
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Public Review for
The Main Name System:

An Exercise in Centralized Computing
Tim Deegan, Jon Crowcroft, Andrew Warfield

This year’s SIGCOMM award went to Paul V. Mockapetris, in large part for his work on the Domain Name System
(DNS). Dr. Mockapetris deserves considerable credit, because DNS has been an incredibly successful component
of the Internet; it hasn’t required major changes despite scaling up many orders of magnitude from its original size.
DNS has been recognized as achieving a remarkable balance between scalability (due to its distributed implementa-
tion) and decentralized administrative control, in which separate organizations control separate portions of the name-
space.

So why consider changing it? More to the point, why should CCR publish a paper proposing a radical redesign of
the DNS? This paper proposes a “recentralized” replacement for DNS in which, conceptually, the DNS is served
from a single database. While the database could be replicated for fault tolerance, in a fundamental sense the dis-
tributed nature of the DNS would be abandoned. Heresy! Surely distributed solutions are always better than cen-
tralized solutions -- correct?

The authors challenge this assumption and, in the process, provide a very useful analysis of what benefits and costs
accrue from the distributed nature of DNS. The paper shows that many features that would be useful in the DNS
are more easily and simply provided in a centralized design; and that, despite our (perhaps aesthetic) perference for
distributed solutions, many or or most of the benefits of distribution in the DNS are in fact achivable in a centralized
design as well (an observation which may be more true today than at the time the DNS was designed).

CCR seeks to publish papers like this that challenge accepted wisdom in insightful ways. This paper does that by
addressing an important and always timely topic; hopefully it will stimulate more discussion clarifying the strengths
and weaknesses of distributed designs like that of the DNS.

Public review written by

Mark Crovella
Boston University

a c m s i g c o m m

ACM SIGCOMM Computer Communication Review 5 Volume 35, Number 5, October 2005

ACM SIGCOMM Computer Communication Review 6 Volume 35, Number 5, October 2005

The Main Name System:
An Exercise in Centralized Computing

Tim Deegan
University of Cambridge

Computer Laboratory
15 JJ Thomson Avenue,

Cambridge CB3 0FD, U.K.

Jon Crowcroft
University of Cambridge

Computer Laboratory
15 JJ Thomson Avenue,

Cambridge CB3 0FD, U.K.

Andrew Warfield
University of Cambridge

Computer Laboratory
15 JJ Thomson Avenue,

Cambridge CB3 0FD, U.K.

ABSTRACT
Naming is a critical component of the internet architecture,
and one whose complexity is often overlooked. As a global
system, the DNS must satisfy millions of requests per sec-
ond, while allowing distributed, delegated administration
and maintenance. In this paper, we consider the design of
the DNS and the widely distributed manner in which DNS
records are published. We propose that the robustness and
performance of the existing DNS could be dramatically im-
proved by moving towards a centralized architecture while
maintaining the existing client interface and delegated ad-
ministration.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Distributed Systems

General Terms
Design, Reliability, Performance

Keywords
DNS

1. WHY IS THE DNS DISTRIBUTED?
The domain name system (DNS) was designed as a re-

placement for the HOSTS.TXT file — a centrally admin-
istered list of all known machines. This database was, in
a sense, distributed: every host would download a copy of
the master file from an FTP server and use that copy for
lookups locally.

As the internet grew, and organizations moved from time-
sharing computers to networks of workstations, it was felt
that both the administrative effort required to keep the
HOSTS.TXT file up to date and the load on the FTP server
would become too great; the hierarchical design of the DNS
was intended to solve both of these problems [1]. The names-
pace was partitioned into administrative regions, and each
organization was made responsible for providing redundant
servers to publish its own section of the namespace.

The DNS was deliberately built as a simple name reso-
lution system. Features available in directory services like

X.500 [2] (e.g., searching, dynamic updates and authentica-
tion) were not included, in the hope that a simpler service
would be easier to implement and therefore be widely and
quickly adopted [3]. Some of these services have later been
added [4–6].

As the DNS scaled to more and more domains, the tie
between administrative delegation points and the distribu-
tion of the database has remained. The result is that far
more nameservers are in existence than are needed for the
task of publishing the database, and the benefit of having
many servers is reduced by each server’s publishing only the
subset of the namespace that its owners and operators have
administrative authority over. There are approximately 233
million hosts on the internet [7] and approximately 1.3 mil-
lion authoritative nameservers listed in the .COM, .NET
and .ORG zone files. However, delegation records necessary
for access to any name in the DNS are published by fewer
than one hundred of them1 and a client must talk to at least
two servers to look up a new name (e.g., for the first page
on a new website).

These problems could be solved by decoupling the distri-
bution of DNS data from the hierarchy of authority [8–10].
So long as the delegation of authority to publish records is
not altered, the mechanism used to publish them could be
replaced by any system with suitable characteristics. Specif-
ically, the publication mechanism does not need to be dis-
tributed as a matter of principle — robustness, reachability
and capacity are the main requirements of the DNS, and
distribution is only necessary in so far as it helps us achieve
these goals.

In this paper we propose the idea of re-centralizing the
publication mechanism of the DNS: replacing more than a
million servers with a single centralized database, served by
a small number of well-provisioned and well-placed servers,
and all but eliminating the link between domain ownership
and domain publication.

We will first discuss some of the difficulties that motivate
such a change, and some proposed alternatives, before con-
sidering what a centralized DNS would look like and how
much work it would need to do.

1There are only 13 “root” servers listed in the DNS, but sev-
eral of those servers are further distributed among different
sites. There are root servers at 62 locations at the time of
writing, and more are planned.

ACM SIGCOMM Computer Communication Review 7 Volume 35, Number 5, October 2005

2. WHAT’S WRONG WITH IT?
Common complaints about the DNS include:

2.1 Lookup latency
Resolving names in the DNS can take long enough to cause

noticeable delays in interactive applications [11, 12]. Rea-
sons suggested for this include the number of servers that
a resolver needs to talk to, the long timeouts in resolvers
and stubs when errors are encountered [13], and underpro-
visioned resolvers and access links. Generally, the top-level
domain (TLD) servers can be expected to be well placed
and geographically diverse; leaf nodes are often not so lucky.
Having fewer (and better-positioned) servers involved in the
resolution process would be an improvement. Caching in
resolvers helps with this, but due to the heavy-tailed lookup
distribution, it can only go so far.

2.2 Update latency
The latency of updates in the DNS is governed by the

time-to-live (TTL) field of the record being updated. For
planned updates, the TTL can be reduced in advance, al-
lowing a speedy propagation of the update in exchange for
briefly increased traffic. For unplanned updates (e.g., in re-
sponse to an outage or attack) the old record may remain
in caches until its TTL expires.

This timeout-based caching mechanism is not a good fit
with the patterns of change in the data served. Many DNS
records are stable over months, but have TTLs of a few
hours. At this timescale the TTL is effectively an indicator
of how quickly updates should propagate through the net-
work, but it is used by caches as if it were an indicator of
how soon the record is likely to change. This generates un-
necessary queries, and indicates that a “push” mechanism
for updates would be more appropriate for these parts of
the DNS. Jung et al. [14] show that, based on TCP connec-
tions seen in traces, 80% of the effectiveness of TTL-based
caching is gained with TTLs of only 15 minutes, even though
the data may be static for much longer than that.

2.3 Administrative complexity
Administering a DNS zone is a complex task, with the

potential to cause serious performance problems. Even a
properly-formed zone can cause problems for its owners, and
for other DNS users, if the delegation from the parent zone is
not properly handled. The most common delegation errors
are caused by a lack of communication between the zone’s
administrators, their ISPs, and the administrators of the
parent zone. 15% of forward zone delegations from TLDs
are “lame” in at least one server [15] (i.e., a server which
does not serve the zone is announced as doing so by the
parent zone). Servers publishing out-of-date zone data af-
ter a zone has been redelegated away from them also cause
problems. Circular glue dependencies, which cause delays in
resolving the zone from a cold cache and reduce the number
of useful servers available [16], affect about 5% of zones [15].
These errors are directly connected to the way the DNS is
distributed along administrative boundaries.

In addition to the risks involved in preparing the contents
of a zone, the software used on nameservers is complicated
and requires some expertise to properly configure, secure
and maintain. This expertise is not in evidence at all name-
servers [17].

Misconfigurations at clients and resolvers can cause prob-
lems too: they are responsible for a large fraction of the load
on the root servers [18, 19]. This has been a problem with
the DNS for some time [3] and, despite efforts to educate
administrators, the situation is not improving.

2.4 Vulnerability to denial of service
Redundancy is built by replication of data, but this hap-

pens multiple times per name — an organization must rely
not only on its own nameservers being operational, but also
on the nameservers for every level above it in the hierarchy.
Again, this is caused by the distribution model.

There have been distributed denial-of-service attacks on
the root and TLD servers in the past. Some of them have
been successful in causing delays and losses [20], although
anecdotal evidence suggests that to date, human error has
been much more effective than malice at causing outages
at the upper levels of the DNS, and care is taken in de-
ploying root servers that they can survive large spikes in
load [21]. Lower-level zones, which typically do not have
the same levels of funding and expertise available to them,
are more vulnerable to attack. Many zones are served by two
nameservers that are on the same LAN, or even the same
machine [15], although the standard requires each zone to
have redundant servers.

2.5 Lack of authentication
The current DNS relies almost entirely on IP addresses to

authenticate responses: any attacker capable of intercepting
traffic between a client and a server can inject false informa-
tion. Mechanisms have been developed to use shared-key
and public-key cryptography to provide stronger authen-
tication of replies [4, 5], although they are not yet widely
deployed for client-server queries.

Any proposed replacement or upgrade of the DNS should
address as many of these problems as possible, while avoid-
ing the introduction of new ones. Next, we consider some
possible improvements in the light of these criteria.

3. CURES, TONICS AND ELIXIRS
We will now look at some possible changes to the archi-

tecture of the DNS. They mostly address the first four prob-
lems from the previous section; authentication of records is
being addressed by the DNSSEC community and is largely
unaffected by these proposals.

3.1 Replicating the entire DNS
Kangasharju and Ross [8] advocate replacing per-zone

“secondary” authoritative nameservers with a set of replica
servers, each holding a full copy of the DNS. Each server
would be responsible for managing updates to a subset of
the zones in the DNS: it would receive updates for its zones
from their “primary” servers and propagate them to the
other replicas via multicast or satellite channels. Lookup
latency is improved: clients only need to talk to their lo-
cal replica. Update latency is impaired because updates
must wait their turn on the replication channel (although
unplanned updates may be faster because the system allows
shorter TTLs). Replicating the full DNS at every server
makes it easier to find, if not to avoid, administrative errors.
They give no particular attention to denial-of-service at-
tacks, and retain the current IP-based authentication mech-
anism.

ACM SIGCOMM Computer Communication Review 8 Volume 35, Number 5, October 2005

3.2 A single central service
The entire DNS could be brought into a single database,

eliminating the current wide distribution. This is in spirit
a return to the central HOSTS.TXT file, but without the
administrative overhead; all naming data would be gath-
ered together and redistributed. Authority to change nam-
ing data would remain with the zone administrators. Read
latency is improved because all authoritative records now
come from well-placed, well-provisioned servers, and client
queries are always answered immediately without deferring
them to other servers: this reduces the number of network
links and servers where failure or congestion would cause
long delays to a lookup. Update latency is slightly increased,
as with Kangasharju and Ross’s scheme, because updates
must be handled by the central service. Administrative com-
plexity is reduced, because the delegation-related pitfalls
can be entirely removed, and each zone’s administrator now
only configures client software for submitting updates, not
server software. The database is less vulnerable to denial-
of-service attacks (providing it can be provisioned properly)
because there are fewer points of failure to defend: many of
the DNS’s vulnerable points are removed. The nameservice
would have to be eliminated entirely by an attacker who
wished to deny service to a particular record or zone. The
authentication of records is the same as the current IP-based
scheme. This is the solution we propose in this paper.

3.3 A distributed hash table (DHT)
The DNS could be served from a distributed hash ta-

ble [9, 10]: servers would be organized in a peer-to-peer
network, routing client requests to a server which holds
the relevant data. The load is shared between many rel-
atively lightweight servers, and new servers can be added
as needed. Robustness is provided by replication and over-
lay routing. Administrative complexity is reduced for the
domain owners, who only have to inject their data into the
DHT, and not run their own servers. Using a DHT gives
a marked increase in read latency, as requests must travel
O(logn) hops between servers in an n-server DHT. Replicat-
ing popular (frequently-read) records more widely through
the DHT counteracts this by reducing the average latency
of lookups [10, 22]. Less popular data are left with longer
read times — but less popular data are also less likely to
be in a client’s cache so have more need of low-latency ser-
vice. Update latency is higher for more popular records,
because the extra replicas must be reached. Unplanned up-
dates could made faster by replacing TTL-based caching
with the caching provided by the underlying DHT.

3.4 A different caching scheme
Changing the caching rules and keeping the hierarchy of

authoritative servers would provide some benefit. If lo-
cal caches were allowed to keep records after they had ex-
pired, they could serve the stale data to clients immediately
when a request arrived, and then asynchronously refresh the
records. This would reduce the client-perceived latency at
the cost of introducing about 1-2% error rate in those queries
where stale cache entries are used [23]. It would increase the
latency of updates, of course, and slightly decrease the ef-
fectiveness of denial-of-service attacks. This scheme would
require changes to the client side, but would be easy to roll
out incrementally.

Authoritative

servers

Caching

resolver

Client

Queries

Zone transfers

Figure 1: The current DNS

3.5 Replacing the DNS entirely
Building a new nameservice from scratch would allow a

lot of freedom to design a service that is suited to the needs
of the DNS’s users. Unfortunately, the DNS is too far en-
twined in the software at every point on the internet to hope
to extract it now. Any plausible strategy will have to inter-
operate cleanly with the clients of the current DNS.

Any one of these options could provide an improvement
over the current DNS, although we have not addressed the
difficulties of implementation yet. In the next section, we
discuss the most attractive option, if possibly the hardest to
engineer: the central service.

4. RECENTRALIZING
A centralized DNS would merge all the data that are cur-

rently spread among the many servers into one coherent
database, which would be queried by caches just as the au-
thoritative servers are now. The centralized service could
be made available from the same IP addresses that the root
zone is served from at the moment: thus, no changes would
be necessary to client software. The database would be
replicated at a small number of geographically distributed
sites to provide availability and fault-tolerance. Updates
would be received at any of these sites, authenticated and
distributed among replicas, using a voting protocol such as
the Paxon Parliament protocol [24] or UFP [25] to ensure
consistency without requiring all sites to be working and
reachable simultaneously. This would effectively replace the
distributed lookup mechanism of the DNS (Figure 1) with a
content distribution network and a very simple lookup (Fig-
ure 2).

The service must be available and responsive even in times
of attack and failure. This is the main reason for distribution
and replication, and must be balanced against the update
latency incurred. It must, of course, also be scaleable — a
single server capable of handling the total load on the DNS
today would be very impressive — but wide-area replication
is not the only solution to that. We suggest that replica-

ACM SIGCOMM Computer Communication Review 9 Volume 35, Number 5, October 2005

Authoritative

servers

Caching

resolver

Client

Queries

Replication

Figure 2: A centralised service

tion to fewer than one hundred sites should suffice. This
would be similar to the current root servers or TLD servers
for large TLDs, and would give similar levels of protection
against denial-of-service attacks against the entire system,
while giving much better protection to individual zones.

A distributed denial of service attack against such a sys-
tem would be comparable to an attack on the gTLDs, and
have a similar effect – flooding network links badly enough
to cause collateral problems in many other systems as well
as causing widespread failure of name resolution. For larger
scale replication, a two-class infrastructure would allow more
copies while avoiding excessive update latency [25].

Instead of running one or more nameservers, a zone ad-
ministrator would submit updates to the central service,
which would verify that the changes were consistent and
authorized before publishing the new records. By removing
server delegations (but not the delegation of authority) the
administrative pitfalls associated with them are eliminated.
Other problematic areas (e.g., aliasing, and the matching of
forward and reverse mappings) would be made easier by the
availability of the entire DNS at upload time, supporting
automatic detection of many configuration errors.

We will now discuss the benefits of a centralized design
in more detail, looking at some of the features which we
consider to be desirable in any replacement for the DNS.

4.1 Interoperability
There are a large number of DNS clients deployed already;

a scheme which required changes to client code would not
be reasonable. Centralizing the DNS does not involve any
changes to the protocol or to the resolution algorithm; some
changes to the caching algorithm might be made possible by
the centralization, but they are certainly not necessary for
the success of the scheme.

The new system must retain the DNS’s hierarchical del-
egation of authority, by accepting updates only from au-
thoritative publishers. This does not provide the publisher
with any guarantees about the behaviour of the servers, but
for most organizations, which are happy to trust their sec-

ondary DNS servers and the TLD and root zone operators
at the moment, this should be acceptable. Clients are left
with the current IP-based scheme for the moment: there is
definitely room for improvement here.

DNSSEC uses per-record digital signatures which could
support this delegation of authority, but it is a complex sys-
tem and global deployment is still some way off. An interim
scheme using PKI for authentication and authorization of
data publishers could be used for those who do not want to
deploy DNSSEC in their zones.

4.2 Low latency
The latency of reads would be reduced: almost all reads

would be satisfied by a single request to a fast and well-
connected server. This would not only give faster lookups
under normal conditions, but also reduce the impact of net-
work congestion and link failures because fewer links are in-
volved. The service is intended to handle many more reads
than writes, so read latency is more important than update
latency. If it is distributed for reliability and reachability,
a full copy of the database should be available at each site:
redirecting requests between servers increases latency and
decreases reliability.

The latency of planned updates (where the records being
changed have very short TTLs to avoid caching old versions)
would be slightly increased: updates must be handled by the
central service instead of by the domain owner’s machines.
So long as this latency increase is no more than a few min-
utes, it is an acceptable price to pay for fast reads and high
availability. Luckily, naming data are largely static: the
typical DNS entry is static over a timescale of months [26].
Also, updates are relatively tolerant of delay – a few seconds
would not be noticed, and a few minutes would be entirely
acceptable for almost all DNS updates. Commercial sec-
ondary DNS services often limit the batching interval for
updates to much longer than that.

Update latency scales poorly with the number of copies of
each record that must be reached; because we want to have
all records available from all sites, this is a limiting factor
on how many sites we can have.

The latency of unplanned updates can only be countered
by a change in the TTL-based caching mechanism: eliminat-
ing it altogether would require changes in too many client
systems, but a fast and highly available service might lessen
the need for long TTLs. (For example, TTLs of no more
than 15 minutes could be used, as mentioned in Section 2.)
More ambitious schemes, allowing caches to keep closer co-
herence with the central servers, can be imagined, though
their feasibility would depend on the rate of updates.

4.3 Simplicity
The system should be as simple as possible, both to con-

figure and to implement. We agree with the designers of the
DNS that a simple system is more likely to be widely (and
correctly) implemented and deployed.

The design of the system can be described by two in-
terfaces: one describing how records are submitted to the
service for publication (probably based largely on the stan-
dard zone file format); and one describing the distribution
of updates between sites. In order to encourage multiple im-
plementations, a third interface can be drawn between the
servers that maintain consistency of the data between sites
and the servers that publish the data.

ACM SIGCOMM Computer Communication Review 10 Volume 35, Number 5, October 2005

4.4 Flexibility
Under the current delegation scheme, zone administrators

can choose to implement new and interesting policies which
are not part of the original design of the DNS. In some
content distribution networks (CDNs) the DNS response is
tailored based on the source of the query, in the hope that
this will direct a client to a nearby server. Although this
is not a particularly good method of choosing a server in a
CDN [27,28], it is commonly enough used that a replacement
scheme should be able to cope with it. Another common
requirement is on-the-fly generation of records, often used
for reverse DNS. This sort of functionality could be provided
in a centralized DNS by allowing table lookups and simple
regular-expression rules.

For more exotic requirements, some zones could be dele-
gated to their own servers using “NS” records as usual, with
the associated costs (increased latency, cost of equipment,
additional points of failure) to the zone owner. Alterna-
tively, providing a fully programmable extension along the
lines of Active Names [29] would allow zone owners to cus-
tomize their own records’ behaviour without excluding them
from the centralized scheme, but this conflicts with the goals
of simplicity and low latency: it would require more power-
ful servers, as well as mechanisms for resource partitioning,
scheduling and sandboxing.

Future changes to the DNS would of course be easier
to roll out on a centralized service managed by a small
number of organizations than across more than a million
independently-administered servers.

4.5 Upgrade path
An important practical question is how the service would

be rolled out and paid for. One possible scenario is this: a
group of TLD operators co-operate to build the service, and
use it first to publish their own zone files. A co-operative
venture of this kind would be an opportunity to reduce run-
ning costs, and also to offer a new service to zone owners
— migrating your zone to the same servers as its parent
would give faster resolution, and there is already a market
for highly available and well-placed nameservice [30]. Once
the service is established, more customers (leaf nodes and
TLDs) could be solicited. The operating costs would come
from the yearly fees already paid for domain registration and
DNS hosting, and the control of the system would be in the
hands of the TLD operators (who are, we hope, trustworthy,
and if not are already in a position to do great damage to
their clients).

5. CHARACTERIZING THE LOAD
Informed decisions about the degree of replication needed

cannot be taken without detailed information on the work-
load: the amount and type of data present, the request pat-
terns, the rate of change, etc. This is not given clearly in
existing work; it would be a worthwhile exercise just to pro-
duce a plausible and detailed set of requirements for any
DNS-replacement scheme. There has been detailed analysis
of traffic at the root servers [18,31] and of the distribution of
DNS requests in captured traffic [14], but work remains to
be done, particularly in characterizing the update patterns.
We are forced at the moment to make informed estimates
based on the limited information that is available.

Each root server handles about 4000–8000 queries per sec-
ond [19, 32], so at a rough estimate the total load across

 0

 20

 40

 60

 80

 100

Jan 2004Jan 2003Jan 2002Jan 2001Jan 2000

%
 c

ha
ng

ed

Month

Percentage of RRsets changed each month

Figure 3: Changes to .IE RRsets over time.

the root servers is of the order of 100,000 queries per sec-
ond.2 The load at the gtld-servers, which serve .COM and
.NET, is about the same. The total load across all authorita-
tive servers is harder to estimate; in 1992, 1/3 of long-range
DNS queries were to the root servers [33], but that number
will certainly have changed, not least because the generic
top-level domains (gTLDs) are now served from their own
servers.

In June and July of 2004, we gathered data on the contents
of the DNS by recursively requesting zone transfers of all
zones under some common gTLDs. We found that 23.4% of
zones had at least one server which allowed AXFR requests,
giving us something over 8 million zones. Similar data for
90 European country-code top-level domains (ccTLDs) were
provided by the RIPE NCC, from their regional hostcount
project [34]. The RIPE hostcount is an established project,
and major ISPs have been lobbied to allow zone transfers to
RIPE’s local collection points: they successfully transferred
50.1% of zones (a little over 10 million) from 90 ccTLDs in
April 2004.

If these zones are representative of the DNS as a whole, we
can calculate that the gTLDs contain about 17GB of data,
and all the RIPE-area ccTLDs about 15GB. Assuming the
non-RIPE ccTLDs are as busy as the RIPE ones, that makes
about 55GB of forward data. Reverse-DNS entries for 233
million hosts should fit comfortably in another 10GB.

Therefore it should be possible to build a single server
which holds the entire DNS in RAM, and certainly it is pos-
sible to hold it on disk. A single server running BIND can
handle 10,000 queries per second; NSD can handle 15,000,
and some commercial offerings claim even higher through-
put. With clustering and load-balancing, very high query
rates could be handled; between 60 or 70 sites, a load of a
few million queries per second is not unmanageable.

The update traffic is also hard to characterize, and very
little has been published about it. Figure 3 shows the change
history of the RRsets seen under the .IE TLD by the RIPE
recursive-transfer tool. For each month it gives the percent-
age of all RRsets that were updated (including being created
or deleted). It shows that the majority of records seen by
the RIPE probe stay the same over a timescale of several
months.

2Up to 70% of those queries are repeat queries caused by
misconfigured clients, caches, firewalls and routers.

ACM SIGCOMM Computer Communication Review 11 Volume 35, Number 5, October 2005

This graph does not include reverse zones or those dy-
namic zones which do not allow zone transfers: the RIPE
probe sees about half of the forward zones under .IE. Also
it does not show, for the RRsets that do change, how often
they change over a month. A more fine-grained survey of
the RRset rate of change is being undertaken to fill in some
of these gaps. In general, a lot of work remains to be done
to produce a full description of the load on the DNS.

6. CONCLUSION
We have considered a number of common problems with

the DNS, and some of the possible solutions. The particular
solution we propose is to remove the unnecessary and inef-
ficient distribution and recentralize the publication of data
in the DNS.

The wide distribution of the current DNS does not pro-
vide the resilience to attack or fast response which might
be hoped for from a distributed system; rather it introduces
higher latency and multiple points of failure in the resolution
of any name.

We have highlighted the lack of knowledge about the con-
tents and functioning of the current DNS: designing any
replacement for such a large and vital piece of internet in-
frastructure requires a much more detailed specification of
the requirements than is currently available. However, we
argue from some initial estimates that it is not infeasible
to build such a system, and that it is worthwhile trying to
specify it in more detail.

Some other problems remain to be solved. What would
the incentives be for competition and diversity in a central-
ized DNS? Could a market in data management be built on
top of a uniform underlying database? Most importantly, is
it reasonable to construct a single, centralized DNS given the
load that the system must support? We believe that these
issues are all not only interesting, but entirely tractable re-
search issues, and look forward to exploring them in greater
depth.

7. ACKNOWLEDGMENTS
The authors would like to thank the RIPE NCC and

HEAnet for providing the output of their hostcount probes.

8. REFERENCES
[1] P. V. Mockapetris. Domain names — concepts and

facilities. RFC 1034, November 1987.

[2] Open Systems Interconnection — The Directory.
Number X.500–586 in ITU–T Recommendations. ITU,
2001. (Also ISO/IEC Standard 9594:2001).

[3] Paul V. Mockapetris and Kevin J. Dunlap.
Development of the domain name system. In Proc.
ACM SIGCOMM 1988, pages 123–133, August 1988.

[4] D. Eastlake. Domain name system security extensions.
RFC 2535, March 1999.

[5] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and
B. Wellington. Secret key transaction authentication
for DNS (TSIG). RFC 2845, May 2000.

[6] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound.
Dynamic updates in the domain name system (DNS
UPDATE). RFC 2136, April 1997.

[7] Internet Systems Consortium. Internet Domain
Survey. http://www.isc.org/ops/ds/.

[8] Jussi Kangasharju and Keith W. Ross. A replicated
architecture for the domain name system. In Proc.
19th IEEE INFOCOM, volume 2, pages 660–669,
March 2000.

[9] Russ Cox, Athicha Muthitacharoen, and Robert T.
Morris. Serving DNS using a peer-to-peer lookup
service. In Proc. 1st IPTPS, volume 2429 of LNCS,
pages 155–165, March 2002.

[10] Venugopalan Ramasubramanian and Emin Gun Sirer.
The design and implementation of a next generation
name service for the internet. In Proc. ACM
SIGCOMM 2004, August 2004.

[11] Md Ahsan Habib and Marc Abrams. Analysis of
sources of latency in downloading web pages. In Proc.
5th WebNet, October 2000.

[12] Edith Cohen and Haim Kaplan. Prefetching the
means for document transfer: A new approach for
reducing web latency. In Proc. 19th IEEE INFOCOM,
volume 2, pages 854–863, March 2000.

[13] KyoungSoo Park, Vivek S. Pai, Larry Peterson, and
Zhe Wang. CoDNS: Improving DNS performance and
reliability via cooperative lookups. In Proc. 6th OSDI,
pages 199–214, December 2004.

[14] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and
Robert Morris. DNS performance and the effectiveness
of caching. In Proc. 1st IMW, pages 55–67, November
2001.

[15] Vasileios Pappas, Zhiguo Xu, Songwu Lu, Daniel
Massey, Andreas Terzis, and Lixia Zhang. Impact of
configuration errors on DNS robustness. In Proc.
ACM SIGCOMM 2004, August 2004.

[16] D. J. Bernstein. Notes on the Domain Name System.
http://cr.yp.to/djbdns/notes.html.

[17] Men & Mice. BIND DNS Surveys.
http://www.menandmice.com/6000/

6200 bind research.html.

[18] Duane Wessels and Marina Fomenkov. Wow, that’s a
lot of packets. In Proc. 4th PAM, April 2003.

[19] Duane Wessels. Is your caching resolver polluting the
internet? In Proc. ACM SIGCOMM 2004, August
2004.

[20] Paul Vixie, Gerry Sneeringer, and Mark Schleifer.
Events of 21–Oct–2002.
http://d.root-servers.org/october21.txt.

[21] R. Bush, D. Karrenberg, M. Kosters, and R. Plzak.
Root name server operational requirements. RFC
2870, June 2000.

[22] Marvin Theimer and Michael B. Jones. Overlook:
Scalable name service on an overlay network. In Proc.
22nd ICDCS, pages 52–61, July 2002.

[23] Edith Cohen and Haim Kaplan. Proactive caching of
DNS records: Addressing a performance bottleneck.
In Proc. SAINT 2001, pages 85–94, January 2001.

[24] Leslie Lamport. The part-time parliament. Digital
SRC Research report 49, September 1989.

[25] Chaoying Ma. Designing a universal name service.
PhD thesis, University of Cambridge, 1992.

[26] Richard Liston, Sridhar Srinivasan, and Ellen Zegura.
Diversity in DNS performance measures. In Proc. 2nd
IMW, pages 19–31, November 2002.

[27] Jianping Pan, Y. Thomas Hou, and Bo Li. An

ACM SIGCOMM Computer Communication Review 12 Volume 35, Number 5, October 2005

overview of DNS-based server selections in content
distribution networks. Computer Networks,
43:695–711, December 2003.

[28] Jeffrey Pang, Aditya Akella, Anees Shaikh,
Balachander Krishnamurthy, and Srinivasan Seshan.
On the responsiveness of DNS-based network control.
In Proc. 2nd IMC, pages 21–26, October 2004.

[29] Amin Vahdat, Michael Dahlin, Thomas Anderson, and
Amit Agarwal. Active names: Flexible location and
transport of wide-area resources. In Proc. 2nd USITS,
October 1999.

[30] Verisign, Inc. Ensuring your company’s online
presence. June 2005. White paper.
http://www.verisign.com/Resources/.

[31] Andre Broido, Evi Nemeth, and kc claffy.
Spectroscopy of DNS update traffic. In Proc. ACM
SIGMETRICS 2003, pages 320–321, June 2003.

[32] Tony Lee, Brad Huffaker, Marina Fomenkov, and
kc claffy. On the problem of optimization of DNS root
servers’ placement. In Proc. 4th PAM, April 2003.

[33] P. Danzig, K. Obrackza, and A. Kumar. An analysis
of wide-area name server traffic. In Proc. ACM
SIGCOMM 1992, 1992.

[34] RIPE NCC. The RIPE Region Hostcount.
http://ripe.net/info/stats/hostcount/.

ACM SIGCOMM Computer Communication Review 13 Volume 35, Number 5, October 2005

ACM SIGCOMM Computer Communication Review 14 Volume 35, Number 5, October 2005

