity can be resath
using only a very restricted degree of context dependency.

2 imprecise owing to undocumented public—private division
3 signature size= 1+ number of in or out parameters

4 simple total of all public fields

5 C library calls necessitated indirectly by API usage

Table 1. Measurement of complexity inheritance

5. Interface hiding 5.2 Mitigating complexity

Suppose an expressive integration domain is availablet Wha
strategy might best avoid coupling? My suggestion, strange
as it may seem, is to avoid directly importing any foreign in-

Using interface hiding, complexity inheritance clearlyua
not occur. Instead, the additional complexity would apjear
the integration domain. As | described in Section 4.3, there

terface whatsoever. Similar to the integrated circuitsgxe are two major reasons vv_hy t.his complexity can be bet_ter han-
in Section 2, each component may define its own interfacedled from such a domain: firstly, the availability of higher-

to the outside, designed to keep the component simple andeVE| notations tailored to the task flating corresponding

comprehensible. It is a separate task, supported by integra'ntenc"’1Ce elemen_ts, more swta_ble than glue COde.; and sec-
tion tools, to glue components into a functional ensemble. ondly, the potential for automatic or semi-automatic sgath
sis of these descriptions.

5.1 Motivational experiment—complexity inheritance 5.3 Additional benefits of interface hiding

Latentin this argumentis the assumption that targettimg co A second payoff of interface hiding is in comprehensibility
crete interfaces increases the complexity of code. Softwar of client code. Since complexity is not inherited, substan-
depending on some concrete interface is clearly moulded bytjally more readable code may result. Separately, interfac
the details of that interface; a more general or complex-inte hiding forces an explicit statement efquirements Sym-
face may force the client to incorporate unwanted complex- metric with explicitprovidesinterfacesrequiresinterfaces
|ty, even if that client exercises Only a small subset of the have been advocated by several Component_oriented pro-
“brary,S fUnCtionality. If SO, the clieninheritsthe CompleX' gramming practices [Counci” and Heineman 2001] but have
ity of the interface it targets. | conducted a small experime  yet to appear in conventional practice.
to demonstrate this phenomenon. Interface hiding does not require extensive changes to
| used Open source libraries to perform two different any programming |anguages_ Certain |anguages_inc|uding
tasks—one storage-oriented (writing a persistent keyeval  C and G+—already allow foreign interfaces to be explicitly
set describing the program memory map) and one compu-defined (e.g. by defining new prototypes rather than doing
tational (video decoding). In each task the same function- an #include of existing ones). In other languages, some
ality was implemented twice, using different C libraries— small changes will be necessary to separate the concepts of
the second chosen to be substantially more complex (andimports(implying a foreign component already exists) from
more general) than the first, yet offering a similar level of zdeclarationof a view onto the outside world.
abstraction. The library pairs were firstigmpeg2 andffm- Tools also require théeethto enforceinterface hiding.
peg (comprisinglibavcodec andlibavformat) and secondly  Analogously to the enforcement @fivate and protected
Berkeley DB andsglite’s BTree interface. Table 1 presents modifiers, this requires prohibiting imports of concrete ex
simple summary measurements of the libraries’ public in- ternal interfaces (except where explicitly overridden).
terfaces, the API subset (or “slice”) exercised by the tlien  Clearly, there is a limit to how far interface hiding can
and the clients’ source code. The key observation is that thepe taken. Perhaps truly ubiquitous interfaces, like POSIX,
client of the more complex library is itself more complex.  should not be hidden. There is also a risk that the program-
mer will design an external interface which cannot be satis-
fied by any foreign components, or which unduly strains the
expressivity of the integration domain. In practice, nolotou

router circuit (page 4). The unintuitive arrangement ofrotels is said to
“conspire to” ensure exclusivity.



some iteration will be required to find the optimal modular-

isation of logic between the integration domain and compo-

nent internals. These, and other practical questions, beust
the subject of future work.

6. Conclusions

| have motivated a two-pronged redesign of software tools

and practices with the goal of drastically improving the flex
ibility of software, and ultimately reducing its cost. Rlys

we require arintegration domair—tools and languages spe-
cially designed for integration of mismatched software] an
different from conventional languages. Secondly, we nequi

practices which exploit these tools to maximise separation

of the integration concerninterface hidingexploits the in-

tegration domain to reduce complexity of components and

improve their flexibility.
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