Hen and the Art of
Virtualization

lan Pratt

University of Cambridge
and XenSource

25 UNIVERSITY OF

i ﬁ

¢¥ CAMBRIDGE

Outline

Virtualization Overview
Xen Architecture

VM Relocation deep dive
Debugging and profiling
Xen Research

Demo

Questions

Virtualization Overview

Single OS image: OpenV/Z, Vservers, Zones
Group user processes into resource containers
Hard to get strong isolation

Full virtualization: VMware, VirtualPC, QEMU
Run multiple unmodified guest OSes
Hard to efficiently virtualize x86
Para-virtualization: Xen

Run multiple guest OSes ported to special arch
Arch Xen/x86 is very close to normal x86

Virtualization Benefits

.......................

Consolidate under-utilized servers

Avoid downtime with VM Relocation

Dynamically re-balance workload
to guarantee application SLAs

Enforce security policy

Virtualization Possibilities

Standing outside the OS looking in:
Firewalling / network IDS / Inverse Firewall
VPN tunneling; LAN authentication
Virus, mal-ware and exploit detection
OS patch-level status monitoring
Performance monitoring and instrumentation
Storage backup and optimization
Debugging support

Virtualization Benefits

Separating the OS from the hardware

Users no longer forced to upgrade OS to run on
latest hardware

Device support is part of the platform
Write one device driver rather than N
Better for system reliability/availability
Faster to get new hardware deployed

Enables “Virtual Appliances”
Applications encapsulated with their OS
Easy configuration and management

Xen 3.0 Highlights

x86, x86_64, iab4 and initial Power support
Leading performance

Secure isolation and QoS control

SMP guest OSes

Hotplug CPUs, memory and devices

Guest save/restore and live relocation

VT/AMDV support: "HVM"

Run unmodified guest kernels
Support for progressive paravirtualization

Xen 3.0 Architecture

VMO VM1 VM2 VM3

AGP
ACPI Back-End
PCI Native
Device Front-End Front-End
Drivers Device Drivers Device Drivers evice s VT-X
x86_32
XI8:€£6I4 Xen Virtual Machine Monitor

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Para-Virtualization in Xen

Xen extensions to x86 arch
Like x86, but Xen invoked for privileged ops
Avoids binary rewriting
Minimize number of privilege transitions into Xen
Modifications relatively simple and self-contained

Modify kernel to understand virtualised env.
Wall-clock time vs. virtual processor time
Desire both types of alarm timer

Expose real resource availability
Enables OS to optimise its own behaviour

Xen 3 API support

Linux 2.6.16/17/18 and -rc/-tip
2.6.5 2.6.9.EL 2.4.21.EL

Available in distros: FC4, FC5, FC6,
SuSELinux10, SLES10, Ubuntu, Gentoo, ...

NetBSD 3, FreeBSD 7.0, OpenSolaris 10,
Plan9, minix, ...

Linux upstream submission process
agreed at Kernel Summit

Xen 2.0 Architecture

VMO

VM3

Back-Ends

VM1 VM2
Native

Device Front-End Front-End Front-End
Drivers Device Drivers Device Drivers Device Drivers

Xen Virtual Machine Monitor

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

1/O Architecture

Xen [0-Spaces delegate guest OSes protected
access to specified h/w devices

Virtual PCI configuration space
Virtual interrupts
(Need IOMMU for full DMA protection)

Devices are virtualised and exported to other
VMs via Device Channels

Safe asynchronous shared memory transport
‘Backend’ drivers export to ‘frontend’ drivers
Net: use normal bridging, routing, iptables
Block: export any blk dev e.g. sda4,loop0,vg3

(Infiniband / “"Smart NICs” for direct guest I0)

Relative score to Linux

System Performance

1.1

1714

518

N~ [N
O O
N n

554
550
263
271
1633
514

1.0

0.9

0.8

0.7

0.6

0.5

0.4

172

0.3

B06

0.2

0.1

0.0
L X Vv U L X Vv U L X Vv U L X V U

SPEC INT2000 (score) Linux build time (s) OSDB-OLTP (tup/s) SPEC WEB99 (score)

Benchmark suite running on Linux (L), Xen (X), VMware Workstation (V), and UML (U)

specjbb2005

9000
8000

0.53% 0.73%

M Xen

7000
6000
5000 -
4000
3000 -
2000
1000 -

0

Opteron P4 Xeon

dbench

300

B Native
M Xen

250

200 A

MB/s
-
(03]
o

100 -

1 2 4 8 16 32
processes

Kernel build

350

300

5%

Native

M Xen

32b PAE; Parallel make,
4 processes per CPU

8%

13%

r

18 /0 30/

|

Virtual CPUs

6

Source: ¥enSource, Inc: 10/06

Relative score to Linux

TCP results

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

897
897
897
897
602
544

516

615

29

203

165
101

61

L X Vv U L X Vv U L X Vv U L X \Y U
Tx, MTU 1500 (Mbps) Rx, MTU 1500 (Mbps) ~ Tx, MTU 500 (Mbps) Rx, MTU 500 (Mbps)

TCP bandwidth on Linux (L), Xen (X), VMWare Workstation (V), and UML (U)

Scalability

Aggregate number of conforming clients

1000

800

600

400

1001

924

~ \O
2 2 g g
]
[]
i]
mE -
- -]
Bl -
]]
]
L X L X L
4 8

Simultaneous SPEC WEB99 Instances on Linux (L) and Xen(X

—_
D

~—"

Scalability

Scaling many domains
— One domain per processor core, 1 to many cores/domains

— Presented data showing problems at OLS on 64-bit domains
Since then, tested 32-bit domains, which look fine

64-bit did not scale because of excessive TLB flushes, which put too much pressure on global
update of tlbflush_clock in Xen. Jun has fixed with TLB global bit patch —no need to flush all TLB
entries for syscalls, etc, which also does not update tlbflush_clock. Patch also improves single
domain performance by keeping user TLB entries.

dhenchd absolute —- tlh-global?

Big jump with less atomic updates to tlbflush_clock

\

~

I clom1_11225
0 dom2_11225
I clomS_11225
N clomd _11225
@ domS_11225
N domiE_11225
O dam?_11225

C—Jdorml_11929
N clom2_11929
[dom3_11929
N clomd_11929
A dom5_11929
[domb_11929
T dom?_11929

64-bit Xen
Paxville processors
1 domain/processor core
P vCPUs/domain, 1 per hyperthread
8 cores total

e T _ni At e
ﬁ,ﬂﬁ fﬁnﬂ ﬁ,ﬂﬁ ﬁnﬁ fﬁnﬁ

o :}m‘“‘i P mei - :w““{ P Mﬂ Wxi i Wxi

s

1st core for domO

Scalability

« Scaling a large domain, 1 to many vCPUs

Elimination of writable page-tables in xen-unstable helps a lot (red bars below)
but still have significant scaling problems beyond 6-way

Now need fine grain locking in mm functions; should be easier to implement with
writable page-tables gone. (green bars have domain big-lock removed)

TLB global bit optimization also helps scalability (blue bars)

reaim_fzerver ahsolute - - xenl-scaling-11433

24000

22000 1

20000

15000 H

16000 H

14000

12000 4

Throughput

10050

3000 +

G000 +

4000

20004

I 450 11433
0 =460_1144353-nobiglock
N 4501143353 -nobiglock -global=

Need to confirm this data point

64-bit Xen
- Paxville processors
— 2-way = 1 processor core
4-way = 2 cores, etc,
(HT enabled)
8 cores total

x86 32

Xen reserves top of

4GB xen S VA space
ernel S | Segmentation
3GB ‘ A protects Xen from
LRl kernel
User Uu|2€ | © System call speed
= unchanged
0GB

Xen 3 now supports
PAE for >4GB mem

x86 64

64

264_247

247

Large VA space makes life
Kernel U a lot easier, but:
No segment limit support
Xen S Need to use page-level
Reserved ~ protection to protect
hypervisor
User U

x86 64

r3

r3

rO

User

U

A

A

Kernel

U

syscall/sysret

Xen

S

Run user-space and kernel in
ring 3 using different
pagetables

Two PGD’s (PML4's): one with
user entries; one with user
plus kernel entries
System calls require an
additional syscall/ret via Xen

Per-CPU trampoline to avoid
needing GS in Xen

x86 CPU virtualization

Xen runs in ring 0 (most privileged)
Ring 1/2 for guest OS, 3 for user-space
GPF if guest attempts to use privileged instr

Xen lives in top 64MB of linear addr space

Segmentation used to protect Xen as switching
page tables too slow on standard x86

Hypercalls jump to Xen in ring 0

Guest OS may install ‘fast trap’ handler
Direct user-space to guest OS system calls

MMU virtualisation: shadow vs. direct-mode

Para-Virtualizing the MMU

Guest OSes allocate and manage own PTs
Hypercall to change PT base

Xen must valic

ate PT updates before use

Allows incremental updates, avoids revalidation

Validation rules applied to each PTE:
1. Guest may only map pages it owns*
2. Pagetable pages may only be mapped RO

Xen traps PTE
‘unhooks’ PTE

updates and emulates, or
page for bulk updates

MMU Virtualization

guest reads

: Direct-Mode

it 7 '\%rtual — Machine
guest writes
... \— Guestos
... Xen VMM
Hardware

MMU

Writeable Page Tables : 1 — Write faulit

guest reads

\/ '\%rtual — Machine

first guest

write \ Guest OS

page fault
Xen VMM

Hardware

MMU

Writeable Page Tables : 2 - Emulate?

guest reads

\/ '\%rtual — Machine

first guest

write \ Guest OS

yes
emulate?

Xen VMM

Hardware

MMU

Writeable Page Tables : 3 - Unhook

guest reads

\ 1 |
guest writes X \%rtual — Machine

... \

Guest OS

Xen VMM

MMU

Hardware

Writeable Page Tables : 4 - First Use

guest reads

s\\\\\\ 1 |
guest writes X \%rtual — Machine

.. \

Guest OS

page fault

Xen VMM

MMU

Hardware

Writeable Page Tables : 5 - Re-hook

guest reads

guest .writes\ _—

N

\%rtual — Machine

A

|
|
vV validate

Guest OS

Xen VMM

MMU

Hardware

Relative score to Linux

MMU Micro-Benchmarks

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.88
143

C || 21400

L X \'% u L X \'%

Page fault (us) Process fork (us)

Imbench results on Linux (L), Xen (X), VMWare Workstation (V), and UML (U)

SMP Guest Kernels

Xen support multiple VCPUs per guest
Virtual IPI's sent via Xen event channels
Currently up to 32 VCPUs supported

Simple hotplug/unplug of VCPUs
From within VM or via control tools

Optimize one active VCPU case by binary
patching spinlocks

NB: Many applications exhibit poor SMP
scalability — often better off running
multiple instances each in their own OS

SMP Guest Kernels

Takes great care to get good SMP performance
while remaining secure

Requires extra TLB syncronization IPIs

SMP scheduling is a tricky problem

Wish to run all VCPUs at the same time

But, strict gang scheduling is not work conserving

Opportunity for a hybrid approach
Paravirtualized approach enables several
important benefits

Avoids many virtual IPIs

Allows ‘bad preemption’ avoidance

Auto hot plug/unplug of CPUs

Driver Domains

VMO VM1 VM2 VM3

Driver
Domain

Back-End

Back-End

Native

Native
Device
Driver

Front-End
Device Drivers

Front-End
Device Drivers

Device

Driver ‘

Safe HW IF Event Channel
C c c - 0 0

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Device Channel Interface

Guest Requests DMA:

1. Grant Reference for Page P2 placed on device channel
2. IDD removes GR

3. Sends pin request to Xen

Guest OS Isolated
1 GR GR\ - Device Driver
P1 P2 GR|
Grant Table s Device Channel =
Xen _ - 4 A |
P1 P2 . ‘7
Active Grant Table ‘
Device Device Device

4. Xen looks up GR in active grant table

5. GR validated against Guest (if necessary)
6. Pinning is acknowledged to IDD

7. IDD sends DMA request to device

Isolated Driver VMs

Run device drivers in
separate domains

Detect failure e.g.
Illegal access
Timeout

Kill domain, restart

E.g. 275ms outage
from failed Ethernet
driver

350

W
o
o

\e}
(o)
o

200

150

-
o
o

packet inter-arrival latency (ms)

(&)
o

o

I

40

10 Virtualization

IO virtualization in s/w incurs overhead

Latency vs. overhead tradeoff
More of an issue for network than storage

Can burn 10-30% more CPU than native
Direct h/w access from VMs
Multiplexing and protection in h/w

Xen infiniband support
Smart NICs / HCAs

Smart NICs e.g. Solarflare

Accelerated routes set up by Dom0
Then DomU can access hardware directly

NIC has many Virtual Interfaces (VIs)
VI = Filter + DMA queue + event queue

Allow untrusted entities to access the NIC
without compromising system integrity

DomO DomU DomU DomO DomU DomU

r - o |

| t — T
| ——

| = = = = "Hypervisor . I " Hypervisor

v

Hardware v Hardware

Early results

1400 -
1200
1000 -
800 -
600 -
400 -
2001
0-

STREAM rx STREAM tx TCP/RR B Vanilla Xen
(Mbps) (Mbps) (trans per |5 et Guest 10

100ms) B Xen DomO

CPU Usage

140 -
120-
100-
E Vanilla Xen
80 (DomO0+DomU)
O Direct Guest 10
60 - (Dom0O + DomU)
M Xen DomO
40- (Dom0O0)
201
0_

STREAM rx STREAM tx TCP/RR

VT-x/ AMD-V : hvim

Enable Guest OSes to be run without modification
E.g. legacy Linux, Windows XP/2003

CPU provides vmexits for certain privileged instrs
Shadow page tables used to virtualize MMU

Xen provides simple platform emulation
BIOS, apic, iopaic, rtc, Net (pcnet32), IDE emulation

Install paravirtualized drivers after booting for
high-performance IO

Possibility for CPU and memory paravirtualization
Non-invasive hypervisor hints from OS

HVM Architecture

Domain 0

Linux xen64

<

(@)
336 |58
><== o <

= oy
gma ® o
o OQiln @
N’

Native
Device
Drivers

Domain N

Linux xen64

19ALIP [ENMIA
puayoeg

sioALIQ
|enUIA pus juo.d

Native
Device
Drivers

Guest VM (VMX)
(32-bit)

Guest VM (VMX)
(64-bit)

Unmodified OS

Unmodified OS 3D

Virtual Platform

Virtual Platform

VMEXit

PIC/APIC/IOAPIC
emulation

VMEXit

Control Interface

Scheduler

Event Channel

Hypercalls

Processor

Xen Hypervisor

I/0: PIT, APIC, PIC, IOAPIC

Progressive paravirtualization

Hypercall API available to HVM guests

Selectively add PV extensions to optimize
Net and Block IO
XenPIC (event channels)

MMU operations
multicast TLB flush
PTE updates (faster than page fault)
Page sharing

Time

CPU and memory hotplug

PV Drivers

Domain 0 Domain N Guest VM (VMX) Guest VM (VMX)
(32-bit) (64-bit)

Linux xen64

ERTEY- Unmodified OS = Unmodified OS
< g S 8-CSD nmoairtie nmoairtie 3D
225|28 Linux xen64

n n
o m o m
— = S ==
S & £ g E
e 2 \& \&
<) 9o
2% S 2
Native g9 Native | | & <
Device s e Device = Virtual Platform Virtual Platform
Drivers = Drivers o

VMEXit

PIC/APIC/IOAPIC
emulation

VMEXit

Scheduler Event Channel Hypercalls

I/0: PIT, APIC, PIC, IOAPIC

Control Interface

Processor

Xen Hypervisor

HVM 1/0 Performance

1000

900 +—
Brx BEtx

800 A

700 1

600 A

500 1

Mb/s

400

300

200

100

ijoemu PV-on-HVM PV

Measured with ttcp, 1500 byte MTU Source: XenSource, Sep 06

IOEmu stage #

Domain 0

Linux xen64

x
B'UQ
x 8 3
33
i
s
N’

Domain N

Linux xen64

Native
Device
Drivers

19ALIP [ENMIA
puayoeg

m

1

o

=

5o

: s a
Native a <
Device =
. c
Drivers o

(32-bit)

2 Guest VM (VMX) Guest VM (VMX)

(64-bit)

S19AlIQg

Unmodified OS

3D

siaALIQ
jlenliA 34

| 1enuip 34

Virtual Platform

Virtual Platform

oD

- VMExXxit

|O Emulation |O Emulation

VMEXxit

Control Interface

Scheduler

Event Channel

Hypercalls

Processor

Xen Hypervisor

I/0: PIT, APIC, PIC, IOAPIC

HVM Performance

Very application dependent
5% SPECIBB (0.5% for fully PV)
OS-intensive applications suffer rather more

Performance certainly in-line with existing
products

Hardware support gets better every new CPU
More optimizations forthcoming

“V2E" for trap-intensive code sequences
New shadow pagetable code

Full Virtualization

Shadow2 code shows vast improvement in processor performance/scaling
— Boosts single domain throughput significantly -Dbench (running in tmpfs filesystem, NO 1/0)

— Many HVM domain scalability also improved dramatically
« 1to7 HVMs scaled 1 : 6.47 with shadow2. Same test scaled 1 : 2.63 with old shadow code

dbenchad multi- domU summary
2400
I ciom
22004 I T
BoE 25 [e
2000 - [e
570 3 1 clom3
1800 - S— [e
m
> = clomé
Lotk 48135 1 hwmd
§ i HVM, original shadow B oS
[ra]
 — T
= HVM shadow?2 387.4%
S 1200 oo
(=8
-E 322 o) C— hvmB
.E 1000 260 9% Bl L 1 dom?
= s hvm?
a0 - 243 9%
196 7% .
600 TG 32-bit PAE Xen
l ' Paxville processors
4004 003 v 20 Uniprocessor domains,
] 8zaz st 57.2% B4 4% R One domain/core.
2001 oo 8 cores total
|_] 1st core for dom0
0- I r I . . I r - n - T HT not used
1 2 3 4 5 6 7 SMP HVM not stable
Number of domains

Shadow Pagetables

guest reads Virtual — Pseudo-physical
p S N pny
ad

guest writes Guest OS

Accessed & Updates
dirty bits
|~ Virtual - Machine

Hardware

Virtual Disk Storage

LVM Logical Volumes are typically used to store
guest virtual disk images today

Not as intuitive as using files

Copy-on-write and snapshot support far from ideal
Storing disk images in files using Linux’s “loop”
driver doesn’t work well
The "Blktap” driver new in Xen 3.0.3 provides an
alternative :

Allows all block requests to be serviced in user-space
using zero-copy AIO approach

Blktap and tapdisk plug-ins

BlkTapctrl

Char device mapped by
user-space driver

Request/completion
queues and data areas

Grant table mapping for
zero-copy to/from guest

Flat files and gcow

Sparse allocation, CoW,
encryption, compression

Correct metadata update
safety

Optimized gcow format

Blktap 10 performance

60
ol Blkback Partition
B ap ALO Partizion
40 B | copback file
ETap ALO File
30 T B Ocov Mormal
B Dcow Optimised
20 T
Blkback Partition
10 1= B ap ALO Partizion
B | copback file
0 T T T T T T T T T T T T ._EID ALO File
o & ts\ 'Q‘-@ S @b o) t:z\@ . ;S@ S e’b
{-&} {&} & D“(D(dx‘ ((-\\‘:: SO {&} & D“(G(((‘ ((-\\‘:: B Qcow Mormal
SR CO ST - S @ P P oS (':;'} B cow Upumised
e L P A o X4 Q‘?‘ . A v o

Time API

Shared info page contains per VCPU time
records

“at TSC X the time was Y, and the current TSC
frequency has been measured as Z"

gettime: Read current TSC and extrapolate

When VCPUs migrate, update record for new
physical CPU

Periodic calibration of TSC's against pit/hpet
Works even on systems with un-synced TSCs
Update record after CPU frequency changes (p-state)
Also, resynchronize records after CPU halt
Only issue is thermal thottling

Xen Tools

domO domf1
CIM xm Web svcs
xend
builder control save/ control
restore
libxc
I

Priv Cmd Back [€® xenbus [------c-ommomomoo-o-oo ---| xenbus » Front

dom0_op
Xen

VM Relocation : Motivation

VM relocation enables:
High-availability
Machine maintenance

Load balancing
Statistical multiplexing gain

Assumptions

Networked storage
NAS: NFS, CIFS
SAN: Fibre Channel
ISCSI, network block dev
drdb network RAID

Good connectivity
common L2 network
L3 re-routeing

Storage

Challenges

VMs have lots of state in memory
Some VMs have soft real-time
requirements
E.g. web servers, databases, game servers
May be members of a cluster quorum
Minimize down-time
Performing relocation requires resources
Bound and control resources used

Relocation Strategy

Stage 0:

pre-migration

—

!

VM active on host A
Destination host selected

Stage 1:

reservation

(Block devices mirrored)

!

Initialize container on

Faraotr hact

Stage 2:

iterative pre-copy

LUyl TT1vol

<

I

Copy dirty pagesin

Stage 3:

stop-and-copy

SUCCESSIVE rounds
Suspend VM on host A

!

Redirect network traffic

Stage 4:

commitment

YRV EREBINRGsBiRte

A AR

VM state on host A
released

Pre-Copy Migration: Round 1

Pre-Copy Migration: Round 1

—— [r——

Pre-Copy Migration: Round 1

Pre-Copy Migration: Round 1

Pre-Copy Migration: Round 1

-

[
=

Pre-Copy Migration: Round 2

[I::I
= [
I::| [
[I:I [

Pre-Copy Migration: Round 2

Pre-Copy Migration: Round 2

I_hu
[] I:||:|

Pre-Copy Migration: Round 2

Pre-Copy Migration: Round 2

Pre-Copy Migration: Final

Writable Working Set

Pages that are dirtied must be re-sent

Super hot pages
e.g. process stacks; top of page free list

Buffer cache
Network receive / disk buffers

Dirtying rate determines VM down-time
Shorter iterations — less dirtying — ...

Rate Limited Relocation

Dynamically adjust resources committed
to performing page transfer

Dirty logging costs VM ~2-3%

CPU and network usage closely linked
E.qg. first copy iteration at 100Mb/s, then
increase based on observed dirtying rate

Minimize impact of relocation on server while
minimizing down-time

Throughput (Mbit/sec)

Web Server Relocation

1000

800

600

400

200

870 Mbit/sec

512Kb files

100 concurrent clients

|
10

|
20

Effect of Migration on Web Server Transmission Rate
1st precopy, 62 secs further iterations.

30

" 9.8 '
765 Mbit/sec secs

694 Mbit/sec

—| — 165ms total downtime

Sample over 100ms

. Sample over 500ms
| | | | | | T | |
40 50 60 70 80 90 100 110 120

Elapsed time (secs)

130

Transfer Rate (Mbit/sec)

g
i

Iterative Progress: SPECWeb

Iterative Progress of Live Migration: SPECweb99
350 Clients (90% of max load), 800MB VM
Total Data Transmitted: 960MB (x1.20)

Area of Bars:

500

i

=

=
i

g

In the final iteration, the domain is suspended. The remaining
18.2 MB of dirty pages are sent and the VM resumes execution
on the remote machine. In addition to the 201ms required to

5
il

0

18.2 MB

i VM ’““"‘Z_‘",”Z”:‘E,“’d — copy the last round of data, an additional 9ms elapse while the | ——

Memory dirtied during this iteration VM starfs up. ThE TGFSI I:TGW”H'J’HE fﬂf ch'S EXﬁEH'mEﬂf j'g 201"}3_ M.zMB

242 MB = |
The first iteration involves a long, relatively low-rate transfer of
the VM's memory. In this example, 676.8 MB are transfered in
54.1 seconds. These early phases allow non-writable working
set data to be transfered with a fow impact on active services. SeamEE
126.7 MB 29.0 MB

0 50 55 &0 85
VS 28 Elapsed Time (sec)

400

350

Transfer Rate (Mbit/sec)
g g g

o
(=1

Iterative Progress: Quake3

6 Clients, 64MB VM

Total Data Transmitted: 88MB (x1.37)

Areaof Bars;

[¥vM memary transfered
Memaory dirtied during this iteration

_lterative Progress of Live Migration: Quake 3 Server

The final iteration in this case leaves only 148KB of data fo
fransmit. In addition to the 20ms required to copy this last
round, an additional 40ms are spent on start-up overhead. The
total downtime experienced is 60ms.

1.2 MB

e |

56.3 MB

45

I
5.5

Elapsed Time (sec)

204 MB

4.6MB| i

6.5

|D.1 MEI
0.2 M_B

0.8 MB

Quake 3 Server relocation

Packet interarrival time during Quake 3 migration

$0.12 7

b £ A 2
2 01 S 4 % § ., 9
) R © 2
£ 0.08 7 o || E s} =
= S || 2 = 3
)
= 0.04 —
Lo.02 4
&
a 0 7 | | | | | | |

o
—
o
N
o

30 40 50 60 70
Elapsed time (secs)

System Debugging on Xen

Guest crash dump support
Post-mortem analysis

gdbserver
No need for a kernel debugger

Xentrace
Fine-grained event tracing
xenmon/xentop

Xen oprofile
Sample-based profiling

Xen Oprofile

Oprofile
report

OProfile
1PC CET [PC sample
| HW event| _HW event

Sample-based profiling for the whole system

Xen Oprofile example

CPU: P4 / Xeon with 2 hyper-threads, speed 2794.57 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events with a unit mask of 0x01 (mandatory) count 1000000

samples % image name app name symbol name
30353 12.0434 domainl-kernel domainl-kernel - copy_to_user_ll
7174 2.8465 xen-syms-3.0-unstable xen-syms-3.0-unstable do_grant_table_op
6040 2.3965 vmlinux-syms-2.6.16.13-xen0 vmlinux-syms-2.6.16.13-xen0 net_tx_action
5508 2.1854 xen-syms-3.0-unstable xen-syms-3.0-unstable find_domain_by_.id
4944 1.9617 xen-syms-3.0-unstable xen-syms-3.0-unstable gnttab_transfer
4848 1.9236 domainl-xen domainl-xen evtchn_set_pending
4631 1.8375 vmlinux-syms-2.6.16.13-xen0 vmlinux-syms-2.6.16.13-xen0 net_rx_action
4322 1.7149 domainl-kernel domainl-kernel tcp_v4_rcv

4145 1.6446 xen-syms-3.0-unstable xen-syms-3.0-unstable hypercall

4005 1.5891 domainl-xen domainl-xen guest_remove_page

3644 1.4459 vmlinux-syms-2.6.16.13-xen0 vmlinux-syms-2.6.16.13-xen0 hypercall_page
3589 1.4240 vmlinux-syms-2.6.16.13-xen0 vmlinux-syms-2.6.16.13-xen0 eth_type_trans
3425 1.3590 domainl-xen domainl-xen get_page_from_l1le
2846 1.1292 domainl-kernel domainl-kernel eth_type_trans
2770 1.0991 vmlinux-syms-2.6.16.13-xen0 vmlinux-syms-2.6.16.13-xen0 e1000_intr

75 0.0298 domainl-apps domainl-apps (no symbols)
69 0.0274 domainl-kernel domainl-kernel ns_to_timespec
69 0.0274 vmlinux-syms-2.6.16.13-xen0 vmlinux-syms-2.6.16.13-xen0 delay_tsc

68 0.0270 domainl-kernel domainl-kernel do_IRQ

66 0.0262 oprofiled oprofiled odb_insert

Xen Research Projects

Whole-system pervasive debugging
Lightweight checkpointing and replay
Cluster/distributed system debugging

Software implemented h/w fault tolerance

EXp
EXp

Multi-

oit deterministic replay
ore possibilities for replay on SMP systems

evel secure systems with Xen

XenSE/OpenTC : Cambridge, Intel, GCHQ, HP, ...
VM forking

Lightweight service replication, isolation
UCSD Potemkin honeyfarm project

Parallax

Managing storage in VM clusters.
Virtualizes storage, fast snapshots
Access optimized storage

L1

L2

Data

aoe I9u| a0 Ia1u|
sooig 1enyip 5 H yuompay B H

2.1018X20/9 | _) o .
n&B@WoB 08.401SX90/|q
; ; ;
ayoe) 1ualsIsiad ayoe) 1Ua1SISiod ayoe) 1ualsISiad
Ian || 1aA DXErE o0 IA || 1GA Tl iEd IaA || 1GA OxElio
{1 11 {]
LI WA I A " WA
] i ogelolsS ageriols i i agel01S
WA WA WA WA WA
wallo Wl wal) Wl wal)
O 1SOH [edisAyd g 1SOH |evIsAyd v 1SOH |edIsAyd

21n109)1Ya1y Xxejjeied

V2E : Taint tracking

(/O Taint|

Protected VM

VN

VD m 2

|

-

J

Qemu*

Control VM

ND | [DD |

Protected VM

VN || VD |

o

(&

VMM

Taint Pagemap\
(L T T 11

5 .=
D |
@

4. Taint markings are propagated to disk. Disk extension
marks tainted data, and re-taints memory on read.

V2E : Taint tracking

Protected VM

/O Taint ||]
= WN||VD|| 5O
& = - j); Qemu*
' '
Control VM Protected VM
ND | | DD| VN || VD |
- (S
Taint Pagemap
VMM (K T T 1

E -
@

4. Taint markings are propagated to disk. Disk extension
marks tainted data, and re-taints memory on read.

Privileged Domains

Guest Domains

SMP Guests

Save/Restore/Migrate

>4GB memory

Progressive PV

Driver Domains

Post-3.0.0 Rough Code Stats

aliases| checkins| insertions
xensource.com 16 1281 363449
ibm.com 30 271 40928
intel.com 26 290 29545
hp.com 8 126 19275
novell.com 8 78 17108
valinux.co.jp 3 156 12143
bull.net 1 145 11926
ncsc.mil 3 25 6048
fujitsu.com 13 119 6442
redhat.com 7 68 4822
amd.com 5 61 2671
virtualiron.com 5 23 1434
cam.ac.uk 1 9 1211
suh.com 2 9 826
unisys.com 3 7 857 :
other 30 189 ag132| _ otatssince

3.0.0 Release

Xen Development Roadmap

Performance tuning and optimization
Particularly for HVYM and x86_64

Enhanced control stack
More automated system tuning
Scalability and NUMA optimizations

Better laptop/desktop support
OpenGL virtualization, power management

Network optimziations

Conclusions

Xen is a complete and robust hypervisor
Outstanding performance and scalability
Excellent resource control and protection
Vibrant development community

Strong vendor support

Try the Xen demo CD to find out more!

(or Fedora Core 6, Suse 10.x)
Xen
Source

http://xensource.com/community

Thanks!

If you're interested in working on Xen
we're looking for Research Assistants and
Associates in the Lab, and also folk to
work in the XenSource Cambridge office.

jan.pratt@cl.cam.ac.uk

Current Device Model

Qemu
i 1
1A CMD
Tranzhlon L .
ra Foc
.) '
- Kernel 1
v
Device
Driver to

Real Device

Domain 0

QEMU mmap of HVM
Domain Msmory

-
#l-"

-
-
o

-
—
-
-

'3 Instruction

'"_} Tramnahlons Bstwaan
“ 1Y QEMU Usqr Procesy

i -‘] = Costly Transitions

HVM Domain

MMIO or
Port 10

¥M Exdt / Entry

Par Evary VO
InstrucHon
2, I:Iumnjn&rll:l:ll :)
o) =
_ If YO Memory Fault, Decode and See If
Hypervisor Intercept Handler for Device Models in

Hypervisor. Otherwise, Upcall to QEMU
Using Event Channel

Current Device Model

QEMU Device Emulation

Runs in Domain0 as User Process

No Isolation to Properly Accounting for
HVM I/O

Doesn't Scale — Launch New QEMU-DM For
Every HVM Domain, Currently Maps All
HVM Memory

Many Costly Ring Transitions

On Every I/O Instruction Event Between QEMU
and Kernel

On Every I/O Command Between QEMU and
Real Device Drivers

Manv Costlv /M Fyitg for Fverv T/0)

Stub Domain

Domain 0 Stub Domain ~~ . HVM Domain
Linux DomuU o gt
kernel - ”
-~ -
Qemu -7
sar Vncserver, etc. MMIO or
} Port 10
Kernel / Frontend 7
Backend
/ Frontend
Event Chanral
Backend I]
I 1/0 Emulation
B Network/Block
Drivers to ;
Real Device
VM Exit / Entry

VM Exit on MMIO or P10. If Performance Critical Device like
Hypervisor Network or Block Device, Upcall to I/O Emulation in Kernel
Reducing Ring Transitions. Else, Upcall to QEMU in User

Process.

Stub Domain Requirements

Requirements

Need User Space Context for QEMU

Some Devices Require User Process -
vncserver

Need Library Support for QEMU

Need SMP Support

Need to Run IO Emulation in Kernel Space
Need to Run Frontend Drivers

Need to Limit Impact to Build

Need to Limit QEMU Maintenance Impact

