Privilege separation made easy

Trusting small libraries not big processes

Derek G. Murray
University of Cambridge Computer Laboratory
Cambridge, United Kingdom
Derek.Murray@cl.cam.ac.uk

ABSTRACT

At the heart of a secure software system is a small, trustwor-
thy component, called the Trusted Computing Base (TCB).
However, developers persist in building monolithic systems
that force their users to trust the entire system. We posit
that this is due to the lack of a straightforward mechanism of
partitioning — or disaggregating — systems into trusted and
untrusted components. We propose to use dynamic libraries
as the unit of disaggregation, because these are a familiar
abstraction, which is commonly used in mainstream software
development.

In this paper, we present our early ideas on the disag-
gregated library approach, which can be applied to existing
applications that run on commodity operating systems. We
first make the case for a new approach to disaggregation,
and then describe how we are implementing it. We also
draw comparisons with the wide range of related work in
this area.

Categories and Subject Descriptors

D.4.6 [Operating Systems|: Security and Protection—In-
formation flow controls

General Terms
Design, Security

Keywords

Disaggregation, Libraries, Virtualisation

1. INTRODUCTION

Many current software systems are implemented as mono-
lithic processes, which place a large burden of trust on their
clients and users. We believe that the lack of a straightfor-
ward mechanism for subdividing software into trusted and
untrusted components is holding back the adoption of “best

This is the author’s version of the work. It is available here by permis-
sion of ACM for your personal use. Not for redistribution. The defini-
tive version was published in EuroSec ’08. http://doi.acm.org/10.
1145/1355284.1355292

EuroSec ’08 Glasgow, UK

Copyright 2008 ACM 978-1-60558-119-4 ...$5.00.

Steven Hand
University of Cambridge Computer Laboratory
Cambridge, United Kingdom
Steven.Hand@cl.cam.ac.uk

practices” for security. Therefore, we present a new ap-
proach, based on the well-understood and commonly-used
concept of dynamic libraries.

Several researchers have discussed the problem of divid-
ing a monolithic piece of software into several smaller pieces,
each of which runs with the least necessary privilege. Disag-
gregation [16], partitioning [8], privilege separation [17] and
TCB-reduction [13, 21] are simply different names for the
process of dividing software into a small trusted computing
base (TCB), and a larger untrusted part. However, existing
solutions to this problem either use ad hoc techniques or
source code annotation to split the code.

Dynamic libraries — i.e. collections of executable code and
data which are linked into a process when it is loaded — are
a natural unit of modularity in most common programming
languages. Clients may invoke functions in dynamic libraries
using the same calling convention as any other function,
which is primarily due to the fact that a dynamic library
exists in the same address space as its host process’. The
dynamic library may also be used as a unit of abstraction, by
hiding the implementation and merely presenting the client
with the library interface. However, dynamic libraries are
not secure against malicious clients.

We therefore propose a new approach which allows dy-
namic libraries to be used as the unit of disaggregation.
We recognise that an address space is not necessarily the
same as a protection domain [6], and thereby run the host
process and disaggregated library in different protection do-
mains, but the same logical address space. One may then
disaggregate an application or service by moving sensitive or
privileged operations into a dynamic library, and disaggre-
gating that library using our proposed mechanism. Unlike
most previous work, we aim to apply this technique directly
to existing commodity operating systems and applications.
We also aim to maintain binary compatibility with existing
executables, so that recompilation is not necessary.

We intend for this approach to be useful in a wide variety
of research into disaggregation and system security. For ex-
ample, we intend to use it to answer the following questions:

e How should we choose an appropriate TCB? Are there
any metrics that determine the “optimal” TCB? Can
we use this approach to perform experiments on a va-
riety of different TCBs, without manual intervention?

e Can this approach be used to “automatically” disag-

!Thanks to position-independent code, the same dynamic
library may in fact exist in many different address spaces,
each belonging to a different host process.

gregate existing applications or services? If not, what
magnitude of change is required to yield a secure solu-
tion?

e How easy is it for “regular developers” to develop a
disaggregated system using this approach? What ad-
ditional primitives — e.g. library support — are required
to aid the programmer when developing for the disag-
gregated environment?

e What are the performance costs of disaggregation us-
ing this approach, compared to other techniques, such
as RPC and IPC? How can this approach be opti-
mised?

We begin by introducing the background to disaggrega-
tion, and making the case for a new disaggregation technique
(Section 2). We then describe our design for how dynamic
libraries can be used as the basis for disaggregation (Sec-
tion 3). We also consider the wide range of related work
(Section 4).

2. MOTIVATION

Why do we need a new approach to disaggregation? Sev-
eral techniques are established in the research literature: mi-
crokernels [13, 21] and source code annotation [5, 14] are two
of the best known. However, these are not widely used in
real-world development, which continues to produce mono-
lithic application written on top of monolithic operating sys-
tem kernels. This suggests that the cost of adopting these
techniques may outweigh the benefits (at least to developers)
of disaggregation. We therefore need a new approach, which
is compatible with existing software development practice.

In this section, we answer three pertinent questions:

What do we want to do? We want to improve the trust-
worthiness of the TCB. We define the term and discuss
why it is an important concept in systems security.
(Subsection 2.1.)

Why do we want to do it? We consider two of the most
important use cases for disaggregation — privilege sepa-
ration and data protection — and explain how disaggre-
gation can be used to achieve these. (Subsection 2.2.)

How are we going to do it? We explain how dynamic li-
braries provide a useful abstraction for disaggregation,
and how we can provide effective protection for their
code and data. (Subsection 2.3.)

2.1 The trusted computing base

The motivation for most disaggregation work is either to
reduce the size or improve the trustworthiness of the trusted
computing base (TCB) [5, 13, 16, 21]. The TCB may be de-
fined in various ways: at the high level, Hohmuth et al refer
to the “set of components on which a subsystem S depends
as the TCB of S.” [13] In previous work, we made the low-
level definition of the TCB as the set of code positions from
which a privileged operation (i.e. one that can undermine
the security of the system) may be invoked with arbitrary
inputs [16]. Both definitions are equivalent, and imply that
all code that may undermine the security of the system must
be trusted.

In order to illustrate how the TCB is calculated, consider
a concrete example: the management software for the Xen

virtual machine monitor (VMM) [2]. The VMM is man-
aged by a privileged virtual machine (VM), known as Dom0.
The Dom0 kernel (which is a modified version of a standard
Linux or Solaris kernel) has the special privilege that it can
ask the VMM to (i) map any physical memory on the ma-
chine, and (ii) set the virtual CPU context for all other vir-
tual machines. This privilege is necessary for Dom0 to be
able to build new VMs. However, it could clearly be used to
undermine the security of any VM on the same physical host:
the DomO0 kernel must be trusted not to abuse the privilege.
The Dom0 kernel makes this functionality directly available
to user-space processes, using a device driver. Therefore any
process which can open the “privileged command” driver can
similarly undermine the security of any VM, and must be
trusted not to do so. In effect, this places the VMM, the
Dom0 kernel and every user-space process running as the
root user into the TCB of every VM.

If we remove these privileges from the Dom0 kernel, and
instead give them to a small component that has the sole
function of building new VMs, we can reduce the TCB of ev-
ery VM to include only this component and the VMM? [16].
We still provide the necessary functionality (i.e. VM build-
ing) using the same privilege, but we use an appropriate in-
terface at a level of abstraction that makes it impossible for
an attacker to make arbitrary use of that privilege. Since
the amount of software in the TCB is now much smaller,
and unchanging, we can be satisfied that the system is more
trustworthy.

The main difficulty in TCB analysis is that there is no
metric to quantify a “good” TCB, and therefore it is hard
to argue that a particular TCB is optimal. The most often-
used argument for trustworthiness is the number of lines of
code that comprise the TCB [13, 17, 21]. However, from
the above example, it is clear that the choice of an appro-
priate interface also has an important role in defining the
TCB. We hope to use our new disaggregation approach to
evaluate a wide variety of different TCB configurations, and
hence develop better quantitative metrics that can be used
to evaluate trustworthiness.

2.2 Disaggregation use cases

In this work, we will consider two key use cases for disag-
gregation: privilege separation and data protection.

Most existing disaggregation efforts target the privilege
separation case, which splits a system into a small kernel
that requires elevated privileges and a larger, untrusted pro-
cess that does not [16, 17, 21]. Indeed, the division of com-
puter systems into user and supervisor modes can be consid-
ered the earliest example of disaggregation [9]. Our work in
this paper is motivated by an earlier effort to disaggregate
the management software used with Xen virtual machine
monitor, as described in the previous subsection. The con-
verse of privilege separation is untrusted extension, whereby
the majority of an application or service is trusted, but it
is linked with an untrusted module (e.g. a plug-in or kernel
module). Our approach will generalise to cover this case.

Data protection usually seeks to protect the confidential-
ity and integrity of passwords, private keys and other sen-
sitive information. For example, Xen VMs can be given
a virtual trusted platform module (vIPM), which provides

2For simplicity, we ignore the fact that Dom0 can perform
arbitrary DMA, which would be solved by the use of an I/O
memory management unit [3].

trusted computing support within a VM [4]. However, the
vTPM implementation includes an emulator running in the
management VM, which stores sensitive keys and register
contents in unprotected data structures®: again, this places
the entire management VM (which could map, and read or
write these values) in the TCB of all virtual TPMs. By dis-
aggregating the portion of this code which manages these
data structures, behind an interface similar to that which a
hardware TPM provides, it would be possible to remove the
management VM from the TCB.

2.3 The solution: dynamic libraries

Dynamic libraries provide a useful abstraction to appli-
cation programmers: a call to a dynamic library is im-
plemented in the same manner as any other function call,
and no limits are placed on the parameters, which may be
scalar values, composite structures, pointers or even func-
tions. This richness is possible because the caller and callee
exist in the same address space. However, this also implies
that the dynamic library is unprotected from the calling
process. If a dynamic library carries out a sensitive opera-
tion, protected only by sanity checks in the library functions,
a malicious caller can circumvent these checks by reverse-
engineering the library and jumping directly to the sensitive
operation in the library code.

We want to implement the TCB in one or more dynamic
libraries, whilst excluding the majority of the calling process.
An important requirement is that the calling convention for
these libraries is not changed. In particular, it must be pos-
sible to pass a pointer to the library, as this is a common
idiom in many programming languages for passing large ar-
guments, or for returning data to the caller.

Chase et al distinguish between the concepts of protec-
tion domain and address space, which are not necessarily
equivalent. They present an operating system architecture
that uses a single address space, in which multiple possibly-
overlapping protection domains reside [6]. One advantage of
this approach is that pointer-rich data can trivially be trans-
ferred between protection domains without the complicated
(and inefficient) serialisation and marshalling of arguments.
Banerji et al describe how a library can be loaded in a dif-
ferent protection domain from its client using a modified
operating system [1]: we propose to do the same using a
commodity operating system, such as Linux or Microsoft
Windows.

In order to load a dynamic library in a different protection
domain from its host process, we require a privileged super-
visor which can enforce the necessary isolation between the
two protection domains, and which is necessarily part of the
TCB. For example, we could use an operating system ker-
nel, microkernel or virtual machine monitor to achieve this
isolation, to different degrees of trustworthiness. We would
then intercept library calls and perform the appropriate pro-
tection domain switch.

As we stated earlier, the key goal of this work is to make
it easier for developers to create disaggregated applications
and services by using existing development techniques. It is
also important that the resulting software can be used in a
familiar execution environment — i.e. on top of a commod-
ity operating system — although the user may not want to

3 An alternative suggested by the authors is to use a crypto-
graphic coprocessor to host the vIPM software, but this is,
as yet, not a common feature of commodity systems.

|:| Local memory
|:| Shared memory

---1- __I:i?__ - Protected memory
DomA DomL {1 Shadow process
VMM
Hardware

Figure 1: The host process and disaggregated li-
brary run in separate Xen domains, respectively
DomA and DomL. In DomL, a shadow process loads
the library at the appropriate address.

have to trust the operating system kernel. In the following
section, we describe how to implement our disaggregation
approach using a commodity operating system on top of a
VMM.

3. DISAGGREGATED LIBRARIES

We are currently implementing our dynamic library dis-
aggregation approach. We implement our mechanism on the
Linux operating system, running on top of the Xen virtual
machine monitor, due to the availability of and our famil-
iarity with the source code for these products. However, we
expect that our approach is sufficiently general that it could
be applied to other common operating systems or virtuali-
sation technologies.

In the following discussion, we use the term host process
to refer to the process that calls the library (excluding the li-
brary itself), and disaggregated library to mean the dynamic
library which is protected from the host process.

To provide protection, we run the host process and disag-
gregated library in separate Xen domains (virtual machines).
This ensures that the VMM mediates any sharing or com-
munication between the two protection domains. Figure 1
shows a host process running in DomA, while the disaggre-
gated library runs in DomL. In DomL, we create a shadow
process, which contains the library loaded at the same ad-
dress as it would have in the host process. However, the host
process actually loads a special memory area, which is con-
figured to pass control to the disaggregated library when an
attempt is made to execute it (see Subsection 3.1 for more
details). The shadow process has access to the memory of
the host process (see Subsection 3.2).

We also illustrate how our approach can be applied to
a real-world example (Subsection 3.3), and briefly discuss
other implementation issues (Subsection 3.4).

3.1 Calling mechanism

In order to explain the calling mechanism, we first de-
scribe how the dynamic loader instantiates the disaggregated
library in the host process, then describe the sequence of
events when a call occurs.

DomA kernel DomL kernel
® >
®< @
A
ittt i |
® | !
' |
! |
i :
V@ i i
! 1
! |
! |
! 1
i :
e'®
Library
I i
! |
! |
i :
Host process E Shadow process |

Figure 2: The sequence of events that occur in the
execution of a call to a disaggregated library. The
solid lines correspond to the initial call (steps 1-5).
The dashed lines correspond to the return (steps
6-9).

When the host process attempts to load the dynamic li-
brary, it finds a structure that resembles a standard ELF
shared object file, and can be parsed by the dynamic loader.
For example, the host process must parse the symbol table in
order to resolve dependencies on the library in other parts
of the executable?. The loader will then attempt to map
the text (executable code) and data segments of the library.
However, the library file — implemented as a custom device
inode — will instead create page table entries that mark these
pages as “not present”, and associate a special-purpose fault
handler with these. At the same time, a shadow process is
created in the library domain, and the library is loaded at
the appropriate location.

Figure 2 illustrates the following sequence of events that
occur when handling a call to the library. We give a concrete
example of these steps in Subsection 3.3.

When the host process attempts to call any of the library
code (1), this will cause a page fault, which transfers con-
trol to the DomA kernel (2). The handler is responsible for
marshalling the relevant CPU state to the library domain
(DomL), and notifying it that an invocation is pending (3).
At this point, execution switches to the DomL kernel, which
checks the incoming instruction pointer to ensure that it
matches a valid function entry point (4). If it does not,
DomlL sends an error response to the DomA kernel, which
then signals that a protection fault has occurred in the host
process.

Assuming that the instruction pointer is valid, the shadow
process can continue to execute the desired function (5).
If it requires data from the host process, it can access it
directly (assuming it has permission from the host process),
using the memory sharing technique that we describe in the
following subsection. When the library function returns (6),
the DomL kernel marshals the relevant CPU state back to

4The library itself may contain dependencies, and we discuss
this case briefly in Subsection 3.4.

the host process, and notifies it of completion (7). The CPU
state for the host process is restored (8) and control returns
to the instruction following the original call (9).

This calling mechanism enables the disaggregated library
to fulfill the privilege separation use case that we described
in Subsection 2.2. For example, in the case of two domains
running on Xen (as in Figure 2), we can give additional capa-
bilities to DomL so that it can request privileged operations
from the VMM. If we instead implemented this approach on
a regular operating system kernel, we could set the user 1D
of the shadow process so that it may access protected re-
sources: this would effectively give setuid functionality to
libraries.

3.2 Memory sharing

We avoid the need for argument marshalling by sharing
the address space between the host process and shadow
process. We implement our data protection use case (see
Subsection 2.2) by changing the protection bits on the rele-
vant logical pages when we switch between the two domains.
However, this leaves the question of how the address space
is shared. We take a simple approach, based on the grant
table mechanism for explicit page sharing that is provided
by Xen [11].

In this approach, the address space of the shadow process
contains only the library itself, mapped at the location where
it was loaded into the host process. All necessary runtime
structures — such as the stack, a private heap and a pri-
vate memory-mapping area — must be contained within the
library, by allocating uninitialised storage for them. By in-
cluding them within the footprint of the library, we ensure
that the host process will not use these areas of memory,
and thereby avoid address space clashes. The remainder of
the shadow process address space comprises one or more
specially-crafted virtual memory areas. When an attempt
is made to read from or write to one of these areas, the
page fault handler requests that the host process grants the
shadow process access to the relevant page. The shadow
process can then map that page, and satisfy the page fault.

The advantage of this approach is that it can be imple-
mented using existing mechanisms, without modifying the
VMM or core parts of the kernel®. A straightforward im-
plementation of this approach is unlikely to perform well,
due to the overhead of handling each page fault. However,
by using techniques which determine in advance the set of
pages likely to be required, it would be possible to make
this work quite well. For example, out-parameters are often
pointers to local variables on the caller’s stack, so it may be
a worthwhile optimisation to set up a permanent mapping
from the shadow process to the stack in the host process.

3.3 Worked example

In order to demonstrate our technique, let us consider
the example of domain building in the Xen VMM, which
was the subject of our earlier work [16]. In the existing
Xen tool stack, domain building (for a paravirtualised Linux
domain) is implemented using the following function (shown
here with simplified parameters), which is implemented in
libxenguest.so:

We do, however, need to implement an additional ker-
nel module, but adding code using an established extension
point is far less invasive than modifying the kernel itself.

int xc_linux_build_mem(unsigned int domid,
unsigned int mem_mb,
const char *image_buffer,
unsigned long image_size,
unsigned long *console_mfn);

Consider the following code which uses this function (where
all variables are appropriately defined locally):

rc = xc_linux_build_mem(domid, mem_mb, image_buffer,
image_size, &console_mfn);

This function call will be compiled into the following as-
sembly code:

lea -0x28(%rbp) , %rax // &console_mfn
mov -0x18(%rbp) ,%rcx // image_size
mov -0x20 (%rbp) , %rdx // image_buffer
mov -0x4 (%rbp) ,%esi // mem_mb

mov -0x8 (%rbp) , %edi // domid

mov Yirax,hr8

callg 4004e8 <xc_linux_build_mem@plt>

mov %heax,-0xc (%rbp) // rc

The call is made to the entry for xc_linux_build_mem
in the Procedure Linkage Table (PLT), which is an indi-
rect mechanism for calling dynamically-linked functions [19].
The PLT contains an indirect jump to an offset in the Global
Offset Table (GOT), which is set to the function address
when the library is loaded. We maintain binary compatibil-
ity with this generated code: i.e. it is possible to replace an
existing dynamic library with a disaggregated library, with-
out recompiling or (statically) relinking the executable.

When the jump from the PLT occurs, the target address is
not present, and a page fault occurs. This is handled by the
vm_area_struct which corresponds to the mapped library.
For this call, it is clear that we must marshal the contents
of registers Yrax, %rcx, %rdx, %esi and %edi (corresponding
to the arguments), as well as %rip (corresponding to the
function entry point). It then notifies the library domain
that a call is pending, using an interdomain event channel,
and blocks pending a response.

The implementation of xc_linux_build_mem is not impor-
tant, but it effectively creates a new virtual machine with
ID domid and size (in megabytes) mem_mb. The kernel im-
age is taken from image_buffer. The function passes out
a frame number for the “console frame” (which is used for
communication with the virtual machine) in console_mfn,
and also returns an error code, which is stored in rc.

During the execution of xc_linux_build_mem, it must
read the contents of image_buffer and write to console-
_mfn, which are both defined as pointers in the host process
(in the assembly-code example above, these are pointers to
the stack of the host process). When these addresses are
accessed, a page fault occurs in the shadow process®, and
the pages must be mapped from the host process into the
shadow process.

Upon returning from xc_linux_build_mem, the library do-
main must marshal the contents of %eax, which contains the
return value from the function. It then notifies the host do-
main, which unblocks the host process, restores the CPU
state (including the new return value in %eax), and resumes
execution within the calling function.

SThis assumes that no speculative mappings have been
made.

3.4 Other implementation issues

In the interests of brevity, we will not go into the details
of low-level implementation issues. However, we note that
it will be necessary to address the problem of calling other
libraries — which may be untrusted” — from the host pro-
cess. We will therefore need a mechanism to switch back
to the host process when the disaggregated library calls an
untrusted function. It will also be necessary for the dynamic
loader in the host process to resolve symbol dependencies in
the disaggregated library, and so the library must provide
limited and validated access to its relocation data structures
(such as the Global Offset Table [19]).

Another implementation issue is how to decide which ker-
nel (the host process domain or the library domain) handles
system calls made by the disaggregated library. A simple so-
lution to this would be to use the C runtime library (1ibc)
that runs in the host process to perform system calls, via
the above method for calling untrusted libraries.

4. RELATED WORK

The idea of isolating untrusted (or less-trusted) code has
existed since the earliest days of operating systems. Cor-
baté et al observed that memory protection was necessary to
prevent simultaneously executing processes from interfering
with each other on a time-sharing system [9]. Graham dis-
cussed protection and security in an “information processing
utility” and introduced the general model of concentric pro-
tection rings, which persists in modern hardware [12]. Our
approach is orthogonal to the ring structure, which enables
us to have more disaggregated libraries than there are pro-
tection rings. We can also implement dependencies that are
more complicated than the strict hierarchy that is enforced
by ring protection.

At the same time, capabilities were conceived as a mech-
anism for implementing the principle of least privilege [10],
and they were implemented in systems such as the Cam-
bridge CAP computer [22], the Hydra operating system [24]
and EROS [20]. As we intend to apply our technique to ex-
isting applications, we do not take an explicitly capability-
based approach, though we do make use of low-level cap-
ability-like features, such as the VMM grant table [11].

Single address space operating systems (SASOSs) have
greatly influenced our ideas. We share one main goal: a
pointer valid in one protection domain should be valid in
another. Chase et al drew the initial distinction between
addressing and protection in their description of the Opal
SASOS [6]. However, a key difference between these archi-
tectures and our own is that we aim to apply our techniques
to existing applications, with minimal modifications. Opal
and other SASOSs [15] continue to use explicit IPC or RPC —
albeit with pointer arguments — which requires modifications
to (or the rewriting of) existing applications. In addition,
the SASOS approach is an extreme example of separating
addressing and protection: our approach is a hybrid, which
retains the use of separate process address spaces for regular
operation, and only splits address spaces between different
protection domains where there is a clear use case.

Several authors have previously looked at disaggregation,

"N.B. This does not necessarily undermine security, as long
as the disaggregated library does not leak sensitive data to
the untrusted code, and performs sanity checks on all data
that it obtains from the untrusted code.

under a variety of names. Singaravelu et al extracted the
security-critical components from several legacy applications,
and ran these atop the L4 microkernel [21]. Provos et al per-
formed privilege separation on OpenSSH, by dividing the
server daemon into two processes — a privileged master and
unprivileged slave — which communicate using pipes [17].
Hohmuth et al implemented a reduced-TCB virtual private
network gateway using L*Linux, also on top of the L4 mi-
crokernel [13]. Each of these projects required modifica-
tions to the code to enable communication between disag-
gregated components, whereas our approach is transparent
to the caller of a TCB function.

Two recent works make interesting use of memory protec-
tion in order to defend against untrusted code. Witchel et al
implemented Mondrix, which is a version of the Linux kernel
that uses special hardware support to implement isolation
between different kernel modules that run in the same ad-
dress space [23]. While we do not assume special hardware,
it would be interesting to implement our technique on a sys-
tem that provides intra-address space memory protection
in hardware, as this would probably improve performance.
Chen et al implemented Overshadow, which presents an un-
trusted operating system with an encrypted view of pro-
cesses’ memory [7]. In our work, we assume that the host
process trusts its operating system, but we use virtualisa-
tion to protect the disaggregated library from the operating
systems.

Automatic partitioning has also been described in the lit-
erature. Kilpatrick’s Privman library can be used to perform
privilege separation on Unix applications and daemons, by
performing mediation on privileged system calls: an unprivi-
leged process performs regular execution, and a trusted mon-
itor performs the system calls, as long as the security policy
is respected [14]. More recently, Brumley and Song devel-
oped Privtrans, which uses privilege annotations on func-
tions and variables, and data-flow analysis to place the calls
to the trusted monitor [5]. Chong et al took the novel ap-
proach of automatically and optimally partitioning a web
application between server and (untrusted) client, so that
integrity and secrecy constraints are preserved [8]. The opti-
misation in this case involves minimising the number of net-
work messages that are sent between the client and server.
We also intend to investigate automatic partitioning using
our new approach, which we hope will require only small
modifications to or annotations on the existing source code.
We expect that, because our mechanism for disaggregation
uses concepts that are familiar to mainstream software de-
velopers, it will be easier for developers to experiment with
different partitioning decisions.

Dynamic (shared) libraries have previously been used as
an abstraction to provide protected execution and distributed
processing. Rao and Peterson introduced the concept of a
Distributed Shared Library (DSLib) [18]. A DSLib can be
executed either in the local address space, or on a remote
host (in a different address space). However, communica-
tion with a remote instance is by traditional RPC, and re-
quires the marshalling of arguments. Banerji et al developed
Protected Shared Libraries (PSLs) and Context Specific Li-
braries (CSLs) [1]. A PSL is similar to our disaggregated

8We protect the library from operating system on which the
host process runs. We do not attempt to protect it from the
library domain OS, which can be much smaller and hence
more trustworthy than the host OS.

library, whereas a CSL is used to implement sharing be-
tween the host process and PSL. However, this approach
required changes to the host process, core operating system,
linker and loader, which may have hindered its adoption. By
contrast, we use a standard operating system kernel, linker
and loader, and we do not require changes to the host pro-
cess. Furthermore, we achieve a much smaller TCB by using
a VMM to provide isolation between the host process and
disaggregated library, rather than a monolithic operating
system kernel.

5. CONCLUSIONS

We have presented a new approach for performing dis-
aggregation based on dynamic libraries. We believe that
dynamic libraries are a natural unit of disaggregation, and,
because they are commonly used in software development,
our approach has a lower barrier to entry than existing dis-
aggregation techniques. If adopted, it will encourage the
development of software with a smaller TCB, which will in
turn bring improvements in software security.

By making disaggregation easier, we also make it easier to
experiment with different “cuts” through a piece of software.
A valid criticism of existing work on disaggregation is that
it tends to consider only a single partitioning of the code
into trusted and untrusted components. This is typically
based on an a priori judgement of how the TCB should
be defined. While this partitioning is always qualitatively
better than the monolithic status quo, we cannot know that
it is the best partitioning unless we consider alternatives.
We want to automate this process as far as possible, and we
will consider this question in future work.

6. ACKNOWLEDGMENTS

Thanks are due to our colleagues Periklis Akritidis, Mich-
ael Fetterman, Euan Harris, Theodore Hong, Eric John, Ste-
phen Kell, Grzegorz Milos, Henry Robinson, Amitabha Roy
and David Simner for their comments on earlier drafts of
this paper, and for many fruitful discussions about how to
implement this new approach.

7. REFERENCES

[1] A. Banerji, J. M. Tracey, and D. L. Cohn. Protected
shared libraries: a new approach to modularity and
sharing. In ATEC’97: Proceedings of the Annual
Technical Conference on Proceedings of the USENIX
1997 Annual Technical Conference, pages 55,
Berkeley, CA, USA, 1997. USENIX Association.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, 1. Pratt, and

A. Warfield. Xen and the art of virtualization. In
Proceedings of the nineteenth ACM symposium on
operating systems principles, pages 164-177. ACM
Press New York, NY, USA, 2003.

[3] M. Ben-Yehuda, J. Mason, O. Krieger, J. Xenidis,
L. V. Doorn, A. Mallick, J. Nakajima, and E. Wahlig.
Utilizing IOMMUs for Virtualization in Linux and
Xen. In Proceedings of the 2006 Ottawa Linux
Symposium, 2006.

[4] S. Berger, R. Céceres, K. A. Goldman, R. Perez,

R. Sailer, and L. van Doorn. vIPM: virtualizing the
trusted platform module. In Proceedings of the 15th

[10]

[11]

[14]

[15]

[16]

[17]

USENIX Security Symposium, pages 21-21, Berkeley,
CA, USA, 2006. USENIX Association.

D. Brumley and D. Song. Privtrans: automatically
partitioning programs for privilege separation. In
SSYM’04: Proceedings of the 13th USENIX Security
Symposium, pages 5-5, Berkeley, CA, USA, 2004.
USENIX Association.

J. S. Chase, H. M. Levy, M. J. Feeley, and E. D.
Lazowska. Sharing and protection in a
single-address-space operating system. ACM Trans.
Comput. Syst., 12(4):271-307, 1994.

X. Chen, T. Garfinkel, E. C. Lewis,

P. Subrahmanyam, C. A. Waldspurger, D. Boneh,

J. Dwoskin, and D. R. Ports. Overshadow: A
Virtualization-Based Approach to Retrofitting
Protection in Commodity Operating Systems. In
Proceedings of the Thirteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, March 2008.

S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,

L. Zheng, and X. Zheng. Secure web application via
automatic partitioning. In SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating
systems principles, pages 31-44, New York, NY, USA,
2007. ACM.

F. J. Corbaté, M. Merwin-Daggett, and R. C. Daley.
An experimental time-sharing system. In Proceedings
of the Spring Joint Computer Conference, pages
225-244, 1962.

J. B. Dennis and E. C. V. Horn. Programming
semantics for multiprogrammed computations.
Commun. ACM, 9(3):143-155, 1966.

K. Fraser, S. Hand, R. Neugebauer, I. Pratt,

A. Warfield, and M. Williamson. Safe hardware access
with the Xen virtual machine monitor. In Proceedings
of the 1st Workshop on Operating System and
Architectural Support for the on demand IT
InfraStructure, 2004.

R. M. Graham. Protection in an information
processing utility. Commun. ACM, 11(5):365-369,
1968.

M. Hohmuth, M. Peter, H. Hartig, and J. Shapiro.
Reducing T'CB size by using untrusted components:
small kernels versus virtual-machine monitors. In
Proceedings of the 11th ACM SIGOPS European
workshop: beyond the PC. ACM Press New York, NY,
USA, 2004.

D. Kilpatrick. Privman: A Library for Partitioning
Applications. In Proceedings of Freeniz 2003, Berkeley,
CA, USA, 2003. USENIX Association.

I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. T.
Barham, D. Evers, R. Fairbairns, and E. Hyden. The
design and implementation of an operating system to
support distributed multimedia applications. [EEE
Journal of Selected Areas in Communications,
14(7):1280-1297, 1996.

D. G. Murray, G. Milos, and S. Hand. Improving Xen
security through disaggregation. In Proceedings of the
2008 International conference on Virtual Execution
FEnvironments, 2008.

N. Provos, M. Friedl, and P. Honeyman. Preventing
privilege escalation. In Proceedings of the 12th

(18]

(19]

20]

(21]

22]

23]

24]

USENIX Security Symposium, pages 16-16, Berkeley,
CA, USA, 2003. USENIX Association.

H. C. Rao and L. L. Peterson. Distributed shared
library. In EW 5: Proceedings of the 5th ACM
SIGOPS European workshop, pages 1-5, New York,
NY, USA, 1992. ACM.

SCO Group. System V Application Binary Interface —
Intel386 Architecture Processor Supplement, 1996.

J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a
fast capability system. SIGOPS Oper. Syst. Rev.,
34(2):21-22, 2000.

L. Singaravelu, C. Pu, H. Héartig, and C. Helmuth.
Reducing TCB complexity for security-sensitive
applications: Three case studies. In Proceedings of
EuroSys 2006, 2006.

M. V. Wilkes. The Cambridge CAP computer and its
operating system (Operating and programming systems
series). North-Holland Publishing Co., Amsterdam,
The Netherlands, The Netherlands, 1979.

E. Witchel, J. Rhee, and K. Asanovié¢. Mondrix:
Memory Isolation for Linux using Mondriaan Memory
Protection. SIGOPS Oper. Syst. Rev., 39(5):31-44,
2005.

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. Hydra: the kernel of a
multiprocessor operating system. Commun. ACM,
17(6):337-345, 1974.

