
Rethinking Software Connectors

Stephen Kell
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue
Cambridge CB3 0FD, United Kingdom

Stephen.Kell@cl.cam.ac.uk

ABSTRACT
Existing work on software connectors shows significant dis-
agreement on both their definition and their relationships
with components, coordinators and adaptors. We propose
a precise characterisation of connectors, discuss how they
relate to the other three classes, and contradict the sug-
gestion that connectors and components are disjoint. We
discuss the relationship between connectors and coupling,
and argue the inseparability of connection models from com-
ponent programming models. Finally we identify the class
of configuration languages, show how it relates to primitive
connectors and outline relevant areas for future work.

1. INTRODUCTION
As software systems become more complex, it becomes

preferable to build systems by evolution, extension and re-
use rather than from scratch. Separation of interface from
implementation aids evolution within a component by local-
ising the code changes necessary when altering its implemen-
tation. However, this isn’t sufficient for our desired levels of
extension and re-use: we might need to change some of the
interfaces themselves, or to combine components which have
mismatched interfaces.

Software architecture research has identified another
useful separation, namely that between computation and
communication, or rather the distinction between compo-
nents and connectors [31]. Separating a component’s com-
putational code from artifacts concerned with communicat-
ing with (or connecting to) other components in the system
might improve the potential for extension and re-use.

For example, by separating out connection logic, we
might be able to change it independently of the core com-
ponent logic. By encouraging consolidation and sharing of
connection logic, we can introduce more sophisticated and
re-usable connection abstractions. By confining the prob-
lem of interoperability to the connection domain, we can
eliminate coupling across computational code, hence easing
re-use. Finally, by developing languages and tools which

This is the author’s version of the work. It is available hereby permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in SYANCO ’07.http://doi.acm.org/10.1145/
1294917.1294918
SYANCO 2007September 3-4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM 978-1-59593-721-6/07/0009/ ...$5.00.

specialise in connectors, we can better optimise this aspect
of the development process.

Such a separation is not adopted by today’s devel-
opment practices. However, there has been much research
work under headings such as linking languages [28, 22], co-
ordination languages [7, 4], composition languages [1], pack-
aging techniques [9, 6] and interface adaptation [27, 35, 8].

All this work helps tackle some aspect of connection,
but we still lack a coherent sense of exactly which problems
are more fundamental. For example, Knit [28] addresses
mismatches of symbol names, but not mismatches of ar-
guments, protocol or concurrency. Meanwhile Reo [4] ad-
dresses protocol and concurrency, but cannot transform the
contents of messages sent between components.

The converse problem often goes unconsidered: given a
particular connection model, what are the consequences for
the component programming model? These two converses
are inextricably linked, yet often only considered separately.

More fundamentally, there is little agreement on ex-
actly what connectors are. Even in Shaw’s seminal paper
[31], there is no precise definition of a connector. Authors
have since used the term to mean several different things.

A taxonomy of connectors [23] is useful for identifying
many differences and similarities between connectors, but in-
troduces a huge number of non-orthogonal dimensions. This
means it can’t identify fundamental similarities, nor tell us
how to build connectors compositionally.

In this position paper, we make the following contri-
butions.

• We provide a more precise characterisation of con-
nectors than in previous work, contradicting the idea
that connectors are disjoint from components and dis-
cussing relationships with coordinators and adaptors.

• We describe the relationship between coupling and con-
nectors, arguing the inseparability of component pro-
gramming models from connection, and that connec-
tors should be capable of adaptation in order to max-
imise component reusability.

• We identify the class of configuration languages and ar-
gue their importance to software composition. Noting
that a shared notion of primitive connectors joins con-
figuration languages with component programming, we
discuss directions for future work in this area.

We begin with the most fundamental question: what
are connectors?

2. WHAT ARE CONNECTORS?
To answer this question, we will start from the existing

literature motivating and conceptualising connectors. Mary
Shaw’s paper [31] is the most complete piece on the sub-
ject, and to our knowledge has not been superseded by any
subsequent work.

Shaw tells us intuitively what connectors do: they
“mediate interactions between components”. However, she
stops short of pinning down just what kind or kinds of thing
they are.1 As Mehta et al note, for some time the architec-
ture community had “maintained a studied silence on the
exact nature of connectors” [23].

This difficulty probably arises because it appears that
connectors can be several different kinds of thing. They may
or may not have independent identity at run-time. They
need not be implemented in user code, and may instead be
implemented within the programming language or operating
system. They can, it is claimed, simply be conventions, or
they can be complex pieces of implementation. They can
connect between statically determined components, or they
can dynamically alter their associations at run time.

If connectors really are a sufficiently coherent class of
entities to be modelled by domain-specific languages and
tools, as Shaw claims, then we should be able to capture
their essence more succinctly than by these apparently dis-
parate observations. In the following sections, we will at-
tempt to provide a precise characterisation of connectors. At
first we will take “connector” to mean “connector instance”,
and then consider by generalisation what “connector types”
might be.

2.1 Connectors provide mechanisms
Mehta et al refine Shaw’s intuitions by observing that

all connectors provide what they call ducts – channels along
which data or control can be passed between components.
It is the number, cardinality, behaviour and configuration of
these ducts which differentiate connectors.

We can refine the above analysis further by using a
more familiar word: mechanisms. Connectors provide mech-
anisms enabling communication between components.

Mechanisms may be primitive or complex, and we can
identify primitive mechanisms by reference to some underly-
ing computation abstraction. This might be a programming
language, an instruction set architecture, or a symbolic cal-
culus such as the pi-calculus [24]. Under any such abstrac-
tion where the program can be partitioned into components,
there are only a finite number of primitive connection mech-
anisms – transitions which allow different elements of the
partition to causally influence each other’s state. Consid-
eration of these primitives will be the basis of our work in
Section 5.

For now, we will simply say that a connector instance
provides one or more mechanisms by which its attached com-
ponents may communicate. We also note that non-primitive
connectors necessarily depend on simpler connectors in or-
der for their mechanisms to be invoked.

1The paper’s only attempt is the statement that “connectors
are the locus of relations among components”, while by con-
trast “components are the locus of computation and state”.
As will become clear, these are not useful as definitions, not
least since even simple connectors may also contain both
computation and state.

2.2 Connectors demand agreements
Mechanisms are not sufficient for meaningful commu-

nication. Communication theory tells us that meaning can
only be transferred between parties in the presence of some
shared code or context.2 In software, as in any system, the
need for such contextual agreement is precisely the source
of inter-component coupling. Two parts of a system agree if
(and only if) any assumptions they make about each other
are simultaneously satisfiable. More complex assumptions
demand more complex agreements and therefore lead to
greater coupling.

The most basic form of agreement is with a connec-
tion abstraction, i.e. a connector type (see Section 2.3).
Any component wanting to communicate with the outside
world must incorporate assumptions about some sort of con-
nector into its code. For example, if a component communi-
cates with others through procedure calls, its code embodies
behavioural properties of these (such as the fact that the
caller always waits until the callee returns). Consequently,
the component is coupled in some way to a connection ab-
straction, and indeed, such coupling is unavoidable to some
extent. This is a main constituent of “packaging mismatch”
[32, 9].3

Similarly, if a connector instance is ever to transfer
meaning from one component to another, those two com-
ponents must share some common assumptions about the
syntax and semantics of the messages they exchange. These
assumptions encompass the meaning of individual messages,
and also the semantic relations between sequences of mes-
sages over time. Disagreements regarding the former result
in simple naming and operational mismatches [28, 27], while
the latter cause protocol mismatches [35, 8].

In general, coupling need not stop at the immediately
connected components: one component may make assump-
tions which only hold when it is instantiated amid some very
particular complex arrangement of components and connec-
tors. This is the root of the more complex instances of “ar-
chitectural mismatch” [13]. We will discuss coupling and
agreement further in Section 4.

By considering a connector instance as both providing
mechanism and demanding agreement, we can eliminate one
source of confusion in Shaw’s original paper. It is claimed
that simple agreements, such as data encoding conventions,
are connectors. According to our definition, they are but one
aspect of connection. In order to connect two components
using a shared data representation, one must also provide
a communication mechanism. Accordingly, although these
shared agreements are noteworthy (being the source of cou-
pling), they are not themselves connectors.

The same analysis applies to several of the connector
species listed in the taxonomy of Mehta et al [23]. Some

2This distinction between information and meaning was fa-
mously highlighted by Weaver in the introduction to his and
Shannon’s groundbreaking book [30], saying that “two mes-
sages, one of which is heavily loaded with meaning and the
other of which is pure nonsense, can be exactly equivalent,
from the present viewpoint, as regards information”. The
importance of code in the model was later highlighted by
Schramm and other communication theorists.
3Packaging mismatch spans the entire range of potentially
mismatched agreements, and has more to do with the
bundling of agreements than with a particular kind. How-
ever, the cited work places considerable emphasis on mis-
matches of communication abstraction.

are merely agreements devoid of mechanism (for example
X.400, SQL); others are cross-cutting properties shared by
broad sets of connectors (such as inter-thread versus inter-
process, or FCFS and LRU).

2.3 Connector types, instances and state
We have argued that mechanism and agreement are

necessary in order to define a connector instance. However,
these are both abstract entities. For a connector instance
to actually exist in a running system, it must be something
more concrete: we must be able to observe data or control
passing between whatever we identify as the components of
that system. In other words, the connector must exist in the
state which constitutes that running system. We paraphrase
this by saying that any connector instance has run-time state
– even though that state might not be mutable, or might be
difficult to identify.

2.3.1 Identifying state
Depending on its implementation, the state which con-

stitutes a connector instance might be less than obvious. For
example, in the case of a direct procedure call, the connec-
tor’s state is contained in instructions within the program
text. These are the instructions which push the arguments
onto the stack (or into registers), call the procedure, and
pop the return value from the stack; they also include the
operands of instructions in the procedure definition which
reference the arguments on the stack, and the instructions
which push the return value and jump back to the caller.
The procedure binding, i.e. the connector’s configuration, is
manifested in the address argument to the branch instruc-
tions. All of this state is immutable.

By contrast, the state of a complex connector might
be large and dynamically-changing, encapsulating both code
and data, and resembling a component instance. We will
discuss this resemblance further in Section 3.

2.3.2 Types, instances and other distinctions
This notion of run-time state allows us to clarify the

distinction between connector type and connector instance.
Clearly a connector type has no run-time state, but is some
(perhaps partial) expression of the mechanisms and agree-
ments (including behavioural properties) of a connector. We
can say that a connector implementation satisfies, or doesn’t
satisfy, a given connector type. Just as with types in pro-
gramming languages, connector types range from the highly
specific to the highly general: they may specify a lot about
the mechanisms and agreements, or may specify only a little.

The distinction between connector type and connector
instance are important, as is that between the instance and
the run-time state of that instance. This state is in turn
distinct from that of individual dynamic invocations of a
connector (e.g. the activation records created during a pro-
cedure call). Note also how the run-time state of the connec-
tor instance can change while preserving the instance’s iden-
tity – for example in a dynamic language such as Smalltalk
where an object can dynamically change its virtual function
bindings. In this sense, software architectures are frequently
dynamic, although higher levels of abstraction might hide
this dynamism.

2.3.3 Examples and revelations
Table 1 summarises the concepts and distinctions out-

lined in this section, using some familiar examples of con-
nector types. For each type, we describe its mechanisms and
their specified dynamic behaviour, give example agreements
which are typically layered above the connector, and refer-
ence a typical implementation. For the implementation, we
specify the connectors with which it is invoked, describe a
typical instance, list the minimal run-time state of such an
instance, and describe the transient invocation state main-
tained by the implementation.

These distinctions also help to clarify some more of
Shaw’s observations. It is true that connectors may “man-
ifest themselves as table entries, instructions to a linker,
dynamic data structures, system calls, initialisation param-
eters, servers that support multiple independent connec-
tions...”. Most of these descriptions refer to the state of
connector instances rather than their type, identity or im-
plementation. One exception is the system call, which is a
type of connector similar to the procedure call.

The other exception is that of servers. Intuitively these
appear to be components, but might be considered a type of
connector for abstraction purposes. In this example, and in
preceding ones, we have noticed that the distinction between
connectors and components is not completely clear-cut. The
next section discusses this issue in more detail.

3. WHAT AREN’T CONNECTORS?
Just as there is noticeable lack of agreement on exactly

what connectors are, there is noticeable disagreement on the
relationship between connectors and other kinds of thing:
components, coordinators and adaptors. This section looks
at each of these in turn.

3.1 Are connectors and components disjoint?
Most software architecture research advocates the view

that connectors and components are “distinct” classes of en-
tity [2, 23, 19]. Models which treat connectors as a special
kind of component, such as those of Rapide [20] or Dar-
win [21], are criticised for, in the words of Mehta et al,
“obscuring [the] distinct nature” of connectors. In other
words, many researchers advocate the view that connectors
and components should be modelled as disjoint classes of
entity: that a thing cannot be both.

3.1.1 Continuum, not disjunction
In reality, connectors and components form not a dis-

junction but a continuum, differentiated by the relevance of
communication over computation to role of a given piece of
implementation. Contrary to the implications of some work
[31], notions of both interface and protocol are useful right
across the continuum, albeit with respective biases.

To demonstrate this, we first assert that clearly not
all components are connectors: many coherent pieces of
implementation do not themselves provide any communi-
cation mechanism. Exactly how we define “component”,
then, would appear to answer the question of whether it
is possible to be both a component and connector. Unfor-
tunately, defining “component” is comparably difficult to
defining “connector”.

If we define “component” to be the instantiation of
any unit of implementation, then clearly at least some con-
nectors are also components – for example, all three of the
example connectors discussed by Mehta et al consist of clear
units of implementation within the Linux kernel. Of course,

Connector type

Roles and
configuration variables
(static, dynamic)

Mechanisms
(behaviour
defined
elsewhere)

Typical layered
agreements

Example implementation
technique(s)

Typical connector
dependencies (immediate
only) Example instance(s) Run-time state

Transient invocation
state

procedure call caller component S
callee component R
entry point P in R

S: invoke signature
pre-/post-conditions
approx duration
wait/block behaviour

stack-supported branch and
return

program counter increment
shared registers
shared memory (stack)
branch instruction

(any local early-bound non-
inlined procedure call)

caller/callee instruction
sequences

stack frame
saved register values

system call caller component S
callee R (implicit)
call index C

S: invoke (as above) stack-supported software
interrupt

program counter increment
shared registers
shared memory
software interrupt instruction

read(), write() on Unix

pipe

caller/callee instruction
sequences, system
call table

stack data
processor mode
hidden registers

inline procedure call caller component S
callee component R
entry point P in R

S: invoke (as above) compile-time control flow
subgraph instantiation

program counter increment
shared registers
shared memory

(any inlined procedure call) expanded instruction
sequence at call site

register state during
instruction sequence
execution

virtual procedure call caller S
candidate callees Ri

target signature N

S: invoke (as above) vtable-dispatched indirect
branch and return

program counter increment
shared registers
shared memory
indirect branch instruction

(any late-bound call) caller/callee instruction
sequences, vtables
and vtable pointers

stack frame
saved register values

remote procedure call caller S
callee R
entry point P in R

S: invoke (as above) stub/skeleton, marshalling
to/from agreed network
encoding, transmission by
network datagram service

local procedure call
network datagram service

Web Service calls e.g. in
software update services

stub/skeleton code, file
handle table, socket
descriptor

(in dependencies only, i.e.
in implementations of
datagram service and
procedure call)

pipe writer W
reader R

W: write
R: read

data meaning
additional behaviour

kernel-managed ring buffer system call Unix pipe e.g. between tar

and compression filter

kernel ring buffer, file
descriptors

(in dependencies only)

n-way network load balancer source S
sinks Ri

S: forward signature round-robin forwarding with
session management

network service (stream or
datagram)

Web Service load balancer configured server
addresses, dispatch-
next address, active
session map

(in dependencies only)

shared associative store participants Pi Pi: in, out tuple structures
tuple meanings
referential/semantic

constraints
sequencing conditions

distributed hash table procedure call
network datagram service

Chord network node storage, node
forwarding tables,
node proximity data

(in dependencies only)

shared linear store participants Pi Pi: read word,
write word

per-location meanings
and representations

sequencing conditions

shared virtual memory object shared physical memory
virtual memory manager

windowing system shared
framebuffer

framebuffer contents (in dependencies only)

publish-subscribe network publishers Pi

subscribers Si

Pi: publish E
Si: subscribe

message structure
meanings for standard

headers/metadata e.g.
topic

network of store-and-forward
broker nodes

network stream service Usenet NNTP network
(including user agents)

stored messages
stored subscriptions
overlay network

topology

(in dependencies only)

2-way synchronisation
barrier

participants P1, P2 P1, P2: enter entry conditions lightweight threading and
condition variables

shared semaphores
thread scheduler

(e.g. any Barrier instance in
a Java program)

semaphore state (in dependencies only)

T
a
b
le

1
:

E
x
a
m

p
le

c
o
n
n
e
c
t
o
r

ty
p
e
s

a
n
d

in
s
t
a
n
c
e
s

any communication mechanism, however apparently primi-
tive, is implemented somewhere, even if we have to descend
to a lower level of abstraction to see that implementation
concretely. For example, we might not see the implementa-
tion of procedure calls at the source level, but when we look
at the compiler output we see the sequences of instructions
which perform the calls.4

3.1.2 Levels of abstraction
This latter all-inclusive definition of “component” may

not be a useful one at the architectural level. An alternative
is to define components to be any piece of implementation
which does not provide a communication mechanism. We
would then, however, rule out many entities which are clas-
sically considered to be components.

For example, in the canonical pipe-and-filter example,
filters are considered components. However, since they for-
ward data at the same time as transforming it, they clearly
do perform communication. It is simply because we see their
abstract role as primarily computation that they are con-
sidered components. From these observations, it seems that
whether something is a component or connector might de-
pend on how we prefer to picture it at our chosen level of
abstraction.

Using the box-and-lines metaphor, our system is actu-
ally composed entirely of boxes of various sizes and thick-
nesses. A connector in such a diagram is simply a box which
joins two or more others, and is longer and thinner than
most. Comprehensibility, however, demands that we can
abstract away from this into a simpler diagram. Some boxes
must therefore disappear or be coalesced together (because
their details are not sufficiently interesting), and some very
thin boxes are adequately approximated as lines. It is these
simplifications which disjointly classify a box as a connector
or component. Exactly where the classification thresholds
lie clearly depends on the chosen level of abstraction.

In Figure 1 we have illustrated this by borrowing an
example used by Allen and Garlan [2]. They describe a
toy system called Capitalize which transforms an arbitrary
alphabetic character stream by outputting it in alternately
lower- and upper-case characters. We show the system at
three levels of abstraction, the middle one corresponding to
their “architectural description”. The less detailed version
shows the entire system as a single box, as it might be seen
within the architecture of a larger system (where it might
well be considered a connector). The most detailed shows
the pipes as components, and emphasises how the pipes are
themselves connected to the other components using even
simpler connectors.

We have now established that whether a piece of a sys-
tem is a component or a connector depends entirely on the
considered level of abstraction; it is not an intrinsic prop-
erty of that piece. It is therefore still possible to make such
distinctions, but it is not helpful to do so when implement-
ing connectors. During implementation, we do not have a

4The fact that these instruction sequences are distributed
or “woven” into the code, rather than being cleanly delin-
eated, is inconsequential. This phenomenon stems either
from efficiency requirements (as with inline functions) or
from the problem of dominant decomposition (as with as-
pects in aspect-oriented programming [18]). Neither aspects
nor inlined functions need have anything to do with com-
munication, so this “woven” manifestation is clearly not a
property unique to connectors.

upper

pi
pe

pipe

lower

pipe

pi
pe

Capitalize

split merge

Capitalize

split merge

lower

upper

Capitalize

Figure 1: Capitalize at three different levels of ab-

straction

particular level of abstraction in mind: we are simply im-
plementing some given communicational functionality, and
its architectural importance depends entirely on how it is
composed with other pieces.5

We therefore cannot argue that we should pick from
alternative sets of tools and languages based on whether
something is a component or a connector. Rather, we simply
have a range of implementation options, and we should pick
whatever mix is best tailored to the individual task at hand.
It is for this reason that we might prefer to see connectors
as a subcategory of components – specifically, those lying
some minimum distance from the purely computational end
of the continuum.

3.1.3 Components as objects
In Figure 1, we considered a set of pipes as a set

5An extreme example of this continuum comes
from the world of operating system security, where
covert channel analysis shows us that any stateful
shared resource can act as a communication chan-
nel. Tom Van Vleck gives a detailed example at
http://www.multicians.org/timing-chn.html.

of distinct architectural elements (connectors, if you pre-
fer). Likewise, we could imagine multiple instances of a
non-communicational component (such as a hash table or
database) appearing separately on an architectural diagram.
This raises another interesting question about the nature of
components and connectors: given that the pipes are all im-
plemented by the same code, should we count them as one
component or as many?

If we took the former position, we would end up with
a diagram much like Allen and Garlan’s earlier diagram la-
belled an “implementation description”. Since calls made
on the pipes are simply considered undistinguished calls to
the I/O library, we lose the architectural view of the system.
Indeed, although Allen and Garlan are vague about the no-
tational differences between their two diagrams, we see that
the architectural notation adds three new features: logical
containment (shown by the larger Capitalize box enclosing
the other features), abstraction by elimination of uninter-
esting modules (shown by the absence of a config compo-
nent) and first-class dynamic objects (shown by the presence
of four distinct pipes, instead of connections to the I/O li-
brary).

This raises an interesting question about the nature
of components. We have established that individual archi-
tectural elements (be they components or connectors) can
be created dynamically, and that some of these distinct ele-
ments may in fact be implemented by the same code. In our
example, these are the different pipes; more generally, they
are things which in an object-oriented setting we’d describe
as objects of the same class. How do we know which really
are components, and which are merely internal state of some
enclosing component?

The only possible answer is that, as with the distinc-
tion between components and connectors, it all depends on
our chosen level of abstraction. At some level, the small-
est pieces of state are “architecturally” important, just as
design patterns [12] are the miniature analogues of software
architectures. Usually such low levels of analysis are not
necessary at the architectural design stage, but these levels
of abstraction, again, form a continuum rather than showing
any fundamental divisions.

3.1.4 Protocol versus interface
Given that components and connectors form a con-

tinuum, we must now revisit the claimed distinctions and
resolve them with this viewpoint. One such distinction sur-
rounds the notions of protocol and interface. Shaw states
that where components have interfaces specifying opera-
tions, connectors have protocols specifying dynamic inter-
action behaviour.

Again, we argue that this should be seen not as a
disjunction but as a continuum. All pieces of implemen-
tation have both operations and dynamic behaviour, but
some show more of their complexity in one or other of these
aspects. We have already seen how connectors provide one
or more mechanisms. These may be thought of as opera-
tions, such as the procedure call’s invoke or the pipe’s read
and write. Shaw herself notes that “connectors are often
implemented as sets of procedures”.

Another illusory distinction between connectors and
components is the suggestion that connectors do not pro-
vide operations with types. This idea arises because con-
nectors are frequently polymorphic with respect to the data

they convey. (There are exceptions, such as a typed inter-
face to a shared database.) Traditionally these operations
might have been rendered as procedures passing effectively
untyped messages (such as pipes reading and writing byte
strings). More recently, with the popularisation of paramet-
ric polymorphism in languages such as Java and C#, this
erroneous division is less tempting.

Conversely, components often feature protocols not re-
lated to communication. These appear as ordering con-
straints on their operations. For example, a stack may not
be popped more times than it has been pushed, or an er-
ror will occur. Just as it is useful to formally describe the
dynamic behaviour of a connector, such as a procedure call
or pipe, so it is useful to describe the protocol constraints
on data structures and other non-communicational compo-
nents. Indeed, there is considerable work on such specifica-
tions [35, 8, 29].

3.1.5 Remarks
This section has provided a notion of component con-

sistent with the notion of connector described in the previous
section. We have also shown why the consideration of any
software entity as a connector or a (non-communicational)
component can only be made relative to some given level
of abstraction, and argued that this makes it inappropriate
to design tools and languages exclusively targeting one or
other kind of implementation.

It has been argued that the distinction between com-
ponents and connectors is not sufficiently important to merit
careful definition [10]. We disagree. Such a lack of consis-
tent logical definitions beneath any model of software risks
substantial confusion among developers who might wish to
adopt that model. This confusion might be sufficient to pre-
vent its adoption. Alternatively, it might lead to a poor un-
derstanding and consequent poor development choices, for
example regarding tools and languages.

If connectors are just a particular kind of component,
why are we giving them special consideration at all? The
answer is the same as it was at the beginning of this paper:
in order to improve re-use. We want to reduce and mitigate
coupling by separating out the concern of communication
from that of computation. We will continue this discussion
in Sections 4 and 5.

Note that we will continue to use the terms “compo-
nent” and “connector” as a shorthand for the approximate
notions of “computational component” and “communica-
tional component”, without implying any contradiction of
our belief these are more accurately considered as regions of
a continuum.

3.2 Are connectors the same as coordinators?
Within the coordination community, authors occasion-

ally use the terms “coordinators” and “connectors” in con-
fusing ways. Some make no clear distinction between the
two [5], whereas others define “connectors” as a particular
type of “coordinator” [4].

Clearly the latter definition, at least, takes too narrow
a view of connectors to be consistent with that used by the
software architecture community. Is it reasonable, however,
to argue that coordination is equivalent to connection?

3.2.1 Definitions of coordination
Mehta et al [23] define coordination as only one of four

“service categories” provided by connectors. However, this
view is clearly narrower than the one intended in coordina-
tion literature: the coordinators in systems such as Linda
[14] and Reo [4] support at least communication, and also
some kinds of conversion. We must therefore turn to another
definition.

Carriero and Gelernter define coordination as “the pro-
cess of building programs by gluing together active pieces”
[14]. The emphasis in that quotation is our own, and high-
lights the fact that coordination inherently involves connec-
tion of concurrently executing entities. As evidenced by the
simple procedure call, two components joined by a connec-
tor need not be concurrently active. However, we may model
non-concurrent execution as a special case of concurrent exe-
cution. Coordination therefore appears to lose no generality
with respect to connection, above a certain level of abstrac-
tion.

3.2.2 Modelling emphasis and capabilities
One thing which clearly does distinguish coordination

models from connection models in practice is the specific
emphasis on concurrency and parallelism. There is also a
corresponding de-emphasis on two things: adaptation at the
level of messages rather than behaviour, and the component
programming model.

To illustrate the former, we may return to the taxon-
omy: many coordination models usually don’t support at
least some aspects of the “conversion” service. Linda [14]
and Reo [4], for example, contain no features to inspect or
change the contents of messages from within the connection
domain. This focus on behavioural considerations is appro-
priate within the domain of highly parallel systems, which
is the intended target of both models. However, it does
mean that the “loose coupling” often cited as an advantage
of these models is in need of further qualification.

In particular, these models cannot address coupling
associated with the meaning of individual messages (as op-
posed to assumptions about their relative timing). This is a
very basic problem associated with re-use of independently
developed code, albeit orthogonal to other issues. For ex-
ample, coordinators cannot resolve mismatched procedure
names or signatures, in contrast to adaptation systems such
as Nimble [27] or that of Yellin & Strom [35].

3.2.3 Coupling to a coordination abstraction
There is also another kind of coupling: that between

the connectors they provide and their client components.
Coordination models generally assume that all components
will be programmed to a standard interface exported by the
coordination abstraction – for example Linda’s in, out, rdp
and the like, or Reo’s write, read and take. As well as be-
ing a source of coupling, we argue that these interfaces are
insufficiently abstract.

This latter point is essentially similar to the arguments
of Gorlatch [15] within the domain of parallel programming.6

It seems indisputable that in practice we would like to write
components to a more abstract interface than these primi-
tive operations. Are such abstractions re-usable across com-
ponents? Is it reasonable to retain the same lower-level con-
nection model when composing components programmed
against such abstractions? The answers are not clear with-
out considering what such abstractions might be, which is
outside the scope of this paper. However, this fact only re-

inforces the view that we should consider the design of the
two models together.

3.3 Are connectors different from adaptors?
As the taxonomy notes, connectors frequently do con-

version or adaptation, either of data representations or of
behaviour. This service category is particularly interest-
ing when re-using multiple independently developed compo-
nents, because it allows us to overcome mismatched assump-
tions. By interposing an adaptor instead of a non-adapting
connector, we provide an intermediary which satisfies the
assumptions of all parties.

Intuitively, therefore, it seems useful to include expres-
sions of adaptation in the same domain as connection. We
note that adaptation of behaviour may require a connec-
tor to be stateful. This is because invocations made by one
component may need to be delayed, or to show some other
effect later on, in order to interact with the other connected
components in the desired way. Similarly, adaptation of rep-
resentation requires the connector to do some data process-
ing or computation in order to transform a message between
different representations.

Clearly, then, our model of connection must be pow-
erful enough to express both of these things. Our view will
be that adaptors are a most general form of connectors, in
that all connectors may be considered as adaptors. A non-
adapting connector can be interpreted as performing a no-op
or null adaptation. Since adaptors provide not only com-
munication but also ancillary computation and state7, and
since that computation might in general need to be Turing-
powerful, they are equal to components in expressiveness.
They must, however, clearly have at least two points of ar-
chitectural attachment. More significantly, their abstract
role shows a firm emphasis on communication.

As we will see in the next section, adaptation is essen-
tial when combining independently developed components,
because it allows us to conveniently re-use software in the
presence of mismatched expectations.

4. CONNECTORS AND COUPLING
As mentioned earlier, connectors are invariably co-

incident with agreements between components, since it is
only with agreement that communication can have mean-
ing. These agreements are precisely the cause of coupling.
A primary motivation for study of connectors, therefore, is
to examine how different connectors, and their consequent
impact on component code, affect the coupling between com-
ponents and hence determine their re-usability.

6Interestingly, parallel programming libraries may provide
connectors which also have a primary role in computation,
such as MPI’s “collective operations”. This further blurs
the distinction between connectors and computational com-
ponents. Note that the coupling across these connectors is
not necessarily a problem, because these components may
be intrinsically non-reusable – their division is for the sake of
distribution, rather than delimiting cohesive pieces of func-
tionality.
7DeLine’s discussion of interfaces between components and
adapting connectors, which he calls packagers [9], has an in-
teresting flaw in that it neglects the possibility of the pack-
ager containing a finite state machine. Such a technique
would cleanly solve the stated shortcoming of a procedural
interface (p.100, figure 3).

4.1 Coupling minimisation
In general we may deal with coupling both by minimis-

ing it and mitigating it. We minimise coupling by eliminat-
ing agreement unnecessary to the meaning being conveyed.
This is the principle underlying Parnas’s information hiding
[25], where the extent of agreement is confined to the inter-
face definitions and their implied semantics. Another tech-
nique which avoids making agreements in code is to provide
logic for run-time resolution of agreements, such as with late-
binding techniques (e.g. virtual functions) or negotiation in
network protocols (e.g. character encoding negotiation in
HTTP).

However, minimisation techniques will only go so far.
As already described, any component must make some as-
sumptions about the components which lie outside of it, and
about how it is to communicate with them. Accordingly, we
must have ways of mitigating this unavoidable coupling.

4.2 Coupling mitigation
Mitigation of coupling seeks to ensure that agreements,

although present in code, do not impede re-usability more
than necessary. We have identified three classes of tech-
nique: localisation, standardisation and adaptation.

4.2.1 Localisation
Localisation techniques are supported by most pro-

gramming languages, and intend to allow agreements to be
conveniently changed. Symbolic constants, macros, func-
tions, aspects and other features all serve to abstract and
localise definitions which would otherwise be repeated in-
line. They are useful, but only if we are able to change the
source code.

4.2.2 Standardisation
Standardisation is a popular technique within the soft-

ware engineering world. One can try to eliminate the prob-
lems of coupling by dictating some standardised global agree-
ment. There are countless successful applications of stan-
dardisation in computer systems – the ASCII character set,
Unix tools, the C standard library, the Internet protocol,
HTML and so on.

Unfortunately, all these standards also have widely
documented foibles. Some suffer obvious functional limita-
tions – for example, the inability of ASCII to encode char-
acters not found in American English. Some are imprac-
tical to implement, as with some of the OMG’s CORBA
standards [17] or C++ export templates [33]. Sometimes,
non-conformant implementations are widely deployed, ei-
ther unwittingly or maliciously, causing workaround mainte-
nance overheads (amounting effectively to adaptation) [34,
36]. In all cases, standards suffer from an inherent overhead
in agreeing on a standard and guiding its adoption, making
the process infeasible for any but the most widely used of
agreements. More fundamentally, innovation will eventually
demand the abandonment or breakage of any standard.

Since standards are so inherently expensive and frag-
ile, they are suited only to technologies which demand wide
deployment but expect only infrequent innovation. There
are many such domains, such as network protocols, data
encodings and programming languages. However, there are
innumerably more which do not fit these criteria. Most soft-
ware components are continually evolving, adding new fea-
tures and improve existing ones, and some of these changes

invariably necessitate changed interface agreements. If we
are to maximise the potential for re-use in these scenarios,
adaptation is a necessary technique.

4.2.3 Adaptation
Adaptation can be performed by introducing extra

code which mediates between mismatched agreements. This
has the clear bonus of being non-invasive – we can perform
adaptation from the outside, enabling black-box re-use and
possibly reducing maintenance overhead. However, there is
inevitably some performance cost owing to the added indi-
rection.

We also observe that coupling increases as we compile
down our code into lower-level representations, because this
compilation process essentially replaces abstract specifica-
tion with concrete implementation details which inherently
demand more complex agreements. For example, an object
code representation of a component will assume a partic-
ular calling convention, binary data encodings and so on,
whereas the source-level representation assumes only certain
abstract properties of these. This shows us that adaptors
will be more complex when specified relative to components
lower down this stack of representations: black-box binary
components may require connectors of greater complexity
than are required to perform equivalent adaptation at the
source level.

We also distinguish three kinds of adaptation logic, in
roughly increasing order of implementation cost: generated,
reusable and ad-hoc. Given machine-readable specifications
with sufficient semantic content, we can write programs to
generate any necessary adaptation code [8, 16]. However,
currently such specifications are rare. Adaptation logic can
itself be re-used – obvious examples include translation ta-
bles and network gateways. By contrast, ad-hoc adaptation
is specific to the components it connects, and by definition
cannot be systematically re-used.

4.3 Complexity trade-offs
Simple connectors may have no knowledge of the many

agreements between the components they connect. Rather,
the agreements are layered over the simple connector. This
layering allows connectors to stay simple, but it extends the
reach of coupling into surrounding components. This is part
of a more general phenomenon: we can trade off complex-
ity between components and connectors. Different positions
in this trade-off show different distributions of coupling,
and may be correspondingly better or worse at mitigating
that coupling. This adds further support to the suggestion
that connection models and component programming mod-
els should be considered together.

We can vary the complexity of connectors along two
dimensions. One is the complexity of the communication ab-
straction which they provide: for example, compare a simple
pipe with a complex publish-subscribe network. The other
is the extent of adaptation which the connector performs
across component interactions, and is observed in differences
and asymmetries between the abstractions exported to each
connected component. (Note that while a pipe exposes sub-
stantially different interfaces to its reader and writer ends,
their symmetry naturally permits a simple implementation.)

This latter trade-off also appears to trade re-usability:
pushing more adaptation into a connector couples it more
tightly to the components it is designed to adapt. However,

like all components, such connectors have internal structure;
a complex connector is likely to contain several simpler com-
ponents, many of which could well be general in nature and
therefore re-usable. The development of a novel connector is
therefore, as with developing a novel application, amenable
to simplification by re-use. We will explore this idea in the
final section.

5. SEPARATING CONCERNS
We have so far used the term “connection domain” in

a rather confusing manner. We have argued that separating
out the communicational concerns of components into some
such domain is an approach which mitigates coupling, espe-
cially if the domain supports adaptation. However, we have
also argued that connectors are simply a kind of component.
The latter might seem to imply that there is no such thing
as the connection domain.

To recover the notion of a connection domain, we must
fix our view at some level of abstraction. When we choose
a computational abstraction, such as a programming lan-
guage, instruction set or calculus, we fix on a set of primitive
connectors. The connection domain is the domain in which
bindings of these connectors are specified.

We have also been arguing that connection models
should be considered inseparable from component program-
ming models. Since primitive connectors are also somehow
represented in the component code, it is sets of primitive
connectors which tie connection models and component pro-
gramming models together.

To illustrate how these ideas fit together, we will first
return to a high-level view of software and the principle of
re-use, the realisation of which remains our goal.

5.1 Re-use, recursion and configuration
The re-use paradigm is inherently recursive in appli-

cability: a task which requires a novel output can often be
realised by a small amount of new implementation gluing
together re-used artifacts in novel configurations. We have
already noted in Sections 4.3 and 3.1.3 that components are
recursive – they have an internal structure which itself may
contain components.

Such composite components are frequently specified
using programming languages, as modules which depend on
other modules. Sometimes a module will do essentially noth-
ing other than wiring together a set of existing modules – the
main module in Allen and Garlan’s example is an instance
of this. Such modules are also frequently written in inter-
preted languages, like the Unix shell. However, there are
even simpler languages which can sometimes fill the same
role. One of the simplest is the language of command-line
arguments to a linker: it contains a list of object files, which
are implicitly wired by symbol matching.

We note that this latter language is clearly not Turing-
complete, and hence that this class of configuration lan-
guages is strictly larger than that of programming languages.
It includes architecture description languages (ADLs), com-
position languages, linkage languages and the like. Indeed,
such languages are often better at specifying composite com-
ponents, because their simplicity admits more automated
reasoning and doesn’t introduce unnecessary dynamism [11].

Logically, each component bound within a configura-
tion description may be implemented by another configura-
tion description (recursively) or else by code in an implemen-

tation language.8 Just as with implementation languages,
as we recurse deeper into lower levels of abstraction, the par-
ticular suitability of each configuration language may vary.
ADLs may therefore be thought of as higher-level configura-
tion languages, relative to lower-level linkage languages such
as Knit [28].

When we have been referring to the “connection do-
main”, we have therefore been referring to the domain of a
configuration language. This language need not be a pro-
gramming language, and specifying certain aspects of com-
munication within it may offer better mitigation of coupling.
Where many authors have argued for “first-class connec-
tors”, we argue for explicit configuration and suitable config-
uration languages. Questions remain of what features these
languages should have, and of how those features relate to
the features of programming languages.

Process

stream consumer

tuple

producer

tuple space

tuple-stream adapter

take_contiguous(n)

map project #2;

flatten

tuple space

(20, b100101…)

(21, b011000…)

(22, b111010…)

(24, b000110…)

…

out

read

Figure 2: A configuration connecting tuple output

and stream input

Figure 2 shows an example configuration with four key
features: connector binding, nested configurations, ad-hoc
adaptation and re-usable adaptation. The top-level config-
uration is a combination of two components, one outputting
tuples to a tuple space and the other wishing to read a bit-
stream, as might be used to handle out-of-order packet deliv-
ery in a network. The tuple producer outputs tuples of the
form (sequence no., bit string). The two components are
connected by a third component, specified as a configura-
tion of two smaller components and some ad-hoc adaptation.
The smaller components are a tuple store and a re-usable
adaptation component providing a take contiguous(n) pro-
cedure. The latter retrieves from the space a list of two-
tuples, each of whose first parts are sequentially numbered,
and whose second parts are bit-strings not exceeding n bytes
in total length. Some ad-hoc adaptation code projects out
the bit-strings and flattens the resulting structure into a
single string, which is handed to the stream reader as the
output of a read call.

8Note that not all configuration languages may support such
recursion. Indeed, many architecture description languages
intended solely for modelling cannot express references to
concrete component implementation. This is a cause of drift
[26].

5.2 Design of configuration languages
The design and implementation of configuration lan-

guages remains a highly active topic of research, despite the
many existing efforts [21, 1, 4, 28]. It is arguably the ma-
jor research topic in the areas of “software composition” or
“software connectors”. We now survey the goals and chal-
lenges in this area, as viewed from the position we have
stated thus far.

5.2.1 Notion of component
A configuration language must have some notion of

component. Since we have argued that components have
recursive structure, it should also have the property that
configured collections of components are also components.
We will call this the algebraic property, as have Achermann
et al [1].

5.2.2 Primitive connectors
In order to compose components at all, a configuration

language must have a notion of primitive connectors which
matches or subsumes the set of connectors found within
component code. Each component fills one or more roles
of some primitive connectors within its own code, but leaves
some roles free to be associated with corresponding roles
in other components. Since these bindings are expressed in
the configuration language, there must therefore be some
mapping from the primitive connectors in one or more com-
ponent programming models onto the notion of connectors
present in the configuration language.

This is what we have meant in saying that the com-
ponent programming model joins or meets the connection
model. Table 2 shows the primitive connectors found in var-
ious computational abstractions. We will shortly return to
the problem of choosing a suitable set of primitive connec-
tors.

5.2.3 Support for adaptation
We have argued that configuration languages should

support adaptation, of which we earlier identified three types
(Section 4.2.3). Of these, re-usable adaptation is naturally
supported by any configuration language with the algebraic
property – units of adaptation logic appear like any other
subcomponent. However, configuration languages often lack
support for the two other kinds of adaptation: ad-hoc adap-
tation and generated adaptation.

Ad-hoc adaptation is useful because it relaxes the need
for prior agreement on superficial differences of syntax and
behaviour. These differences are inevitable between inde-
pendent designs, but resolving them is sufficiently simple
that there is little value in re-using the adaptation logic. We
argue that ad-hoc adaptation of arguments [27] and protocol
[35] would make a useful addition to linkage languages such
as Knit (which already adapts between mismatched names).
Without this ability, the developer’s only option is to express
adaptation in an implementation language, either by modi-
fying the component source (which adds maintenance over-
head), or by interposing an entirely new component (which
adds unnecessary structural complexity).

Generated adaptation in the general case requires se-
mantically interface specifications, and there are not yet
common under contemporary development practices. It is
consequently often overlooked, except in constrained do-
mains: stub generation for remote procedure calls is a very

Computational

abstraction Primitive connectors

generic instruction set
architecture (ISA)

register file access
main memory access
shared I/O device register access
program counter increment
branch instruction
indirect branch instruction
interrupt

ISA-level virtual machine
(e.g. Xen domain)

register file shared storage
local memory access
shared memory access
program counter increment
branch instruction
indirect branch instruction
hypercall
upcall from hypervisor
software interrupt from user-space
upcall to user-space

C language global variable access
heap access
arbitrary memory access
statement sequencing
function call
indirect function call
longjmp

Pascal language global variable access
heap access
arbitrary memory access
statement sequencing
function/procedure call
indirect function/procedure call

Unix process virtual processor (sequencing, jumps,
branches, registers etc, as in host ISA)

virtual memory access (local)
virtual memory access (inter-process)
virtual memory access (trap to kernel)
filesystem access
sockets access
other system calls
signal handling
process replication (fork)
process replacement (exec)

Java language static field access
instance field access (through heap)
static method call
instance (virtual) method call
exception handling

Haskell language call-by-name evaluation

pi calculus synchronous rendezvous

Table 2: Example primitive connectors

common example. The generator is effectively a higher-
order component instantiated during construction of soft-
ware configurations, much like the higher-order connector
proposed by Lopes et al [19]. Both of these techniques
amount to a basic form of abstraction within the configura-
tion domain, and are therefore potentially useful language
features for simplifying the specification of complex config-
urations.

5.2.4 Property checking
Given a configuration of components, each with cer-

tain known properties, it is desirable to be able to derive
and test properties of the whole. Candidate properties span
the whole range of software’s extra-functional and correct-
ness properties: safety, liveness, termination, performance,
security, quality of service, extensibility, and many more.
There is already considerable work on each of these in var-
ious compositional settings. The real challenge is therefore

to support these kinds of checks wherever possible, with-
out compromising the level of component heterogeneity sup-
ported.

5.2.5 Heterogeneity and practicality
There are direct tensions between the need to sup-

port composition of heterogeneous components, and the de-
sire to support adaptation and property checking. The lat-
ter both benefit from increasing levels of semantic specifi-
cation and metadata in components. However, heteroge-
neous composition multiplies the complexity in supporting
these, by demanding the ability to comprehend all the var-
ious type systems and meta-models espoused by the many
languages, programming models and packaging standards of
both present and future.

Many industrial middlewares (such as Enterprise Java-
Beans or the CORBA Component Model) achieve interoper-
ability by enforcing some level of homogeneity: components
must all conform to the same model. As discussed in Section
4.2, this, like any standard in a domain of high innovation,
is severely limiting.

The usual solution is to push standardisation to the
meta-level: we pick a unifying model, and map each com-
ponent model into it. In the context of a configuration lan-
guage, this means unifying the component models’ primitive
connectors.

The practical benefit of configuration languages hinges
on the convenience and comprehensibility with which they
permit developers to express the required mappings, bind-
ings and adaptation. Choosing a unifying abstraction which
is too low-level will make the configuration language un-
wieldy; one which is too high-level will not be able to unify
the primitive connectors of some component models. Vari-
ants of the pi-calculus [24] have proved popular unifying
abstractions, as evidenced by Darwin [21] and Piccola [1].
It remains to be seen whether this approach will satisfy the
demands of adaptation and property checking for highly het-
erogeneous composition, or whether some other unifying ab-
straction will prove necessary.

5.3 Directions for future work
Here we outline some practical avenues for demonstrat-

ing the ideas we have developed, some of which we will be
pursuing in future work.

Role of the operating system The operating system has
an inherent role in composition of software, typically
providing services of linking, loading and dynamic load-
ing. Its privilege, low level, and language-agnostic na-
ture, together with its pervasiveness, suggest that it
could be an effective place to add support for config-
uration languages. It particularly suits a bias towards
heterogeneous, secure, dynamic and high-performance
composition.

Extensible checking The difficulties in supporting prop-
erty checking at the same time as highly heterogeneous
composition suggest that such checks might be better
implemented in an optional or pluggable fashion, anal-
ogously to pluggable type systems [3] and supporting
user extension.

Adaptation as the default The inclusion of adaptation
in configuration languages means that programmers

need not target any pre-existing interfaces when writ-
ing new components. Coding components against ide-
alised interfaces, with the expectation of adapting to
real ones nearer deployment time, might reduce the
overall incidental complexity of component and con-
figuration code, resulting in more maintainable and
reliable systems.

Refactoring legacy code Whatever new component pro-
gramming techniques are introduced, there is a wealth
of existing code which it remains desirable to re-use.
There is a possibility of developing automatic or semi-
automatic refactoring techniques to separate out com-
municational concerns, hence enabling more effective
re-use of this code.

Extensibility by interposition We have so far spoken lit-
tle about extensibility as distinct from re-use. The
discussed techniques of hierarchical composition and
configuration may hold useful approaches. Given suf-
ficiently fine granularity of decomposition, extension
can generally be implemented at the configuration level
as interposition. A worthwhile challenge would there-
fore be to quantify and minimise the possible per-
formance or maintenance disadvantages of such fine-
grained decomposition.

6. CONCLUSIONS
We have precisely characterised connectors, resolving

many ambiguities and inconsistencies in the literature and
contradicting the popular assumption that components and
connectors are disjoint. We have overviewed the relationship
between connectors and coupling, described the techniques
for overcoming coupling and achieving re-use, and argued
the relevance of adaptation. We have identified the class of
configuration languages and stated their relevance to con-
nection, proposing explicit configuration and suitable con-
figuration languages as a more meaningful manifesto than
“first-class connectors”. Finally, we motivated some direc-
tions for future work.

7. ACKNOWLEDGMENTS
I am grateful for feedback and encouragement I have

received from my supervisor, Dr David Greaves. The fi-
nal version of this paper has greatly benefited from proof-
reading by Derek Murray, Henry Robinson and Tope Omi-
tola. I would also like to thank the anonymous reviewers for
their helpful comments.

8. REFERENCES
[1] F. Achermann and O. Nierstrasz. Applications =

components + scripts. In Software Architectures and
Component Technology, pages 261–292. Kluwer, 2001.

[2] R. Allen and D. Garlan. A formal basis for
architectural connection. ACM Transactions on
Software Engineering and Methodology, 6(3):213–249,
1997.

[3] C. Andreae, J. Noble, S. Markstrum, and T. Millstein.
A framework for implementing pluggable type
systems. ACM SIGPLAN Notices, 41(10):57–74, 2006.

[4] F. Arbab and F. Mavaddat. Coordination through
channel composition. Coordination Languages and
Models: Proc. Coordination, 2315:21–38, 2002.

[5] M. Barbosa and L. Barbosa. Specifying software
connectors. 1st International Colloquium on
Theorectical Aspects of Computing (ICTAC ’04),
pages 53–68, 2004.

[6] J. Callahan and J. Purtilo. A packaging system for
heterogeneous execution environments. Software
Engineering, IEEE Transactions on, 17(6):626–635,
1991.

[7] N. Carriero and D. Gelernter. Linda in context.
Communications of the ACM, 32(4):444–458, 1989.

[8] L. de Alfaro and T. Henzinger. Interface automata.
Proceedings of the 8th European software engineering
conference, pages 109–120, 2001.

[9] R. DeLine. Avoiding packaging mismatch with flexible
packaging. Software Engineering, IEEE Transactions
on, 27(2):124–143, 2001.

[10] S. Edwards and B. Weide. WISR8: 8th annual
workshop on software reuse: summary and working
group reports. ACM SIGSOFT Software Engineering
Notes, 22(5):17–32, 1997.

[11] E. Eide, A. Reid, J. Regehr, and J. Lepreau. Static
and dynamic structure in design patterns. Proceedings
of the 24th international conference on Software
engineering, pages 208–218, 2002.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA, 1995.

[13] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
mismatch or why it’s hard to build systems out of
existing parts. Proceedings of the 17th international
conference on Software engineering, pages 179–185,
1995.

[14] D. Gelernter and N. Carriero. Coordination languages
and their significance. Communications of the ACM,
35(2):97–107, 1992.

[15] S. Gorlatch. Send-receive considered harmful: Myths
and realities of message passing. ACM Transactions
on Programming Languages and Systems (TOPLAS),
26(1):47–56, 2004.

[16] C. Haack, B. Howard, A. Stoughton, and J. Wells.
Fully automatic adaptation of software components
based on semantic specifications. Algebraic
Methodology & Softw. Tech., 9th Int’l Conf., AMAST,
2002.

[17] M. Henning. The rise and fall of CORBA. ACM
Queue, 4(5):28–34, 2006.

[18] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, 11th European Conference in
Object Oriented Programming, volume 1241, pages
220–242, Berlin, Heidelberg, and New York, 1997.
Springer-Verlag.

[19] A. Lopes, M. Wermelinger, and J. Fiadeiro.
Higher-order architectural connectors. ACM
Transactions on Software Engineering and
Methodology, 12(1):64–104, 2003.

[20] D. Luckham, J. Kenney, L. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and analysis of
system architecture using Rapide. IEEE Transactions
on Software Engineering, 21(4):336–354, 1995.

[21] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying distributed software architectures.
Proceedings of the 5th European Software Engineering
Conference, pages 137–153, 1995.

[22] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: new-age
components for old-fasioned Java. Proceedings of the
16th ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications,
pages 211–222, 2001.

[23] N. Mehta, N. Medvidovic, and S. Phadke. Towards a
taxonomy of software connectors. Proceedings of the
22nd international conference on Software
engineering, pages 178–187, 2000.

[24] R. Milner, J. Parrow, and D. Walker. A calculus of
mobile processes, i. Information and Computation,
100(1):1–40, 1992.

[25] D. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053–1058, 1972.

[26] D. Perry and A. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40–52, 1992.

[27] J. Purtilo and J. Atlee. Module reuse by interface
adaptation. Software - Practice and Experience,
21(6):539–556, 1991.

[28] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide.
Knit: Component composition for systems software.
Proc. of the 4th Operating Systems Design and
Implementation (OSDI), pages 347–360, 2000.

[29] R. Reussner. Automatic component protocol
adaptation with the CoConut/J tool suite. Future
Generation Computer Systems, 19(5):627–639, 2003.

[30] C. Shannon and W. Weaver. A mathematical theory
of communication. University of Illinois Press, 1949.

[31] M. Shaw. Procedure calls are the assembly language of
software interconnection: Connectors deserve
first-class status. In ICSE Workshop on Studies of
Software Design, pages 17–32, 1993.

[32] M. Shaw. Architectural issues in software reuse: It’s
not just the functionality, it’s the packaging.
Proceedings of the IEEE Symosium on Software
Reusability, 1995.

[33] H. Sutter and T. Plum. Why we can’t afford export.
ISO C++ committee paper ISO/IEC
JTC1/SC22/WG21 N1426, Mar. 2003.

[34] T. Ts’o. Microsoft “embraces and extends” Kerberos
v5. Usenix ;login: Windows NT Special Issue, Nov.
1997.

[35] D. Yellin and R. Strom. Protocol specifications and
component adaptors. ACM Transactions on
Programming Languages and Systems, 19(2):292–333,
1997.

[36] N. Zelnick. Nifty technology and nonconformance: the
web in crisis. Computer, 31(10):115–116, 1998.

