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he Internet connects millions of computers, sensors,
monitoring devices, and Internet Protocol (IP) tele-
phony devices together, offering many applications and

services such as the World Wide Web, email, and content dis-
tribution networks. Hosts on the Internet are connected via
thousands of Internet service providers (ISPs). An ISP con-
tains one or more autonomous systems (ASs) depending on
its size. An AS is a set of routers within a single administra-
tion domain, such as a university or corporate network.

By convention, the Internet is built on two domain cate-
gories, transit and stub. A transit AS usually carries traffic
between other domains. A stub AS, such as a university net-
work, is one that has connections to end hosts and relies on at
least one transit AS for connectivity to the rest of the Inter-
net. Stub ASs usually do not enable IP packets to transit their
networks if they are not sent or received by an end host within
the network. Figure 1 displays a simplified version of this
structure.

In Fig. 1 transit domains carry traffic between customer
ASs, ISPs or stub domains. The ISPs may have exchange
(peering) relationships among themselves for resilience and
cost saving purposes. Some ASs of ISPs are attached to more

than one transit AS. This is a backup measure increasingly
being taken by corporate networks and business customers in
order to ensure the existence of alternative routes to the
Internet should their main provider fail. It is also a technique
for traffic engineering, allowing traffic to be sent over links of
different levels of performance. This strategy is called multi-
homing and is displayed in Fig. 1.

The growth of the Internet and the overlay networks that
rely on it has led to emerging applications and properties that
have not been considered in the current topology inference
and generation tools. Dynamic reconfiguration of routers and
firewalls, changes in routing policies of ISPs, overlay net-
works, peer-to-peer networks, increasing use of virtual private
networks (VPNs), protocols such as multiprotocol label
switching (MPLS), and tunneling techniques, multihoming,
on-demand circuit setup, and bandwidth allocation for home
entertainment and videoconferencing, and the increased exis-
tence of mobile devices and laptops have caused the topology
of networks to be in constant change.

There is no central node in the Internet. As a result of this,
there are no coordinate systems embedded within the archi-
tecture of the Internet. However, an important result of the
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inference of the Internet topology is the ability to map nodes
to geographic locations. Such a mapping will allow one to dis-
cover the collocation points of ISP points of presence (PoPs)1

and provide for Internet maps. In reality, many ASs are
formed of many customers that overall act as a major contrib-
utor to the traffic that is sunk or sourced by the large provider
AS. An example is the U.K. academic network that is spread
around the whole country and is only observed as a single AS
number from the outside world.

In this section we introduce the basic concepts of the Inter-
net’s operation and the need for network topology inference,
modeling, and generation. We describe commonly used met-
rics for topology characterization. We describe challenges of
topology inference, modeling, generation, and validation. We
describe the inference of router-level topologies of ISPs and
the AS-level topology of the Internet, and the impact of geo-
graphical location of the nodes on inference techniques. We
discuss the statistical and hierarchical models used to repre-
sent the topologies of the Internet at the AS and router levels.
We describe the tools available for topology generation. Final-
ly, we introduce possible future research directions and con-
clude the survey.

TOPOLOGY CHARACTERIZATION

Many metrics are used to characterize Internet topologies.
These metrics have mostly been adopted from graph theory.
We discuss some of the most widely used metrics in this sec-
tion.

Average degree: For an undirected graph with n nodes and
m links, the average node degree  is defined as k = 2m/n.
Average degree is the most basic connectivity characteristic of
a topology. Networks with higher k have higher connectivity
on average and are thus considered to be more robust [1].

Degree distribution: The node degree distribution is the
probability that a randomly selected node is k-degree: P(k) =
n(k) = n, where n(k) is the number of nodes of degree k.
Degree distribution provides a more detailed view of the
structure of a network and is one of the most frequently used
topology characterization metrics [1].

Joint degree distribution (degree correlation): The joint
degree distribution (JDD) is the probability that a randomly
selected edge connects k- and k′-degree nodes: P(k; k′) ~
m(k; k0)/m, where m(k; k′) is the total number of edges con-

necting nodes of degrees k and k′. JDD provides
information about the node’s proximity and
neighborhood since it reveals both the degree
distribution P(k) and average degree k

–
, in addi-

tion to assortativity of a graph, which is a mea-
sure of the correlation between nodes.
Assortative networks are ones in which nodes of
similar degree are correlated. The Internet is
considered to be a disassortative network [1].

Clustering: When m—nn(k) is the average num-
ber of links between the neighbors of k-degree
nodes, local clustering is the ratio of this number
to the maximum possible number of such links:
C(k) = 2m—nn(k)/k(k – 1). If two neighbors of a
node are connected, these three nodes together
form a triangle (3-cycle). By definition, local
clustering is the average number of 3-cycles
involving k-degree nodes. The two summary

statistics associated with  local clustering are mean local clus-
tering C

—
= ΣC(k)P(k) and the clustering coefficient C, which is

the proportion of 3-cycles among all connected node triplets
in the entire graph. Clustering provides a measure of how
close a node’s neighbors are to forming a clique. The larger
the local clustering of a node, the more interconnected are its
neighbors, increasing the path diversity locally around the
node [1].

Rich-club connectivity: The rich club phenomenon is a
property of the hierarchical nature of the Internet structure,
and is the effect of well connected (rich) nodes being tightly
coupled to form a group. Each node may have one or many
links. For less connected nodes to connect together, they have
to go through rich nodes. Rich club connectivity φ(ρ/n) is the
ratio of the number of links in the subgraph induced by the ρ
largest-degree nodes to the maximum possible links (ρ(ρ –
1)/2 where ρ = 1… n are the first ρ nodes ordered by their
nonincreasing degrees in a graph of size n [2].

Coreness: The k-core of a graph is a maximal subgraph in
which each node has at least degree k. In other words, the k-
core of a graph is defined as the unique subgraph obtained by
recursively removing all nodes of degree less than k. A node
has coreness k if it belongs to the k-core but not to the (k +
1)-core. Hence, the k-core layer is the collection of all nodes
having coreness k. The core of a graph is the k-core such that
the (k +1)-core is empty [3]. The minimum node coreness in
a given graph is κmin = kmin – 1, where kmin is the lowest node
degree present [1].

Shortest path length (distance): The shortest path length
distribution is the distribution of the probability of two nodes
being at minimum distance x hops from each other. The
shortest path distribution is a strong indicator of network per-
formance as it shows the reachability of nodes within each
other, and for viruses and worms spreading over portions of
the network [2].

Betweenness: Betweenness is a centrality measure of a
node within a graph. Betweenness is a measure of the number
of shortest paths passing through a node or link. It is formed
by normalizing the shortest paths passing through a node by
the number of pairs of links which do not include that node.
Betweenness is important for traffic engineering applications
as it allows the analysis of the load on various points in the
network [2].

Spectrum: The spectrum of a graph is the set of eigenval-
ues of its adjacency matrix. Spectrum is an important measure
of the overall characteristics of a network and its robustness
[1].

1 A PoP is a physical location that houses servers, routers, and switches
belonging to an ISP. A large ISP may have hundreds of PoPs.

n Figure 1. Sample Internet transit-stub architecture.
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TOPOLOGY RESEARCH CHALLENGES

The Internet topology is usually investigated at two levels.
The Internet AS-level topology is of interest for those looking
at issues such as interdomain routing, quality of service (QoS)
provisioning, and customer-provider and peering relationships
between tier 1 ASs and lower-level ISPs. Within an AS, the
router-level topology map of ISPs is needed for research on
issues such as optimum network planning, and the ability to
minimize the impact of router and link failures. 

There are many challenges in inferring and generating
realistic Internet topologies. Information on network topolo-
gy, routing policies, peering relationships, resilience, and
capacity planning are not usually available publicly as they are
considered sensitive information that gives an ISP its competi-
tive advantage. Researchers try to infer the required data by
using passive and active measurement methods to produce
snapshots of the global Internet or individual ISP topologies.
The fundamental problem of these techniques is the lack of a
complete image of the Internet topology. Such a map does
not even exist, as the Internet is constantly evolving, and it is
difficult to define the topology of the Internet at a given time.
This in turn leads to poor perceptions and models, as the
underlying data set is qualitatively poor. In this section we dis-
cuss these challenges in turn.

INFERENCE OF TOPOLOGIES

At the AS level, it is not possible to obtain a consistent map
of the actual AS-level topology of the Internet due to the con-
stantly changing nature of the Internet topology. Operators
are constantly reviewing their peering agreements, adding new
links, withdrawing other links, and performing maintenance.
AS operators will not reveal their peering relationships and
traffic exchange policies with other ASs. Connectivity between
ASs is made possible by use of interdomain routing protocols,
primarily the Border Gateway Protocol (BGP) [4]. However,
BGP data collected from various points on the Internet is not
enough to provide a user with a complete map of the Internet
at the AS level.

Challenges also exist when trying to get the router-level
topology of a single AS. The router-level topologies of ISPs
are also dynamic and constantly evolving due to failures,
maintenance, and upgrades. Network operators are not willing
to publicly release the maps of their network topology as they
are considered commercially sensitive, potentially revealing
their resilience planning, exposing potential vulnerability to
attackers who will target bottlenecks in the network.

The most widely used tool for inference of router-level
topologies is the traceroute tool [5], which is known to miss
alternative links between routers. Also, routers have multiple
interfaces with separate IP addresses. During the inference
process, each of these interfaces may be reported as a differ-
ent router. This problem is referred to as aliasing.

Aliasing leads to incorrect path prediction, missing routes,
and measuring topologies which appear bigger than the actual
topology, as a device may be listed more than once due to
various physical and virtual interfaces with separate IP
addresses. We discuss these issues in detail later.

MODELING THE INTERNET

Simulation and modeling of the Internet is known to be a dif-
ficult task. Floyd and Paxson [6] discuss some of the chal-
lenges of simulation design. The constant growth of the
Internet has made it difficult to develop a representative
model for analysis of its topology.

Researchers have made significant efforts to model the
characteristics of the Internet. The major problem currently in
this field is the absence of detailed information about generat-
ed topologies. Many of these models are based on data sets
that are known to be incomplete and prone to errors due to
the nature of the collection process involved, discussed in
detail later.

While it is extremely useful to have a model that character-
izes the AS-level topology of the Internet as a whole, if the
link bandwidths and routing policies between networks are
unknown, it is still a difficult job to estimate the growth
potential and characteristics of the traffic on addition of a
new network. This is a vital stage for network traffic engineer-
ing purposes. Later we describe many of the widely used mod-
els.

TOPOLOGY GENERATION

There are several topology generation tools available. Each
generator is based on a specific model, which has been devel-
oped as the result of focusing on certain characteristics of
interest to the designers of the generator. Some of the require-
ments for a network topology generator, also listed by Medina
et al. [7], include:

Representativeness: The generated topologies must be accu-
rate, based on the input arguments such as hierarchical struc-
ture and degree distribution characteristics.

Flexibility: In the absence of a universally accepted model,
the generator should include different methods and models.

Extensibility: The tool should allow the user to extend the
generator’s capabilities by adding their own new generation
models.

Efficiency: The tool should be efficient for generating large
topologies while keeping the required statistical characteristics
intact. This can make it possible to test real world scenarios 

Designing a topology generator which satisfies the above
requirements is a challenging task. For example, a generator
must be able to fit thousands of nodes to represent a large
AS, while keeping in mind all the graph characteristics of the
topology such as power laws2 or node degree distributions.
The software designer has to make sure the generation pro-
cess is completed in a reasonable amount of time, and within
reasonable CPU and memory constraints.

The numerous challenges in achieving these objectives
have led researchers to design topology generators that cover
only some of them. We discuss topology generators in detail
later.

VALIDATION OF MODELS

Validation of generated topologies can be done by compari-
son to real topologies. Another common method is to com-
pare the statistical characteristics of a generated topology with
input parameters and requirements such as certain node
degree distributions or connectivity matrices. As there is no
real snapshot of Internet traffic or its topology, it is difficult to
devise a method to benchmark the success of a topology gen-
erator or the inference of a topology.

When inferring the router-level topology of a medium
sized ISP, it may be possible to request the operator to verify
the results, as done by Spring et al. [8]. However, as men-
tioned before, operators are unlikely to reveal such informa-

2 A power law of quantities x and y is one where the relationship can be
written as y = axk where a (the constant of proportionality) and k (the
exponent of the power law) are constants.
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tion, although they may indicate the success level of an infer-
ence method as a percentage of routers or links discovered.
BGP and AS ownership data can also be validated by relevant
Internet domain registries, although the information held by
such authorities is not continuously updated and is thus often
inaccurate.

TOPOLOGY INFERENCE

In this section we discuss recent efforts on inference of the
AS-level topology of the Internet and router-level topology of
ISPs. It is essential to note the intersection of inference with
measurement. Inference-based statistics are subject to the
underlying measurement process, and the assumptions that
have been made on the level of accuracy and detail of the
measurement process. Thus, inaccurate inference methods
lead to unrealistic models.

Topology inference work usually falls in two categories:
router-level and AS-level. In related literature, Donnet and
Friedman [9] also mention the IP interface and PoP-level
maps. IP interface addresses are usually aliases for the same
router, and we mention the problems associated with resolv-
ing such aliases in this section. Inferring PoP-level maps is a
difficult task due to lack of publicly available data sets or
tools. Hence, they are sometimes made available by network
operators or inferred indirectly from IGP routing data.

ISP ROUTER-LEVEL MAPS

Here we discuss the recent efforts and tools for discovering
the Internet’s router-level topology, also known as its IP layer
or layer 3 topology. These methods are usually based on the
traceroute tool. Traceroute is the basic tool for discovering
the paths packets take in the Internet. Nearly all attempts to
extract routing and topology information of the Internet at
the router layer use traceroute.

Traceroute works by sending multiple Internet Control
Message Protocol (ICMP) [10] packets with increasing time to
live (TTL) fields in the IP header. When a packet with a TTL
of one reaches a host, the host discards the packet and sends
an ICMP time exceeded packet to the sender. The traceroute
tool uses the IP source address of these returning packets to
produce a list of hosts the packets have traversed on their
route to the destination. By incrementing the TTL value after
each response, the overall path taken by the packets can be
inferred.

Mercator — One of the first tools to rely on traceroute for
mapping sections of an ISP is Mercator, introduced by Govin-
dan et al. [11]. The aim of Mercator is to build a nearly com-
plete map of the transit portion of the Internet from any
location where Mercator is run, using hop-limited probing.
Hop-limited probing differs from traceroute as it stops prob-
ing once a probe fails to elicit a response. This is appropriate
for Mercator as it focuses on discovering router adjacencies.
The technique used in Mercator is referred to as informed
random address probing, in which a response from an IP
address adds the /16 address prefix3 to the Mercator list, and
Mercator assumes that the neighboring prefixes are also
addressable. Another assumption is sequential assignment of
address space by the registries, such that, for example,
128.8/16 and 128.10/16 are the neighboring prefixes of
128.9/16.

Using probing from source-route probe-capable routers, it
is possible to find cross-links and avoid discovering only a
tree-like structure. Mercator sends a UDP message to a high
port number on the router and receives an ICMP reply back.
If two source addresses of the reply message are the same,
they are from the same router. This operation relies on the
requirements for Internet hosts described in RFC 1122 [12].
This is a technique for alias resolution that identifies the inter-
faces belonging to the same router. Figure 2 displays a simple
approach to resolving aliases on routers with multiple inter-
faces with different IP addresses.

A Mercator host sends packets to the router interfaces. If
both interfaces reply with the same source address, they
belong to the same router.

The challenges faced by Mercator are due to the fact that
it does not attempt to cover the whole spectrum of a network
due to its randomized process and the fact that many routers
do not forward traceroutes for source-routing in the way Mer-
cator requires. Only 8 percent of routers have actually
responded to source-routing probes, which makes this
approach to alias resolution inaccurate. However, it is stated
that such a percentage is enough to discover more than 90
percent of the links. Mercator will take about three weeks to
discover nearly 150,000 interfaces and 200,000 links on the
Internet, although such an experiment has not actually been
carried out [11]. Another drawback is the ubiquitous use of =
16 prefixes, which is no longer a valid assumption due to the

3 A prefix is a block of destination IP addresses to which an AS applies
local policies to select the best route and decide whether to export this
route to neighboring ASs.

n Figure 2. Alias probing to all routers will help resolve router
aliases.
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use of Classless Inter Domain Routing (CIDR) [13].

Skitter — One of the most widely used data sets is that col-
lected by the Skitter project.4 Huffaker et al. [14] state the pro-
ject focus as “active measurement of the topology and round
trip time (RTT) information across a wide cross-section of the
Internet.” Even though the active probing process suffers the
limitations of reachability in the huge address space of the
Internet, a compromise is reached by probing frequently to a
large number of destinations over many years.

Probing uses the traceroute tool. IP addresses are then
mapped into their corresponding origin AS. The disadvantage
of such a tool is the large amount of data it produces from a
number of sources currently placed in 25 locations worldwide.
This leads to the inherent problems of traceroute such as
aliasing on a wider scale as multiple sources are involved.
Skitter does not attempt to resolve aliases.

Visualizing tools have been developed by the Skitter pro-
ject, which display nodes based on their connectivity degree,
with highly connected ASs in the center of the produced dia-
grams.

As of March 2006, Skitter reports a total of 192,244 nodes,
636,643 directed links, and 609,066 undirected links. The aver-
age and maximum node degrees (undirected) are 6.34 and
1071, respectively.5

The Skitter project led to interesting discoveries about
Internet topology when compared with those topologies based

on BGP data or information from Internet Routing
Registry (IRR) and WHOIS6 servers. WHOIS servers
provide a mechanism for finding contact and registra-
tion information for Internet domains, and they can
contain information on peering relationships and rout-
ing policies. Mahadevan et al. [1] mention that the
Skitter graph closely reflects the topology of Internet
traffic flows (i.e., the data plane), while the BGP
graph from RouteViews7 reveals the topology seen by
the routing system (i.e., the control plane). Distinct
differences between the three topologies are shown by
calculation of metrics such as average degree of nodes,
node degree distribution, joint degree distribution,
clustering coefficients, Rich-Club connectivity, node
distance, and betweenness [1].

Rocketfuel — In an attempt similar to Mercator,
Spring et al. in the Rocketfuel project [8] try to infer
the maps of 10 ISPs, consisting of backbones, access
routers, and directly connected neighboring domain
routers. Validation is attempted by using some of the
ISP’s own topology data. Direct probing techniques
are used to filter the traceroutes on the ISP of inter-
est, using BGP table information from RouteViews. A
BGP table maps destination IP address prefixes to a
set of AS paths that can be used to reach the destina-
tion. Each AS-path represents the list of ASs that will
be traversed to reach destinations within the prefix.
Path reduction is also the method suggested in Rock-
etfuel for elimination of multiple paths by ignoring
redundant traceroutes (those that take different paths
within the same ISP). The traceroute path through an
ISP usually depends only on the next-hop AS and
hence the appropriate edge router, not on the specific
destination AS. This means that only one trace from

the ingress router to the next-hop AS is likely to be valuable;
the rest can be eliminated by path reduction. Public trace-
route servers are used as vantage points for the traceroutes.

Rocketfuel uses the direct probing method, as suggested by
Govindan and Tangmunarunkit [11]. In order to ensure cor-
rect resolution of aliases, Rocketfuel also uses the IP_ID field
of the router’s responses to probe packets, which is incre-
mented by the router. This method is illustrated in Fig. 3.

In Fig. 3 the source sends two probe packets to the two
interfaces that are thought to be aliases of the same router. If
consecutive responses from the interfaces increment the
IP_ID by a small value, it indicates that the same IP stack is
running on the same router with multiple interfaces; hence,
the interfaces are believed to belong to the same router. Oth-
erwise, the interfaces belong to two distinct routers.

Probing in Rocketfuel is performed by using 294 trace-
route servers to query each /24 prefix, or 256 IP address
blocks of the ISP of interest, to discover the egress routers.
Rocketfuel finds very different backbone networks on the five
different ISPs that have been willing to verify the inferred
topologies. The aim of this practice has been to find the PoP
sizes of ISPs, PoP out-degree, and router out-degree.

In the validation stage they discover that some parts of IP
addresses were missed due to the randomized ping8 process.

n Figure 3. Alias resolution using IP_ID field. Solid arrows and dotted
arrows represent messages to and from two different IP addresses.
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4 http://www.caida.org/tools/measurement/skitter

5 http://www.caida.org/tools/measurement/skitter/router topology

6 http://www.whois.net/

7 http://www.RouteViews.org

8 Ping is an IP network utility that allows a particular host to be tested for
reachability.



Some routers do not respond to ping packets. Some do not
follow the target ISP’s naming conventions due to use of dif-
ferent IP address ranges. These lead to missing some nodes.
Also, traceroute is blind to alternative unused links so some
neighboring routers and links are missed.

Alias resolution is an important part of Rocket fuel’s
attempt to infer the correct topology of an ISP. Spring et al.
[15] introduce two alias resolution approaches based on infer-
ence to handle addresses that cannot be resolved by ordinary
DNS lookup methods. The first method decodes the DNS
names assigned by the ISP to recognize the name fragments
that identify a router. The DNS technique can only be as
accurate as the ISP’s database, which must be updated as
addresses are re-assigned and ISPs are merged. It also relies
on understanding the naming convention of the ISP, if such
convention exists. The second method infers aliases from the
graph of linked IP addresses and requires no additional mea-
surement traffic. The proposed graph-based techniques are
based on the following observations:
• Two addresses that directly precede a common successor

are aliases, assuming point-to-point links are used.
• Addresses found in the same traceroute are not aliases,

assuming there are no routing loops.

nec — Another tool for inference and mapping
of a network topology is the network cartographer
(nec) mapping software introduced by Magoni
and Hoerdt [16]. The nec tool is a traceroute-
based mapper from multiple traceroute servers,
finding routers and links and producing a router-
level connectivity graph. The major difference
between nec and Rocketfuel [8] is that nec has
wider scope while Rocketfuel focuses on a single
ISP. Unlike Rocketfuel, where a few hosts target
thousands of IP addresses, nec uses many trace-
route Web servers to a limited set of chosen IP
addresses. Figure 4 displays the steps involved in
an nec mapping query, sent to two traceroute
servers, A and B.

In the first stage the queries are sent from
the workstations to the traceroute servers. In the
second stage traceroute servers query the select-
ed IP addresses. In the final stage the results of
the traceroutes are sent back to the nec mapping
workstations.

The described selective mapping technique
allows nec to build an overlay map of the IP
addresses corresponding to the relevant ASs.
The destination addresses are chosen in such a
way that they all belong to distinct ASs, in order
to obtain an optimal topological distribution of

the targets and build a valid AS-level map. For
the target addresses nec takes random addresses
created from all /16 and shorter prefixes of a
RouteViews BGP dump, with lower prefixes
truncated to /16. This yielded nearly 14,000 desti-
nation addresses. The nec maps and software are
freely available.9

DIMES — The DIMES project [17] attempts to
build a router-level map of the Internet. In this
project, the DIMES agent, which can be installed
on any computer connected to the Internet, per-
forms Internet measurements such as traceroute
and ping at a low rate, sending the results to a
central collection station at regular intervals. The
advantage of the DIMES approach over previous

traceroute based mapping tools is that the probing process is
done across many locations in the world, giving a more com-
plete map of the Internet router-level topology. However, due
to the large number of vantage points and collection of over-
lapping measurements, removing the redundancies in the data
is a complicated process and DIMES also does not attempt to
resolve router aliases.

COMPARISON OF TRACEROUTE-BASED METHODS

In this section we listed a number of methods for inferring
router-level connectivity information. These methods have
evolved over time from single source traceroute probes to uni-
versally distributed probing agents. Table 1 displays a summa-
ry of the characteristics of these methods.

It can be observed that the trend of inference tools has
moved from single-source static maps to those spread across
many sites and constantly updating their database. It is inter-
esting to note that there are no maintained maps with alias
resolution. Indeed, researchers realized the importance of
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n Figure 4. nec mapping steps, figure courtesy of [16].
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n Table 1. Comparison of traceroute-based methods.

Tool Released Alias resolution Updated Probes

Mercator 1999 Yes No Single

Skitter 1999 No Yes Multiple

Rocketfuel 2002 Yes No Single

nec 2003 No No Multiple

DIMES 2004 No Yes Multiple

9 http://www-r2.u-strasbg.fr/magoni/nec/



looking at the growth of networks, and discovery of new links
and routers that are added daily to the large networks.

ACCURACY OF TRACEROUTE MAPS

Most of the work in discovering the router-level topology of
ISPs relies on the traceroute tool. Achlioptas et al. [18] discuss
some of the problems associated with traceroute. They
explore the mathematics of the sampling bias of traceroute,
confirming that even when a given node degree distribution is
Poisson, after traceroute sampling, the inferred node degree
distribution exhibits power law properties. The presented the-
orem predicts the observed degree distribution after sampling,
given a true degree distribution of a graph. It is difficult to
remove this bias, as shown by Clauset and Moore [19], as the
number of sources required to compensate for the bias in
traceroute sampling grows linearly with the mean degree of
the network.

Teixeira et al. [20] look at path diversity (number of avail-
able paths) in the Sprint network10 and ISPs explored by
Rocketfuel. Rocketfuel path diversity discovery is found to be
at extremes, either overestimating or finding very little diversi-
ty, again due to the use of traceroute. The differences between
the Sprint data and Rocketfuel inferred maps are due to
nondiscovery of backup links, lack of vantage points, incom-
plete traceroute information, path changes in a traceroute,
and incorrect DNS names.

Lakhina et al. [21] analyze the effects of such traceroute
sampling techniques on random graphs and conclude that
when graphs are sampled using traceroute-like methods, the
resulting degree distribution can differ significantly from the
underlying graph. For example, given a sparse Erdős-Rényi
random graph, the subgraph formed by a collection of short-
est paths from a small set of random sources to a larger set of
random destinations can exhibit a degree distribution remark-
ably like a power law. The implementation of sampling in the
article is performed on measurements from Skitter, Mercator,
the data set used by Faloutsos et al. [22], and the Pansiot-
Grad [23]. In studies of the four traces, the sampled subgraph
shows differences in degree distribution and other characteris-
tics from the original graph.

Deploying a large number of monitors usually results in
having to process large data sets from each monitor. Donnet
et al. [24] try to find out the amount of redundancy across
data sets, focusing on the CAIDA Skitter data sets. They dis-
cover that around 86 percent of a given monitor’s probes are
redundant in a sense that they visit router interfaces which
have already been visited by the monitor, especially those
closer to the monitoring station. It is also observed that many
of the probes are redundant in a monitor’s data set as they
have already been visited by the other monitors, particularly
those at an intermediate distance (between 5 and 13 hops).

This leads to intermonitor redundancy.
In an attempt to remove such redundancies,

Donnet et al. [24] proposed the Double-tree
algorithm, which relies on the tree-like structure
of the routes as mostly observed at the edges of
the networks. The Double-tree algorithm sug-
gests that the probing process is started at a dis-
tance in the middle of the path between the
monitor and the destinations. In order to avoid
dealing with alias resolution, they consider met-
rics at the interface level, specifically host and
router interfaces, suggesting that each interface

can be thought of as a node with its own connection. The
Double-tree algorithm assumes a tree-like structure of routes
consisting of two types of trees. The first is the monitor-root-
ed tree, when all the traceroutes emanate from a single point
toward a set of destinations. The second type is the destina-
tion- rooted tree, when all of the traceroutes converge from a
set of monitors toward a given destination.

These trees are handled by Double-tree using a particular
data structure named the stop set. As there are two trees,
Double-tree considers two stop sets: a local stop set, which is
a set of interfaces encountered by a given monitor, and a
global stop set, which is a set of interface pairs encountered
by any monitor in the system. This global stop set is shared by
monitors. Furthermore, Double-tree uses forward probing
(increasing TTL from the starting point in the network) until
reaching the destination or finding a pair belonging to the
global stop set and backward probing (decreasing TTL from
the starting point in the network) until reaching the hop locat-
ed at TTL = 1 or an interface belonging to the local stop set.

The conclusion drawn by Donnet et al. is that reduction in
probing redundancy by placing the probing point at the center
between the monitor and the destination can reduce the mea-
surement load by 76 percent while still discovering 90 percent
of the links and interfaces, compared to the simulation results
of a Skitter-type network mapper.

In the next stage of this work Donnet et al. [25] build on
the Double-tree topology inference algorithm by using CIDR
address prefixes. Each monitor probes each destination and
records it in the global stop set (interface, destination prefix)
pairs instead of (interface, destination) pairs. This is based on
the evidence that more than 80 percent of Skitter probes are
redundant as they discover no new interfaces, based on statis-
tics taken from a subset of the Skitter data. This figure is
much higher at lower hop counts (closer to the monitor). It is
also common between monitors to have large redundancy
near destinations being probed as most monitors discover the
same IP addresses. This method increases the accuracy com-
parable to classic Double-tree only when the prefix is as large
as /24, due to destinations within subnetworks being missed
entirely or probe packets being stopped at egress routers.
Donnet et al. suggest the use of Bloom filters11 for the global
stop set membership and implement a prefix-based method to
reduce the stop set that is used.

As a result of the traceroute sampling bias, there has been
ongoing effort to modify traceroute behavior. Augustin et al.
[27] propose Paris traceroute, which is a modified version of
traceroute with the ability to discover redundant paths. One
of the issues when using traceroute arises due to the equal
cost multipath (ECMP) load balancing deployed by multi-
homed stubs and network operators. This leads to traceroute
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n Figure 5. Traceroute false reporting, figure provided by [27].
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taking different paths on each occasion, as shown in Fig. 5.
Paris traceroute looks into the effects of load balancing and
its frequency on traceroute anomalies. Load balancing can be
done per packet, per flow, or per destination IP address.

Augustin et al. show that by manipulating the ICMP
sequence number and checksum in the ICMP packet header,
it is possible to ensure that all the packets on traceroute take
the same path. This leads to discovery of more possible
routes. With this method it is also possible to report on the
loops and cycles in ordinary traceroute reports. Paris trace-
route is suggested as an alternative to the ordinary traceroute,
rather than as a topology mapping tool; hence, it does not
attempt to resolve any router aliases.

Dall’Asta et al. [28] find that the node and link detection
probability depends on statistical properties of elements such
as betweenness centrality. Hence, the shortest path routed
sampling, or sampling the network from a limited set of
sources as performed by traceroute, provides a better charac-
terization of underlying graphs with broad distributions of
connectivity, such as the Internet. The studied model analyzes
the efficiency of sampling in graphs with heavytailed connec-
tivity distributions and looks at metrics such as the node
degree distribution. The conclusion drawn is that unlike
homogeneous graphs, in those with heavytailed degree distri-
bution such as the Internet, major topological features are
easily captured though details such as the exponent of the
power laws. However, this behavior appears to suffer from
biases that result from the sampling process.

The studies in this section may imply that traceroute is not
a suitable tool for detailed analysis of the Internet router-level
maps. However, it is still widely used for topology measure-
ment and is believed to be a reliable source, and in reality the
only available tool, by many researchers.

AS-LEVEL INTERNET MAPS

The other important level of Internet topology is AS-level
topology. The freedom of AS administrators to change their
traffic exchange relationships with other providers has led to a
constantly evolving AS-level map of the Internet. Obtaining
such a map can enable better design of routing algorithms and
traffic engineering between various ASs.

When BGP is used between ASs, the protocol is referred
to as External BGP (eBGP). BGP information at routers is
kept consistent by receiving BGP update messages from other

ASs. BGP updates contain multi-
ple route announcements and with-
drawals. The announcements
indicate that new network sections
are available to the routers, or a
policy change is enforced to prefer
an alternative path over an existing
one. Withdrawals occur when an
existing route is replaced by a new
route to a destination prefix by
means of a withdrawal message.
These messages report the with-
drawal of links and addition of new
links, and contain the AS-path
traveled by the advertisement.
Each router along the path
prepends its own AS number to
the AS-path in the BGP message.
The AS-path is needed to avoid
loops in the BGP route selection
process.

The AS-paths, in conjunction
with the AS prefix, are also used to decide on the best next
hop to use for sending a packet to a destination. An edge
router may not have a complete view of the BGP status of the
Internet and may have a default path to a tier 1 provider. Tier
1 providers have default-free BGP information so that they
can forward all the packets to the correct destination.

IP forwarding requires that all routers within an AS are
aware of all the prefixes, which are learned by the edge
routers from eBGP peering sessions. Interior BGP (iBGP) is
the protocol used to advertise prefixes between the routers
within an AS. The naive way to redistribute these prefixes is
via a full mesh of iBGP sessions. However, Labovitz et al. [29]
highlight the scaling problems with the advertisement of the
routes on a regular basis in a large AS.

To avoid this scaling problem, there are two mechanisms
used by large ASs. First is forming AS confederations, where a
set of routers represent a single AS to the BGP peers external
to the confederation, thereby relaxing the full-mesh require-
ments [30]. Second, route reflectors allow a BGP speaker to
reflect learned routes to internal neighbors [31]. These meth-
ods reduce the distribution cost of the routing information
within a network. Every router in such a network can then
have either a full routing table or a default route.

While iBGP information in the routers allows them to
identify the edge router for the packets to exit an AS, it does
not allow them to calculate the route within the AS for reach-
ing the edge routers. Within an AS, internal routing informa-
tion is propagated using the Interior Gateway Protocol (IGP).
Commonly used IGPs are the Intermediate-System-to-Inter-
mediate-System (IS-IS) protocol [32], Routing Information
Protocol (RIP), [33] and Open Shortest Path First (OSPF)
protocol [34].

Figure 6 displays the interaction of the BGP, iBGP, and
IGP within three distinct domains, AS100, AS200, and AS300.
AS100 and AS200 each contain a single router, connected to a
different edge router in AS300. AS300 contains three routers,
only two of which are edge routers. Each of its edge routers
will learn prefixes from a different AS using an eBGP session.
To redistribute the prefixes so learned, each edge router will
maintain an iBGP session with every other router within
AS300. In order to forward packets within the AS, AS300 also
runs an IGP, which ensures that all its routers can talk to each
other.

Some attempts at AS-level topology discovery were based
on using traceroute data. Inference of AS-level maps from
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traceroute data includes problems not immediately noticed.
Mapping of an IP address to the correct AS number incorpo-
rates challenges that are discussed by Mao et al. [35]. They
propose techniques for improving mapping of IP addresses to
corresponding ASs. These techniques rely on a measurement
methodology for collecting both BGP and traceroute paths at
multiple vantage points and using an initial IP-to-AS mapping
derived from a large collection of BGP routing tables.

The difficulties arise due to the fact that the BGP table
data and the actual path taken by packets can be inconsistent
due to new route aggregation/filtering and routing anomalies
[36]. The WHOIS data is also not always up to date due to
company mergers, breakups, and IP address reallocations. An
improvement can be made by collecting a large amount of
information from BGP routing tables, BGP update messages
and reverse DNS lookups in order to help traceroute build a
more accurate AS-level map of the Internet.

The collection of traceroutes for measurement is done by
sampling and picking two IP addresses for each prefix from a
set of prefixes that covers the routable address space for a
wide range of forwarding and signaling paths. The modifica-
tion to traceroute is done by adding a second attempt UDP
packet, with a waiting time of 5 s for an ICMP reply, as
opposed to 2 s in the original first packet, in case of delays in
the network. This allows for improvement in receiving ICMP
replies. The corresponding AS path for the same prefix is also
extracted from the BGP tables for each longest matching pre-
fix. Having performed these steps, three sources of incom-
pleteness in the paths are identified: unresolved hops within
an AS, unmapped hops between ASs, and multiple origin AS
mappings at the end of the paths. Most mismatches are due to
the presence of Internet exchange points (IXPs), sibling ASs,
and networks that do not announce routes for their infra-
structure. Using the proposed alterations, it is possible to
infer these mismatches and validate them using public WHOIS
servers. However, the increased number of multihoming ISPs
make the inference or definition of an origin AS in the path
an increasingly difficult task [35].

Gao’s seminal paper [37] is one of the first attempts to
present an AS graph inferred from the Oregon RouteViews
BGP data. The provision of such a map has enabled classifica-
tion of AS relationships into customer-provider, peering, and
sibling relationships. Figure 7 displays examples of the types
of relationship between different ISPs.

A customer pays its provider for Internet connectivity and
does not transit any traffic between its providers. A pair of
peers agree to exchange traffic between their customers by

sharing the cost of the peering links and elimi-
nating traffic charges between each other. A pair
of small ISPs may provide additional connectivi-
ty or backup connectivity to the Internet to each
other in the form of a sibling relationship.

Despite the presence of such contractual
agreements, there is little publicly available
information about inter-AS relationships. The
Routing Policy Specification Language [38] can
be used to register information about peering
relationships, but this information is not always
accurately published due to its sensitive business
nature. However, it is possible to infer such
information from the BGP routing tables. Gao
proposed heuristic algorithms for such discovery,
and then validated some of the results by using a
Tier 1 ISP’s internal information. The discovery
of the relationships is based on the BGP routing
update export rules that are different for the
individual relationships. The proposed solution

by Gao is based on forming annotated graphs of the network
and making sure the AS paths are Valley-Free; that is, after
traversing a provider-to-customer or peer-to-peer edge (link),
the AS path cannot traverse a customer-to-provider or peer-
to-peer edge. The Valley-Free criteria holds only when the
following conditions are met:
• A provider-to-customer edge can be followed only by

provider-to-customer or sibling-to-sibling edges.
• A peer-to-peer edge can be followed by only provider-to-

customer or sibling-to-sibling edges.
The proposed basic algorithm goes through the AS path of

each routing table entry, finds the highest degree AS, and
marks it as the top provider AS. It is then possible to go
through the other ASs and set them as having customer-to-
provider or sibling-to-sibling edges. This is assuming that all
the BGP configurations are correct. However, in the refined
version of the algorithm this assumption is relaxed by count-
ing the number of routing table entries that infer an AS pair
having a transit relationship by assigning consecutive AS pairs
before the top provider with a transit relationship and consec-
utive AS pairs after the top provider with a transit relation-
ship as well. This in turn finds any mismatches between the
entries of the routing table.

The proposed algorithms are applied to the BGP data
available from RouteViews and then verified against AT&T
internal information. It is inferred that AT&T has one
provider while in reality AT&T has no provider. 77.4 percent
of inferred peers and 20 percent of inferred siblings are con-
firmed by AT&T. These siblings relationships are verified
against the public WHOIS lookup service, which provides the
name and address of the company that owns an AS. It is then
possible to confirm the relationship between two ASs or two
merged companies. The WHOIS data has confirmed more
than 54 percent of inferred siblings.

Subramanian et al. [39] focused on peering relationships
between ASs from a commercial relationship point of view.
They combined BGP data from multiple vantage points to
construct a view of the Internet topology, using BGP routing
tables from 10 Telnet Looking Glass servers12 using the show
ip bgp command. The proposed algorithm ranks each AS from
each of the vantage points based on the number of up-hill and
down-hill portions. The results suggest the design of a topolo-
gy generator based on directed graphs, as opposed to degree-
based methods, as the directed graphs make distinction

n Figure 7. Commercial relationships between ISPs.
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between edge ASs, connecting to several transit core ASs.
This work led to many other interesting findings about AS-

level relationships. Batista et al. [40] took this approach fur-
ther by proving that identifying AS relationships from BGP
data, especially when measured from multiple sources, is an
NP-complete problem. The suggested solution is a linear time
algorithm for determining the AS relationships in the case in
which the problem admits a solution without anomalies for
large portions of the Internet (e.g., data obtained from single
points of view). The solution is performed by starting from a
set of AS paths so that the number of invalid paths is kept
small. This method can be applied on the address prefix of
the hosts within an AS.

When looking at the path taken between ASs, direct access
to endpoints is not always possible. The approach of using
multiple sources of data is an extremely useful method in such
scenarios. It enables a more detailed analysis of the possible
paths between two end nodes (ASs in this case). Mao et al.
[41] explored the feasibility of inferring AS paths by using
BGP tables from multiple vantage points, router-level paths
from traceroute servers, and AS-level paths from Looking
Glass sites.

One of the inherent issues of inference of AS-level topolo-
gy of the Internet by use of mapping node IP addresses to
registered AS numbers is that sibling relationships are missed.
Dimitropoulos et al. [42] proposed an alternative solution to
AS-level map inference that attempts to find sibling-to-sibling
(s2s) relationships, as well as customer-to-provider (c2p) or
provider-to-customer (p2c). The proposed inference model
avoids the mistake of considering siblings as customers or
peers, which in turn may result in wrong inference of a
provider as a customer, or the other way around, while still
rendering a path as valid. The inference of s2s links plays an
important role when looking at corporate networks, where
multiple ASs belong to the same organization.

In order to look at the s2s relationships, the IRR databases
are consulted and dictionary of synonymous organizations is
manually created. Although a disadvantage of this approach is
the fact that the IRR are not always up-to-date.

In the proposed inference model, weights are added to
edges. These added weights are proportional to degrees of
nodes connected to those edges. In these heuristics the weight
on the edge is large when there is a significant degree differ-
ence between the neighbor ASs. When an edge is directed
from a small-degree AS to a large-degree AS, it earns a
bonus. Based on the bonuses, the edges of the graph are
directed. The objective is to maximize the inference of valid
paths and the number of paths. In summary, the inference
heuristics take as input a set of BGP paths P and a corre-
sponding graph G(V, E) and perform the following three
steps:
• Use IRRs to infer s2s relationships based on organiza-

tional ownership details and create set S of s2s links.
• Remove the subset S from consideration and apply the

heuristics, assigning c2p/p2c relationships to the links
remaining in E.

• Use P and G to infer p2p relationships and to create set
F of p2p links.
The final result is set S of s2s links, set F of p2p links, and

set E of c2p links.
These steps have been examined using the collected BGP

tables from Route Views at 8-h intervals, over a period of
four months in 2005. Invalid paths caused by BGP misconfigu-

rations occur quite often and affect 200 to 1,200 prefixes each
day and hence they are manually removed. To infer s2s rela-
tionships in graphs, IRR from RIPE,13 ARIN,14 and APNIC
Whois databases are used. The authors then conducted a sur-
vey by contacting the AS engineers, and nearly a third of the
providers responded with information that has helped them
verify some of the inferred relationships.

The main conclusion is that with BGP derived inference, it
is possible to identify less than 50 percent of peer-to-peer
links. Another conclusion is that nearly all relationships are
p2p and c2p, as confirmed by the conducted survey.

Techniques known as tomography have also been tried in
discovery of topology of networks. Duffield and Presti [43]
evaluate the use of multicast probing and end-to-end delay
measurement for topology and bottleneck discovery. Multicast
traffic is suitable for this since a given packet only appears
once on a link in the multicast tree. End-to-end characteristics
seen at different endpoints are then highly correlated. The
collection of multicast tree delays and their corresponding
estimators are then used to infer the tree topology.

Focusing on loss rate as the performance metric, they eval-
uate two algorithms. The first, the minimum variance weight-
ed average (MVWA) algorithm, performs inference on each
tree separately, returning a weighted average of the estimates
taken from the different trees for each link. However, this
procedure may not always be able to infer the behavior of
links even when their loss rates are identifiable.

The second algorithm, the expectation-maximization (EM)
algorithm, applies the standard expectation-maximization
technique [44] to the measurement data taken from all of the
trees. It returns estimates of the loss rates of all identifiable
links. This work is done simulation using the Network Simula-
tor 2 (NS2).15

When focusing on AS-level graphs of the Internet, peering
relationships play an important role in providing alternative
routing and resilience. Muhlbauer et al. [45] focus on the con-
nections between the ASs within the Internet, due to the
importance of the inter-AS relationships. Peering relation-
ships are difficult to infer due to the business nature of this
information and the limited ability of methods to correctly
identify such peering relationships. However, their importance
is significant as they affect interdomain routing policies. They
build a simple model that captures such relationships by using
BGP data from observation points such as Routeviews and
RIPE. They then use simulations to provide an AS-level map
that they compare with the BGP data from other vantage
points.

In a view inspired by the business relationships of pro-
viders, Chang et al. [46] present a model of the economic
decisions an ISP or AS has to make in order to peer with
other ASs with transit tier 1 ASs. The economic decisions that
have to be considered by an ISP are of three types: peering,
provider, and customer. In each case the cost-centric multilat-
eral decision, as referred to by the providers, has to bring
mutual benefits for both parties. The gravity model [47] has
been used to describe decisions on traffic demand and
exchange. The distance of ASs from each other plays a critical
role in the decision made by an AS to peer with another.
They use BGP data to form node degree distributions to infer
peering relationships. An important result of their work is an
analysis of changes in the topology of a network, by introduc-
tion of new peering relationships and updates to the current
ones.

Muhlbauer et al. [48] investigated the role and limitations

13 http://www.ripe.net/db/irr.html
14 ftp://ftp.arin.net/pub/rr/arin.db 15 http://www.isi.edu/nsnam/ns



of business relationships as a model for routing policies. They
observe that popular locations for filtering correspond to val-
leys where no path should be propagated according to inferred
business relationships. This result reinforces the validity of the
valley-free property used for business relationship inference.
This work reveals two dimensions to policies:
• Which routes are allowed to propagate across interdo-

main links (route filtering)
• Which routes among the most preferred ones are actually

chosen (route choice) and thus observed by BGP moni-
tors

They use BGP data from more than 1300 BGP observation
points, including Routeviews. The observation points are con-
nected to more than 700 ASs with some feeds from multiple
locations. They provide a model of ASs and have identified
sets of per-prefix policies in order to obtain agreement
between the routes selected in their model and those observed
in the BGP data.

They report that the business relationships do not contain
enough information about the path choices made by ASs.
They introduced a new abstraction: next-hop atoms. Next-hop
atoms capture the different sets of neighboring ASs an AS
uses for its best routes. They show that a large fraction of
next-hop atoms correspond to per-neighbor path choices.
Some path choices, however, do not correspond to simple per-
neighbor preferences, but hot-potato routing and tie-breaking
within the BGP decision process, more detailed aspects of the
Internet routing process.

Although most AS-level inference efforts are based on
BGP data, they may be subject to errors in the BGP data
itself. Feamster and Balakrishnan [49] tried to detect faults in
BGP configurations. They crawl through BGP data to detect
two classes of faults: route validity faults, where routers may
learn routes that do not correspond to usable paths, and path
visibility faults, where routers may fail to learn routes for
paths that exist in the network. They have analyzed deployed
configurations from 17 different ASs and detected more than
1,000 BGP configuration faults. This adversely impacts the
quality of the inferred AS graphs.

Routescope [50] is a tool developed for inference of AS-
level forwarding paths between two endpoints without direct
access to them, using the shortest policy paths in an AS graph
obtained from the BGP tables. The types of relationships con-
sidered in this case are peers, customers and providers. It is
assumed that the shortest AS paths are always preferred, and
that routing is uniform within an AS and for any destination
AS, i.e., the hop count is always the sxame from all sources to
the same destination AS.

Based on these assumptions, RouteScope uses existing
algorithms [37, 39, 40] to infer AS relationships and catego-
rize the types of relationships. Comparing the inferred AS
paths with those of the BGP tables from three networks, they
find the existing algorithms to be of low accuracy. The chal-
lenges faced here are due to asymmetric routing between
pairs of nodes, policy routing between providers, multihoming
of ISPs and misconfigured BGP table entries.

The proposed inference method of Mao et al. [50] starts by
initializing all the links as down-links i.e., provider to cus-
tomer. They then use a random walk to infer the AS path
between the nodes. This approach is shown to have an accura-
cy of more than 60 percent when compared with BGP tables.
There have also been algorithms suggested for inferring the
first-hop AS from a source S to destination D, where there is
no direct access to D.

Most of the inference methods listed focus on the mathe-
matical view of a network. However, alongside statistical
graph properties such as node degree distribution, it is also

worth considering features such as link capacities and laten-
cies. Adding such metrics enables the provisioning of accurate
Internet maps at various levels, from an ISP network inter-
AS connectivity.

GEOGRAPHIC LOCATION OF NODES

Connectivity of one node to another is a measure of many
factors such as hop count, delay, and available bandwidth.
Another issue is that there is no location information associat-
ed with any node on the Internet. This has led to considera-
tion of the relative distance between nodes. In order to create
a map of the Internet from any point, researchers have used
coordinate systems such as landmarking. Some of these tech-
niques are discussed in this section.

An important area where location of nodes plays a signifi-
cant role is visualization, the representation of the discovered
nodes on a geographical map. One of these attempts was in
the Mapnet project.16 Mapnet is a tool for visualizing the
infrastructure of certain international backbone providers.
Each backbone infrastructure is divided into a group of nodes
(PoPs) and links between these nodes, plotted based on the
geographical location of the PoPs on a map of the world.

Landmarks are needed in the Internet in order to enable
the nodes to measure distance between themselves accurately.
In one of the first efforts to identify such distances, Francis et
al. [51] introduce IDMaps, which aims to provide an estimate
of the distance between any two valid IP addresses on the
Internet. The authors have listed various methods of finding
node locations on the Internet by use of a distributed set of
measurement points and triangulation schemes as a method
to estimate distances on the Internet. In this method the dis-
tance between the collection points, called Tracers, is a known
measure. The distance between any two nodes is their dis-
tance from the nearest Tracers, plus the distance between the
two Tracers.

One of the challenges in such a scheme is to find the mini-
mum number of monitoring points, also known as centers, in
order to minimize the maximum distance between the nodes
and the nearest center. They use topologies generated by the
Waxman random model [52], the Tiers generator [53], and the
Inet topology generator tool [54] to evaluate their algorithms.
They find that mirror selection for clients using IDMaps gives
noticeable improvement over random selection. Their study
provided positive results to demonstrate that a scalable Inter-
net distance map service can indeed be built.

The use of coordinates on the Internet was explored by Ng
and Zhang [55] in an attempt to create a Global Network
Positioning (GNP) system. GNP was based on absolute coor-
dinates computed from modeling the Internet as a geometric
space. As opposed to the IDMaps where a client-server model
was adopted, GNP is based on a peer-to-peer system. which
gives it a more scalable architecture. In this approach each
node has been assigned a set of coordinates that allows it to
compute its distance relative to the other nodes. In this
scheme a small number of distributed base nodes are deployed
over the Internet. Each host on the Internet measures the
round-trip time between itself and the base nodes using ping
messages, and takes the minimum of several measurements as
the distance. These distances are used as the end host’s coor-
dinates.

The strategic choice of landmarks for an Internet coordi-
nate system is discussed by Tang and Crovella [56], looking at
the challenges involved due to the size of the Internet and
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lack of end-to-end path visibility, and hence knowledge of
properties of perfect landmark sets. The authors look at clus-
tering methods in order to analyze different methods of
selecting landmark sets. They use Lipschitz coordinate sys-
tems, using three distinct data sets to test their four algo-
rithms for selection of landmarks: greedy, k-means, minimum
distance, and random. The greedy method is found to be the
most efficient method for a small topology. However, random
landmark selection, for more than 10 landmarks, is the best
method, in terms of comparative accuracy and simplicity.

Lua et al. [57] discuss the accuracy of use of RTT for geo-
metric spacing of nodes. These estimates are sometimes inac-
curate, and it is difficult to identify the quality of the distance
estimates. The embedding of nodes varies greatly with differ-
ent numbers of landmarks even if the topology of the network
is fixed. They propose two new metrics of quality, node dis-
tance from others (its rank or proximity) and closest neighbor
loss, which defines how many mistakes are made in identifying
closest neighbors. They perform their embedding using nodes
on Planetlab,17 the Waxman topology generator data, and
RouteViews data. They use Dijkstra [58] to find shortest path
distance matrices, and use their coordinate and embedding
method to test the metrics. In conclusion, the optimal choice
of metrics and coordinate placement remains an open prob-
lem.

Geographical location of landmarks plays a critical role in
their usefulness. Lakhina et al. [59] focus on relationships
between router location and population density, geographic
location and link density, and size and geographic extent of
ASs. They disprove the Waxman topology generator’s assump-
tion of uniform router distribution but find that connectivity
degree exponentially decreases with distance of routers from
each other, as modeled by Waxman. They use Skitter data
from CAIDA, without alias resolution so that each interface is
a node, and also the Mercator data set, focusing on routers
and the links between them. They then use tools that infer
geographic locations of IP addresses, using DNS LOC records,
and WHOIS records and host-name mapping. A comparison

is made between the population of people in continents and
number of interfaces, taking into consideration the economi-
cal strengths of countries. They show these to be similar in
economically homogeneous regions.

Despite the efforts of researchers in the field of coordinate
systems, there is still no accurate system in place. Zheng et al.
[60] show that triangle inequality violations (TIVs) might be
exploited by overlay routing if an end-to-end forwarding path
can be stitched together with paths routed at layer 3. However,
TIVs pose a problem for Internet coordinate systems that
attempt to associate Internet hosts with points in Euclidean
space so that RTTs between hosts are accurately captured by
distances between their associated points. Three points having
RTTs that violate the triangle inequality cannot be embedded
into Euclidean space without some level of inaccuracy. This is
a constraint that is put on the Internet as a result of various
routing policies and traffic engineering. They have used router-
level topology and IS-IS weights from the GEANT backbone,
a multigigabit pan-European research network. They also mea-
sured the minimum RTT values between all pairs of GEANT
backbone routers using their looking glass interface. They
show that typical interdomain and intradomain routing policies
almost guarantee that RTTs are not a metric space (as they
violate the triangle inequality), so embeddings of coordinate
systems face mathematical problems.

MODELS OF INTERNET TOPOLOGY

Mathematical modeling of the characteristics of the Internet
is a key stage for successful generation of realistic topologies.
These mathematical models can range from geographical dis-
tance and clusters to distribution of nodes with different
degrees of connectivity. In reality, the constant change in the
Internet topology makes it difficult to obtain a single topology
of the Internet and instead it is more appropriate to refer to
the obtained maps as Internet topologies.

In this section we present some of the models of Internet
topologies. The objective of this section is to familiarize the
reader with the common methods of characterizing the topol-
ogy of a network and provide a basic understanding of the
most common terms used in this context.

RANDOM GRAPHS

Complex networks such as the Internet have traditionally
been described using the random graph theory of Erdős and
Rényi [61]. In a simple model, for a given number of nodes n,
edges m, and the average degree k = 2m/n, one can construct
the class of random graphs having the same average degree k
by connecting every pair of nodes with probability p = k/n.

Figure 8 displays a random graph of 200 nodes, with 2
incoming connections per node. It can be observed that there
are no dense cores as all the connections are spread equally
between the nodes. This observation is in contrast with the
Internet, where some routers have many connections and
hosts, and some have as few as one host connecting to them.

Despite the ease of use of the random network model and
their ability to produce some of the required metrics for a
generator such as average node degree, they were abandoned
in favor of models that capture the statistical characteristics of
the Internet, as discussed in the next section.

POWER LAWS IN TOPOLOGIES

Power laws are one of the most widely used parameters in the
context of topology analysis of the Internet. Power laws are
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n Figure 8. A random network of 200 connected nodes, with two
incoming connections per node.
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seen in phenomena where there is no concept of scale vari-
ance; that is, a property, such as a distribution of nodes in a
network, follows the same rules at different scales or resolu-
tions. In a seminal paper Faloutsos et al. [22] stated that cer-
tain properties of the AS-level Internet topology are well
described by power laws. In this work the authors use three
Internet instances (topologies inferred from BGP tables).
Three specific power laws were observed, and these were
believed to hold for the Internet:
• Rank exponent: Out-degree of a node is proportional to

its rank to the power of a constant.
• Out-degree exponent: The frequency of an out-degree is

proportional to the out-degree to a constant power.
• Eigen-exponent: The eigenvalues of the adjacency graph

are proportional to the order i to a constant power.
Such a graph will have power law characteristics, and it has

a tree-like structure. If one relies on the traceroute tool, it is
difficult to infer the cross-links between the nodes. A scale-
free network is not a homogeneous network as the nodes have
a very heavytailed distribution of the number of connections.
Despite the small size of the Internet at the time of observa-
tions, these observations were believed to hold in future
growth stages of the Internet. This hypothesis intrigued
Siganos et al. to repeat the above analysis [62].

They prove the existence of power laws in the Internet at
the AS level, looking at two topology measurements and a few
snapshots over five years, one from Oregon RouteViews and
another the dataset used by Chen et al. [63]. The test for the
existence of power laws is carried on metrics such as rank
exponent, degree exponent, and eigenvalues. The conclusions
are that the power laws exist over a five-year period, and they
are an efficient way to describe metrics of topology graphs.

One of the classic models used in this context is the BA
model, introduced first by Barabási and Albert [64]. This
model is based on the incremental growth of networks, by
addition of new nodes and preferential attaching of nodes to
well connected ones. They also reported that the Internet has
power law characteristics, alongside the findings of Faloutsos
et al. Barabási and Albert focus on Web pages and links
between them as an alternative measurement of the Internet.
Figure 9 shows a network of 200 nodes connected based on
the BA model.

Figure 10 displays the node degree distribution of the
power law network in Fig. 9, plotted on a log-log graph. Exis-
tence of a straight line indicates the existence of a power law
distribution of node degrees.

The existence of power laws in the Internet is interesting
as the Internet is formed from smaller networks that are self-
managed. Medina et al. [65] look at four factors in formation
of Internet topologies that may cause various power laws
inferred on the Internet:
• Preferential connectivity of nodes to nodes with more

connections
• Incremental growth of the networks
• Distribution of nodes in space (random or heavytailed)
• Locality of edge connections (preference to connect to

nearby nodes)
The BRITE topology generator [7] was used by Medina et

al. to test these hypotheses. Topologies of between 500 and
15,000 nodes were considered, with and without incremental
growth and preferential connectivity.

The final conclusions are that the rank and out-degree
power laws are more effective in distinguishing topologies
than the number of hops between nodes and eigenvalue
power laws that are observed similarly in all topologies. Pref-
erential connectivity and incremental growth are found to be
the main causes for all power laws in the simulations. They
establish that for best correlation coefficients (approaching 1)
and slope of linear fits for rank exponents (approaching 0.5
observed by Faloutsos et al. [22]), both preferential connectivi-
ty and incremental growth must be present. This methodology
can be extended by grouping nodes into administrative
domains.

The findings in this section indicate the existence of power
laws in various statistics extracted from the Internet. However,
the inferred statistics are not always perfect as one cannot
obtain a single snapshot of the Internet topology and must
rely on various measurement techniques. We now present
results which indicate that the existence of power laws are
merely a side-effect of poor inference techniques.

ARGUMENTS AGAINST POWER LAWS

The inherent biases of traceroute sampling and collection of
BGP data from limited vantage points made researchers ques-
tion the true existence of power laws in the Internet AS-level
topology. Chen et al. [63] state that BGP data represents a
partial view of the Internet; hence, power laws may not exist
in the strict form suggested by Faloutsos et al. [22] for AS
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connectivity degree distribution. This argument is based on
their findings that BGP AS paths do not completely capture
the topology, and the data from Routeviews suggest that the
node degree distribution is perhaps heavytailed (close to
Weibull distribution), and perhaps only the tail exhibits power
laws. The authors use BGP routing tables of 41 ASs and infor-
mation from Looking Glass Websites to infer the local AS
connectivity map and compare it to the one achieved by
Routeviews. Data from the European Internet routing registry
(RIPE), which has the peering relationships of most Euro-
pean ASs, is used in order to find relationships that are not
seen from BGP inference, such as siblings [66]. Another
observation in conflict with the existence of power laws is the
important observation made by Mahadevan et al. [1]. For a
comparative study, three distinct data sources are used:
• Traceroute data from the CAIDA Skitter project, using

the 31 daily graphs for the month of March 2004
• Routeviews BGP data for March 2004, including static

table and updates
• RIPE WHOIS database dump for April 7, 2004

For the traceroute data, both multi-origin ASs and AS-sets
create ambiguous mappings between IP addresses and ASs,
while private ASs create false links. Hence, AS-sets are fil-
tered to multi-origin ASs and private ASs. Indirect links are
discarded. All daily graphs are then merged in order to form
one graph. Similar tasks are performed on the BGP data, one
from the static tables and one from the updates. In both
cases, AS-sets and private ASs are filtered, and the 31 daily
graphs are merged into one. When using the WHOIS data,
the records of interest are:

aut-num: ASx
import: from ASy
export: to ASz

which indicate links ASx – ASy and ASx – ASz. They then con-
struct an AS-level graph (referred to as a WHOIS graph)
from these data and exclude ASs that did not appear in the
aut-num lines.

The findings confirm that the Skitter data displays power
law characteristics [22]; however, the WHOIS graph has an
excess of medium degree nodes, and hence its node degree
distribution does not follow power laws. They also compared
many metrics of the Skitter and RouteViews graphs to those
graphs generated based on power law random graphs (PLRG)
[67], and it is observed that the PLRG model fails to accu-
rately capture the important properties of the Skitter or
RouteViews BGP graphs. Similarly, the PLRG model fails to
recreate the WHOIS graph since its node degree distribution
does not follow a power law at all.

ALTERNATIVE TOPOLOGY MODELS

Power laws were not the only point of interest for network
researchers who used data sets from various inference pro-
jects. For example, the graphs produced by Rocketfuel and
Skitter consist of physical connectivity of Internet routers for
an ISP or a section of the Internet. However, for an improved
understanding of the physical infrastructure of the Internet, it
is essential to have more information about the common char-
acteristics of links such as the link bandwidth and router
capacities. These concerns were first raised by Alderson et al.
[68], where they focus on annotated graphs of the Internet at
the IP layer with addition of bandwidth and buffer sizes. The

Abilene18 and Rocketfuel maps are used to look at various
differences between network models, by use of a metric pro-
posed as network performance, defined as the maximum
throughput of a network under a gravity model of end-user
traffic demands. Hence, their proposed design for an ISP net-
work graph is referred to as Heuristically Optimal Topology
which is based on having sparsely connected high speed
routers at the core of the network, supported by hierarchical
tree-like structure at the edges. This is similar to the proposed
Highly Optimized Tolerance approach suggested by Carlson
and Doyle et al. [69] and Heuristically Optimized Trade-offs
considered by Fabrikant et al. [70]. The main contribution of
this work is in comparing the first principles [71] approach on
five toy networks:
• A graph constructed from a preferential attachment

model (BA model) of Barabasi and Albert [64], where
nodes are added and connected with a probability pro-
portional to an existing node’s current degree

• A construction based on random graphs explained By
Waxman [52]

• A construction based on the proposal by Alderson et al.
[72]

• Abilene-inspired topology by extracting a graph of the
Abilene core network

• Suboptimal topology, intentionally designed for poor per-
formance
The authors propose that detailed study of the technologi-

cal and economic forces shaping the router-level topology of a
single ISP provides convincing evidence that the Internet is not
necessarily formed of highly connected routers in the core of
the network. They expect border routers again to have a few
relatively high-bandwidth physical connections supporting large
amounts of aggregated traffic. In turn, high physical connectiv-
ity at the router level is again expected to be confined to the
network edge. They also note that modeling router-level
robustness requires at a minimum adding some link redundan-
cy (e.g., multihoming) and incorporating a simple abstraction
of IP routing which accounts for the feedback mechanisms that
react to the loss or failure of a network component.

Magoni and Pansiot [73] use BGP data from the Route-
views project to look at AS relationships. Alongside tradition-
al AS types, there are other types of ASs that are used for
classification purposes by the authors [73]: 
• Cycle AS: an AS belonging to a cycle, being on a closed

path of disjoint Aes
• Bridge AS: an AS connecting two cycle ASs only
• In-mesh AS: a cycle AS or bridge AS
• In-tree AS: an AS belonging to a tree; the opposite of an

in-mesh AS
• Branch AS: an in-tree AS with a connectivity degree of 2

or more
• Leaf AS: also referred to as a stub AS
• Root AS: an in-mesh AS that is the root of a tree (i.e., it

is adjacent to two or more in-mesh ASs and to one or
more in-tree ASs)

• Relay AS: an AS with two connections
• Border AS: an AS located on the diameter of the net-

work
• Center AS: an AS located on the core of the network

They report on various statistics such as connectivity and
shortest paths, and confirm the observed power laws at the
AS level. They also validate some of the power laws in metrics
such as number of shortest paths exponent, and compare
Mercator and nec maps. The variation in power law exponents
suggest that the power laws and average values are changing
and may not hold true in the future.

18 http://abilene.internet2.edu



STRUCTURAL MODELS OF THE INTERNET

Alongside power laws, other metrics of network topologies
have been studied extensively in the literature. One of the
most important factors that has already been explained in this
section is the clustering of nodes. Clustering has been widely
studied using techniques to find the clustering coefficient of
the nodes in a network. An alternative to this method is spec-
tral filtering. Gkantsidis et al. [74] perform a comparison of
clustering coefficients, by using eigenvalues of adjacency
matrices from various BGP data of networks, and also on
methods of topology generation such as BRITE. This work
identifies a global problem with topology generators, which is
the lack of data to generate the large topologies required for
a realistic simulation. Use of a small topology leads to concen-
trating only on the AS and router-level geographic topologies,
as opposed to looking into the peering relationships, cluster-
ing, and amount of traffic on the links. They have introduced
the basics of degree-based graph generation and conditions to
which the links and nodes are attached to ensure existence of
spanning trees using a Markov-chain-based algorithm.

They believe that degree sequence is not sufficient for
topology generation that matches the real data. They use clus-
tering methods and eigenvalues to analyze the generated
topologies and compare with real data from NLANR.19 The
generation methods that meet a degree-sequence while incor-
porating clustering are suggested by researchers. Good clus-
tering methods are also needed in topology generators, as
both the degree-sequence and clustering are found in real net-
works [74].

Li et al. [71] discuss the need for topology inference and
generation at different levels. For congestion control proto-
cols, IP-level connectivity with bandwidth and buffer sizes is
needed, while for attack assessment and network planning, a
detailed map of node and router capacities is required. For
routing protocols one needs a graph of AS-level connectivity
and peering information. The authors focus on node degree
distribution and their heavytailed characteristics, and whether
the node degree distribution is the most important objective
of a topology. They discourage the use of random generators
as they do not produce power laws in node degrees, so they
have been replaced by degree-based generators. The proposed
first principles approach focuses more on the physical layer,
router, and links. In the context of network engineering for an
ISP, physical metrics such as performance and likelihood are
used for graph generations. The first principles method is pre-
sented and compared against a few toy models. They observe
that simple heuristically designed and optimized models that

reconcile the trade-offs between link costs, router constraints,
and user traffic demand result in configurations that have
high performance and efficiency.

The Internet has a hierarchical structure in the form of dif-
ferent tiers. Jaiswal et al. [75] look at comparing the structure
of power law graph generators and that of the Internet AS
graph. This is an important step in proving the existence of
power laws. By decomposing graphs of the Internet at differ-
ent levels, the authors establish the properties of power law
graphs and the Internet graph, and find skewed distributions
in degree connectivity; that is, a large number of less connect-
ed nodes connect to well connected ones, and well connected
ones tend to interconnect more closely. The decomposition
procedure is as follows:
• Given an input graph, G, select a set of nodes to be

removed based on defined criteria to identify the root-
level transit nodes.

• Compute the connected components (CCs) of the graph
G obtained after removing the selected nodes.

• Repeat the procedure recursively on the resulting CCs
until the number of nodes that can be removed is less
than 1.
The criteria for removing nodes are based on node degree,

node rank, and node stress. They order the nodes in each con-
nected component in descending order of degree and choose
a fixed fraction of the highest degree nodes to remove. Node
rank is based on the steady-state probability of visiting a node
while performing a random walk in the graph where each out-
going link from a node is equally likely to be chosen. The
stress of a node in a graph is a measure of the number of
node-pair shortest paths that pass through it.

Carmi et al. [76] use the data from the DIMES project,
combined with AS-level maps from the RouteViews project,
to form a map of the Internet. The map formation method is
based on k-shell decomposition, which involves removing
nodes in groups based on the number of connections they
have to form shells of nodes. In the first step the k-pruning
technique is performed by removing all the nodes with only
one neighbor recursively, as well as removing the link to that
neighbor along with the node. The nodes removed in this step
are called the 1-shell. This process carries on with index k to
form shells of higher connectivity degree. The last nonempty
k-core will be, by definition, the backbone of a network such
as the Internet. Figure 11 displays a sketch of the k-core
decomposition for a small graph from Alvarez-Hamelin et al.
[77]. Each closed line contains the set of vertices belonging to
a given k-core, while colors on the vertices distinguish differ-
ent k-shells.

Carmi et al. found that for the DIMES data used, the size
of each k-shell decreases with a power law distribution, n(k) ∝
k–δ, where the exponent δ is about 2.7.

In the topology modeling area, as described by Chang et al.
[78], a challenge faced by researchers is the fitting problem
where a trend in networking is forced to fit a known mathe-
matical model. Such methods are only accurate enough to be
justifiable when they are supported by evidence gained from
identification of complementary measurements that complete
the picture. By looking at the Abilene network traffic matri-
ces, they analyze the distributions on that using cumulative
distribution functions that illustrate an 80–20 power law,20 and
go on to compare it to the GEANT network21 traffic matrices;
these traffic matrices fail to fit the given gravity models. The
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gravity model corresponds to an assumption of independence
between source and destination of the traffic, and can be writ-
ten as a matrix formed from the product of two vectors. The
gravity model is shown to be able to replicate some statistics of
the actual traffic matrices very well; hence, by characterizing
the traffic vectors, it is possible to obtain a reasonable charac-
terization of the matrix. The difficulties faced by the authors in
obtaining AS-wide traffic volumes and topologies from ISPs
highlight the challenges faced by researchers in this field.

Clustering techniques for nodes has also been a method of
characterizing topologies in the Internet. Wool and Sagie [79]
propose a clustering method that enables the view of Internet
topology as AS-graphs in different granularity levels. They
find a few main dense cores, which interconnect the regional
cores. They compare various degree-based generators, and
state the need to consider power laws and clustering coeffi-
cients when generating topologies in BRITE and Inet. They
use the dense k-subgraph approach for clustering in different
levels.

Yook et al. at [80] propose a model of networks based on
fractals. They find that the physical layout of nodes form a
fractal set, determined by population density patterns around
the globe. The placement of links is driven by competition
between two models: preferential attachment and linear dis-
tance dependence. Preferential attachment assumes that the
probability that a new node will link to an existing node with k
links depends linearly on k. The nodes with higher connectivi-
ty degree are more desirable for attachment by new nodes.
Preferential attachment is believed to be one of the main rea-
sons for power-law properties of the Internet. Linear distance
dependence is due to the fact that the further the nodes are
from each other, the less likely it is for them to have a direct
connection.

Zhou and Mondragon [2] propose various mathematical
models, such as rich-club phenomena, the interactive growth
model, and betweenness centrality. In a follow-up [81], they
use the CAIDA data to look at degree-degree correlation and
rich-club connectivity. They show that for these data, rich-club
connectivity and degree-degree correlation for a network with
a given degree distribution are closely linked. This leads to a
proposed model, Positive Feedback Preference (PFP).

The PFP model starts with a random network of size n. At
each time step:
• With probability p, a new node is attached to a host

node, and at the same time a new internal link appears
between the host node and a peer node.

• With probability q ∈[0, 1 – p], a new node is attached to
a host node, and at the same time two new internal links
appear between the host node and two peer nodes.

• With probability 1 – p – q, a new node is attached to two
host nodes, and at the same time a new internal link
appears between one of the host nodes and a peer node.
Zhou and Mondragon demonstrate that the PFP model

produces graphs that closely match the degree distribution,
rich club connectivity, and maximum degree of the AS graphs
of a given network. The model is validated against BGP
derived data.

The Internet, like many complex networks, is believed to
have small world characteristics. Such characteristics are
important for delivery of messages and content on networks.
Jin and Bestavros [82] consider the small world characteristics
when generating topologies at the router and AS levels. At
the AS level, the high variability in node degree, and at the
router level the preference for local connectivity result in this
phenomena. They use simulation of multicast trees on differ-
ent models. They also use AS graphs of the University of
Michigan AS graph data set (RouteViews plus Looking

Glass), and various router-level graphs including Skitter. They
use these to get the statistics such as node degree and local
connectivity in order to evaluate their model. They suggest
simulators taking into consideration vertex degree distribu-
tions as well as preference for local connectivity, and suggest
improvement by considering scale-free characteristics as well.

Some of the power law traits suggested by Faloutsos et al.
are also seen in other telecommunications networks. Spencer et
al. [83] showed that a national synchronous digital hierarchy
(SDH) transport network also exhibits such traits, even though
it has an explicit hierarchy and strict technological structure,
and is much more closely coupled to the topology of the physi-
cal layer. They showed that the topology formed by SDH cir-
cuits followed similar power laws in degree ranking, degree
frequency distribution, largest eigenvalues, and hop-plot
approximation; they also demonstrated a power law in the clus-
tering of nodes and that the degree frequency distribution is
very pervasive, appearing at a range of geographic scales. Since
their topology was captured directly by the network operator, it
does not suffer from the possible sampling bias that may be
seen in the Internet topology measurements by traceroute.

The Internet architecture and structure is constantly evolv-
ing. Pastor-Satoras and Vespignani [84] highlight the self-
organizing nature of the Internet and its evolution since birth
from a statistical and physical viewpoint. Their conclusion is
that the Internet can be modeled as a network of nodes and
links growing in a scale-free manner. However, the growth
and death rates of ISPs and ASs, and predictions of future
trends on the Internet remain open issues.

This section has gathered various models that are present-
ed for the Internet at physical and routing levels. The variety
of models is an indication of the complex structure of the
Internet, which makes it difficult to capture all the character-
istics with a simple model. Based on these models, researchers
develop topology generators, discussed in the next section.

COMPARISON OF TOPOLOGY GENERATION MODELS

Despite the availability of many topology models, there has
not yet been an agreement between researchers on a single
standard method of modeling and generation of Internet or
ISP network topologies. This problem is due to the many
aspects one has to consider when studying a topology.

Tangmunarunkit et al. [85] analyze the differences between
different classes of topology generators, The focus of degree-
based generators is the local degree distribution, while the
old-style structural generators focus on hierarchical properties
of networks. The authors assume that correct large-scale hier-
archical generation of topology is more important than retain-
ing local properties such as degree distribution. However, they
reach the conclusion that degree-based generators are better
at representing such large-scale properties. Degree-based gen-
erators represent the power law properties better. This
hypothesis has been verified using two representations of the
Internet, one at the AS level using BGP routing tables, and
the other at the router level using IP next-hop connectivity
measured by traceroute.

Three types of generators are used by the authors: random
(Waxman), hierarchical (Tiers [53] and Stub), and degree-
based (PLRG and BA model). They choose three metrics:
expansion (nodes reachable in h hops), resilience (number of
alternative paths between nodes), and distortion (a spanning
tree of the graph that has the least total cost) for evaluation
of generators. Based on the metrics and those measured from
Internet BGP tables, they conclude that PLRG has a better
qualitative match to the Internet, with high expansion and
resilience and low distortion, indicating that based on link
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value distribution (a measure of resilience), PLRG graphs
qualitatively model the hierarchy present in AS- and router-
level graphs better than structural generators due to their
long-tailed degree distribution.

Chang et al. [86] look at the problem of generating AS-
level topology of the Internet. They discuss the weakness of
current power-law-based generators and BGP-inferred AS
topologies in detecting AS peering and business relationships.
The authors focus on the optimization of a topology based on
AS geography, business model, and evolution in time using
the RouteViews data plus inferred information from Looking
Glass sites to form two data sets. For simplicity, all multihom-
ing and multiple connections of ASs are removed by choosing
just one link based on criteria such as lowest average hop dis-
tance. The final graph is 50 percent of the size of the original
data set, with similar node degree distribution.

Alderson et al. [72] discuss generating topologies using the
Highly Optimized Tolerance concept. In this strategy the
focus of the generator is the economic trade-offs, such as cost
and performance, and technical barriers faced by an ISP when
designing its own network. This would allow for a focus on the
economical challenges faced by network operators. These
issues are important for backbone service providers, which
must ensure optimized use of the network capacity.

Bu and Towsley [87] focus on generating similar power
laws to those observed in measurement data from networks,
focusing on the “power law generator” class of topology gen-
eration tools. They encourage the use of empirical comple-
mentary distribution (ECD) in generation of nodes as opposed
to histograms, and show (using characteristic path length and
clustering coefficients) the variability in graphs of different
generators using the same heuristics. They use a probabilistic
method to generate topology by adding nodes and links one
by one based on the probability within the ECD. This model
is an advancement in the direction of meeting metrics of
power law graphs. This model has been incorporated in the
BRITE tool.

Mahadevan et al. [88] discuss the lack of analysis and
topology generation tools that can focus on specific require-
ments of metrics of a graph, focusing on degree correlations
of subgraphs of a graph that represents a network or Internet.
However this method becomes extremely complex as the
number of correlated nodes increases. In a basic model, a set
of subgraphs are defined with various distributions and are
used to define a topology. The metrics considered for analysis
are spectrum, distance distribution, betweenness, node degree
distribution, likelihood (sum of products of degrees of adja-
cent nodes), and clustering. However, in practice, the focus
has been put on connectivity as the other metrics are hard to
compare and classify. They focus on reproducing a given net-
work topology, and compare their results with the Skitter data
set and BGP data from RouteViews.

Mahadevan et al. believe an improvement in topology gen-
eration can be achieved by focusing on peering relationships
and graph annotations such as bandwidth and latency. In
Orbis [89] the aim is to produce a random graph of desired
size while keeping the characteristics of the input graph. They
allow a user to feed in average degree, node degree, and joint
degree distributions from a measured topology, and the tool
should also annotate the routers with AS memberships and
annotate the AS links with type of relationship between them.

They have verified their algorithms against router-level
topologies observed from Skitter traceroute data in Septem-
ber 2006 and AS-level statistics from five years of RouteViews
data. The longest matching prefixes of the IP addresses of the
router-level topologies are used to find the AS membership
data. This allows AS membership information to be available

from the router-level topology data. This information is then
used with logarithmic binning to group ASs into categories
with equal numbers of routers within an AS.

They observe that AS-level topologies can be approximat-
ed by power laws. However the router-level topology does not
fit strict power laws. The observed maximum degree at the
router level does not increase significantly by increasing the
size of the graph. In 1k-rescaling, they attempt to preserve the
shape of the probability distribution function (PDF) of the
graph’s degree distribution. In 2k-rescaling, they try to pre-
serve the degree correlation profile. They encourage the addi-
tion of latency and bandwidth distribution as another metric
for rescaling for realistic topology generation.

A problem usually faced in generation of a topology is gen-
eration of realistic traffic matrices. While it is important to
have a network topology, for it to be useful, related traffic
matrices must be assigned to the links. Nucci et al. [90] discuss
two issues with traffic matrix generation for a given topology:
the issue of generating traffic matrices that look like a realistic
network, and that of assigning metrics such as traffic volume
to nodes. They focus on synthesis of stationary traffic matri-
ces. They propose a technique based on distribution fitting.

On the placement of values (metrics), they argue why the
values should not be arbitrarily added to links and nodes, as
the link capacities may be exceeded, or the links that are
there just for resilience are incorporated into carrying traffic,
which changes the temporal topology of the network. Any uni-
form distribution in traffic generation is thus considered inap-
propriate, and they suggest a lognormal distribution, using
measurements from the Sprint and Abilene to test the pro-
posed hypothesis. In conclusion, the proposed load minimiza-
tion solution (for matching the metrics assigned to links to a
given topology) is considered too computationally expensive
to be implementable.

However, there are still arguments that modeling and gen-
eration of graphs at large scales remains an unsolved problem.
Krishnamurthy et al. [91] introduce graph sampling in order to
reduce the size of inferred topologies for analysis while pre-
serving metrics, in this case power laws and slope of graphs.
They model the network as an undirected graph at the AS
level. They propose sampling the graph by deleting nodes and
links probabilistically, contracting the graph at steps, or gener-
ating a subset of graphs from traceroute paths. They perform
probabilistic deletion of nodes and edges, and can reduce the
graphs by about 50–70 percent while keeping metrics such as
power laws within an acceptable range.

Simulation of enterprise networks is a difficult task as
there are no benchmarks present for validation of the simula-
tors. Mizuta and Nakamura [92] conduct a survey on business
relationships in the IBM consultancy network, simulating net-
work nodes as agents. They use the transactions obtained
from email send/receive logs, together with the organization
network structure diagrams to model and evaluate input/out-
put degree, distance, and closeness. The presented model is
probabilistic with random distances and random communica-
tion probability distribution.

One of the objectives of generation of topologies that
closely map those of the Internet is to arm network
researchers with tools with which they can analyze various
issues in and around the Internet, such as congestion, optimal
routing, and fault finding. Spring et al. [93] look at traceroute
measurements, using scriptroute, from around 40 vantage
points on planetlab to look at topology and routing policies,
internal and between ISPs, to analyze the causes of path infla-
tion, and find that interdomain routing and peering policies
have significant effects on the inflation. They suggest improve-
ments to BGP policies to look after routing across ISPs, as the
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ISPs have to use minimum AS hop count, which may take
longer sometimes. They compare the taken routes to the
topology they inferred using Rocketfuel.

TOPOLOGY GENERATION

For successful simulations of traffic and network events, any
generated network model must be topology-aware. Topology
generation is an area researchers have been actively working
on in the last decades. The first generated topologies were
randomly generated by selecting a certain number of nodes
and randomly assigning links between them. This was due to
the lack of understanding of the architecture of the Internet
and the lack of validation tools. In this section some of the
popular network topology generators are discussed.

WAXMAN

The Waxman generator is based on the random network
model [61] where the nodes of the network are uniformly dis-
tributed in the plane, and edges are added according to prob-
abilities proportional to the distances between the nodes. It
was soon found that such generators fail to represent the
important metrics present in the Internet topology; hence,
they were abandoned in favor of hierarchical topology genera-
tors. Figure 12 displays a topology generated by the Waxman
model. It can be seen that some nodes are not connected to
others. Nodes are placed in the plane by a Poisson distribu-
tion process and connected with probability proportional to
the Euclidean distance between them.

GT-ITM

With the explosion of the Internet, researchers realized that
they needed to capture the structural properties and attempt-
ed to model the design of the Internet. The hierarchical mod-
eling of the Internet topology was originally done by
transit-stub models. Calvert et al. [94] presented one of the
first results in this field by focusing on graph-based models to
represent the topology. The parameters used include the
number of transit and stub domains, number of local area net-
works (LANs) per stub domain, and number of edges (links)
between transit and stub domains to initialize the topology
generator. Then the transit domains, transit nodes, and their
interconnecting edges are placed; similarly, the stub domains.
The transit-stub model produces connected subgraphs by

repeatedly generating a graph according to the edge count
and checking the graph for connectivity. Unconnected graphs
are discarded. This method ensures that the resulting sub-
graph is taken at random from all possible (connected)
graphs; however, it may take a long time to generate a con-
nected graph if the edge count is relatively small compared to
the number of nodes. Extra edges from stub domains to tran-
sit nodes are added by random selection of domains and
nodes.

Georgia Tech Internetwork Topology Models (GT-ITM),
also known as the transit-stub generator, is capable of produc-
ing several forms of network topologies:
• Flat random graphs: GT-ITM has five models of topology

embedded within it, including a pure random model and
varieties of the Waxman [52] model. These are not hier-
archical models.

• N-level model: The N-level model constructs a topology
recursively. In this method a graph is made by dividing
the Euclidean plane into equal-sized square sectors; then
each sector is divided into smaller sectors in the same
manner, so the scale of the final graph is equivalent to
that of the individual levels.

• Transit-stub model: This model produces interconnected
transit and stub domains. This model is controlled by
number of domains, average node per transit domain,
average stub domains per transit domain, and average
nodes per stub domain.
In the transit-stub domain care has been taken to ensure

that the paths are similar to those of the Internet; for exam-
ple, the path between two stub domain goes through one or
more transit domains and not any stub domains, and not the
other way round. This is done by assigning appropriate
weights to the interdomain edges.

The transit-stub model is comparable to the tiers model [53],
in which the three levels of hierarchy, or tiers, are referred to as
wide area network (WAN), metropolitan area network (MAN),
and LAN levels, corresponding to the transit domains, stub
domains, and LANs of the transit-stub method. The tiers model
produces connected subgraphs by joining all the nodes in a sin-
gle domain using a minimum spanning tree algorithm, a popu-
lar method used as the basis for laying out large networks. This
generation method has been tried in two implementations of
the transit-stub (TS) model, part of GT-ITM.

Inet — Inet is an AS-level Internet topology generator.
Winick and Jamin [54] compare the Inet generated topologies
to those obtained form RouteViews and NLANR BGP table
data. They extract connectivity information into a simple adja-
cency list of ASs. The data set consists of 51 Internet topolo-
gies from November 1997 to February 2002. By default, Inet
produces random networks with characteristics comparable to
the Internet, as the minimum number of nodes is 3037 (the
number of ASs on the Internet at the time of development),
and the fraction of degree 1 nodes set to 0.3 based on mea-
surements from the BGP data.

There are modifications made to the Inet model that dif-
ferentiate the generated topology from a random network.
For example, a preferential linear weight is factored into the
connection probability, and the core of the generated topolo-
gy is modeled as a full mesh network. However, Winick and
Jamin believe Inet-3.0’s topologies still do not represent the
Internet well in terms of maximum clique size and clustering
coefficient. These related problems stress a need for better
understanding of Internet connectivity.

BRITE — One of the more popular network topology genera-
tors has been the BRITE generator [7]. BRITE produces
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power law graphs on a large scale and is not suitable for
smaller networks. BRITE provides an easy-to-use tool for
generating a basic network model. BRITE can take as input
maps from some other generators and NLANR topology for-
mats, and, based on them, place nodes in planes, interconnect
the nodes, assign delay and bandwidth and AS IDs to nodes,
and output the topology. BRITE is capable of producing
router-level topologies by placing nodes, assigning bandwidth
based on distributions (either constant, uniform, exponential,
or heavytailed), or based on the Waxman or BA model.
BRITE can also create an AS-level model in a hierarchical
topology model by assigning nodes and bandwidths, deciding
hierarchy, and generating graphs.

The BRITE implementation has a two-level hierarchy
model. In the top-down method it generates an AS-level
topology (using the Waxman model, flat models, or imported
data sets); then it generates a router-level topology for each
AS using the same models.

In the bottom-up approach BRITE first generates the
router-level topology and then assigns to each AS node a
number of routers (using either constant, uniform, exponen-
tial, or heavytailed distributions). Then for each individual
AS, a number of router nodes are assigned, either randomly
or by performing a random walk on the topology and assign-
ing routers to ASs.

BRITE has the following models embedded for AS-level
and router-level topologies:
• Waxman: Uses the Waxman probability model [52] for

generating random topologies.
• BA and BA-2: These models are inspired by the Barabasi

and Albert [64] model of networks, and incorporate pref-
erential attachment and incremental growth factors.

• GLP: Based on the generalized linear preference model
proposed by Bu and Towsley [87].
BRITE is the first topology generator that makes an

attempt to assign bandwidth to links. In an attempt to make
AS-level and router-level topologies within them for hierarchi-
cal topologies, BRITE has incorporated the capability to pro-
duce two-layer topologies.

Positive Feedback Preference — PFP is an AS-level topolo-
gy generator based on the model proposed by Zhou and Mon-
dragon [2]. In this model the AS-level topology of the Internet
is considered to be growing by the interactive growth of new
nodes and links, and a nonlinear preferential attachment. The
PFP model is described by the authors to represent many
topological properties of the Internet such as degree distribu-
tion, rich-club connectivity, shortest path lengths, and
betweenness centrality.

IGen — Another generator that aims to generate topologies
which have the geographical problems associated with net-
work design is the Igen generator. Quoitin [95] explains why it
is difficult to infer topologies and thus proposes the genera-

tion of topologies based on network design parameters. He
argues why pure degree-based generators such as BRITE or
GT-ITM fail to capture real optimization challenges faced by
network designers. Metrics such as latency minimization,
dimensioning, and redundancy are discussed. IGen first cre-
ates PoPs to look like the Sprint network, then makes con-
nected trees based on the Highly Optimized Tolerance
methodology [72].

Table 2 compares the most basic capabilities of the tools
discussed in this section and currently available to the com-
munity.

The development of the above work suggests that realistic
topology generators must take link bandwidth and geographic
distribution of nodes into consideration. It is becoming
increasingly important for network researchers to take into
consideration the evolution and structure of networks and the
Internet as a whole over time, and the presence of annotated
links plays an important role in this context.

FUTURE DIRECTIONS AND CONCLUSIONS

Today the Internet’s complex architecture and organizational
structure has made it a challenging task for engineers and net-
work researchers to provide a concrete map of the network,
and for statisticians to propose extensive mathematical mod-
els. At a lower level, defining the physical interconnection of
the nodes is essential for routing and resilience purposes. At
the higher layers, the virtual types of connectivity structures
are very different when studied from different sources of data,
and a correct understanding of the nature of these connec-
tions is essential for traffic engineering and economic model-
ing of the network.

In the inference research field the focus is on trying to get
a map of the Internet at the router or AS level. Researchers
try to understand routing policies and provide connectivity
maps by focusing on the router- and AS-level graphs.

In the modeling area the success of a model of Internet
topology improves by annotating the nodes and edges of the
router and AS graphs with information that will bring the
models closer to the reality of the network.

In the topology generation literature, the important factor
present is the focus on use of distribution-derived methods,
which rules out randomly generated graphs and puts the focus
on attaching meta-data (metrics) on any link and router gener-
ated in a graph.

Future research in topology generation needs an extensive
comparative study to compare different topology generators.
The main issue is lack of a model that is realistic, without try-
ing to simulate the whole of the Internet or being an abstract
mathematical model with just AS-level details. Such a task
calls for a generation model that achieves a good balance
between keeping the structural and degree-related properties
intact. Such a tool is yet to be developed. Another unresolved
issue is meta-data inference, such as bandwidth and delay, and
more important, the ability to associate them with the inferred
topologies.

An area of importance for future work is tools that pro-
duce a complete view of a given network, form the annotated
link and router level to the PoP level and eventually to the AS
level. An example of such a situation would be enterprise net-
works spanning across the globe, with nodes and routers being
part of multiple AS sets. Focusing on enterprise or corporate
networks is a challenging task as there is little data available
for benchmarking due to the unwillingness to share such
information. There has been no work to model discrete events
such as on-demand circuit setups, VLAN setups, multiproto-

n Table 2. A comparison of network topology generation tools.

Tool Year AS-level Router-level Hierarchy

GT-ITM 1996 Yes No Yes

Inet 2000 Yes No No

BRITE 2001 Yes Yes No

PFP 2004 Yes No No

IGen 2006 No Yes Yes
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col label switching and virtual private networks, and content
distribution on-demand operators, which will most probably
be of interest in a corporate environment. Such research is
becoming increasingly important for enterprise network oper-
ators who try to achieve security and resilience by segmenta-
tion of networks into various operational domains using
VLANs, private AS numbers, global routers, and firewalls.

Another important step toward realistic modeling of the
Internet and similar networks is characterizing the evolution
of the topology of such networks, and their effect on the per-
formance of various protocols and traffic models. Such analy-
sis is only possible if a topology generator provides scenarios
of failure in links and nodes that are similar to those in the
Internet. An obstacle to such research has been the lack of a
detailed study of failure models in large area networks and
the AS-level Internet. Oliveira et al. [96] look at the evolution
of the Internet at the AS level as observed from some data
collection points, and based on the model, they propose a
model to distinguish real topology changes from transient
routing changes with a given confidence level. Availability of
such models will help future topology generators take into
consideration such changes in the topology.
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