and the Art of Virtualization

Ian Pratt XenSource Inc and University of Cambridge

Outline

- Xen today
- Benchmarks
- New features
- Roadmap
- Questions

Xen Architecture

Xen 3.0 Highlights

- i686, x86_64 and ia64 support
 - Power support ready to merge
- Leading performance
- Secure isolation and QoS control
- SMP guests
- Hotplug CPUs, memory and devices
- Guest save/restore and live relocation
- VT/AMDV support: "HVM"
 - Run unmodified guest kernels
 - Supports progressive paravirtualization

Xen Use Cases

Xen 3 API support

- Linux 2.6.16/17/18 and -rc/-tip
- 2.6.5 2.6.9.EL 2.4.21.EL
- Available in distros: FC4, FC5, FC6,
 SuSELinux10, SLES10, Ubuntu, Gentoo,...
- NetBSD 3, FreeBSD 7.0, OpenSolaris 10, Plan9, minix, ...
- Linux upstream submission process agreed at Kernel Summit

specjbb2005

dbench

Kernel build

32b PAE; Parallel make, 4 processes per CPU

HVM Architecture

Progressive paravirtualization

- Hypercall API available to HVM guests
- Selectively add PV extensions to optimize
 - Net and Block IO
 - XenPIC (event channels)
 - MMU operations
 - multicast TLB flush
 - PTE updates (faster than page fault)
 - Page sharing
 - Time
 - CPU and memory hotplug

PV Drivers

PV Driver performance

Measured with ttcp, 1500 byte MTU

HVM Performance

- Very application dependent
 - 5% SPECJBB (0.5% for fully PV)
 - OS-intensive applications suffer rather more
 - Performance certainly in-line with existing products
 - Hardware support gets better every new CPU
- More optimizations forthcoming
 - "V2E" for trap-intensive code sequences
 - New shadow pagetable code

Shadow Pagetables

Virtual Disk Storage

- Most admins use LVM LV's to store guest images
 - Not as intuitive as using files
 - Using 'loop' driver is dangerous, as is dm-snap for CoW
- "Blktap" provides an alternative :
 - Allows all block requests to be serviced in userspace using zero-copy AIO approach

Blktap and tapdisk plug-ins

- Char device mapped by user-space driver
- Request/completion queues and data areas
- Grant table mapping for zero-copy to/from guest

- Flat files and qcow
- Sparse allocation, CoW, encryption, compression
- Correct metadata update safety
- Optimized qcow format

Blktap IO performance

Time API

- Shared info page contains per VCPU time records
 - "at TSC X the time was Y, and the current TSC frequency has been measured as Z"
 - gettime: Read current TSC and extrapolate
- When VCPUs migrate, update record for new physical CPU
- Periodic calibration of TSC's against pit/hpet
 - Works even on systems with un-synced TSCs
 - Update record after CPU frequency changes (p-state)
 - Also, resynchronize records after CPU halt
 - Only issue is thermal thottling

Current Xen Status

	x86_32	x86_32p	x86_64	IA64	Power
Privileged Domains					
Guest Domains					
SMP Guests					
Save/Restore/Migrate					
>4GB memory					
Progressive PV					
Driver Domains					

Xen Development Roadmap

- Performance tuning and optimization
 - Particularly for HVM and x86_64
- Enhanced control stack
- More automated system tuning
- Scalability and NUMA optimizations
- Better laptop/desktop support
 - OpenGL virtualization, power management
- Network optimziations

IO Virtualization

- IO virtualization in s/w incurs overhead
 - Latency vs. overhead tradeoff
 - More of an issue for network than storage
 - Can burn 10-30% more CPU than native
- Direct h/w access from VMs
 - Multiplexing and protection in h/w
 - Xen infiniband support
 - Smart NICs / HCAs

Xen Research Projects

- Whole-system pervasive debugging
 - Lightweight checkpointing and replay
 - Cluster/distributed system debugging
- Software implemented h/w fault tolerance
 - Exploit deterministic replay
 - Explore possibilities for replay on SMP systems
- Multi-level secure systems with Xen
 - XenSE/OpenTC : Cambridge, Intel, GCHQ, HP, ...
- VM forking
 - Lightweight service replication, isolation
 - UCSD Potemkin honeyfarm project

Conclusions

- Xen is a complete and robust hypervisor
- Outstanding performance
- Excellent resource control and protection
- Vibrant development community
- Strong vendor support
- Try the Xen demo CD to find out more! (or Fedora, SuSE, SLES etc)
- http://xensource.com/community

Thanks!

If you're interested in working on Xen we're looking for developers to work in the University of Cambridge, and also XenSource's UK and US offices.

ian@xensource.com