
Non-blocking Hashtables with Open Addressing

Chris Purcell1 and Tim Harris2

1 Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK.

Chris.Purcell@cl.cam.ac.uk
2 Microsoft Research Ltd., Roger Needham Building, 7 JJ Thomson Avenue,

Cambridge CB3 0FB, UK.
tharris@microsoft.com

Abstract. We present the first non-blocking hashtable based on open
addressing that provides the following benefits: it combines good cache
locality, accessing a single cacheline if there are no collisions, with short
straight-line code; it needs no storage overhead for pointers and memory
allocator schemes, having instead an overhead of two words per bucket;
it does not need to periodically reorganise or replicate the table; and it
does not need garbage collection, even with arbitrary-sized keys. Open
problems include resizing the table and replacing, rather than erasing,
entries. The result is a highly-concurrent set algorithm that approaches
or outperforms the best externally-chained implementations we tested,
with fixed memory costs and no need to select or fine-tune a garbage
collector or locking strategy.

1 Introduction

This paper presents a new design for non-blocking hashtables in which collisions
are resolved by open addressing, i.e. probing through the other buckets of the
table, rather than external chaining through linked lists.

The key idea is that rather than leaving tombstones to mark where deletions
occur, we store per-bucket upper bounds on the number of other buckets that
need to be consulted. This means that unlike the earlier designs we discuss in
Section 2.2, ours supports a mixed workload of insertions and deletions without
the need to periodically replicate the table’s contents to clean out tombstones.
Consequently, the table can operate without the need for dynamic storage man-
agement so long as its load factor remains acceptable.

Our design is split into three parts. Section 3.1 deals with maintaining the
shared bounds associated with each bucket. The key difficulty here is ensuring
that a bound remains correct when several entries are being inserted and removed
at once. Section 3.2 builds on this to provide a hashtable. The main problem in
doing so is guaranteeing non-blocking progress while ensuring that at most one
instance of any key can be present in the table. In Section 3.3, we present a more
complicated design allowing larger keys and a better progress guarantee, and in
Section 3.4 we discuss open problems with the algorithm.

Section 4 evaluates the performance of our algorithm, compared to state-
of-the-art designs based on external chaining. As with these, we rely only on
the single-word atomic operations found on all modern processor families. Ad-
ditionally, our algorithm has many properties that machines rely on for opti-
mal performance: operations run independently, updating disjoint memory loca-
tions (disjoint access parallel) and not modifying shared memory during logically
read-only operations (read parallel), and hence typically run in parallel on multi-
processor machines. Finally, a low operation footprint (shared memory touched
per operation) gives greater throughput under stress by easing pressure on the
memory subsystem.

Our results reflect this, demonstrating performance comparable with the best
existing designs in all tested cases. On highly-parallel workloads with many up-
dates, our algorithm ran 35% faster; while a single-threaded run with mostly
read-only operations was the worst case, running 40% slower than the best ex-
isting design.

Proof of correctness and progress properties can be found in [11].

2 Background

2.1 Non-blocking Progress Guarantees

Data structures are easiest to implement when accessed in isolation, but general
schemes for enforcing that isolation — for instance, using mutual exclusion locks
— typically result in poor scalability and robustness in the face of contention and
failure. Concurrent algorithms that avoid mutual exclusion are generally non-
blocking: suspension of any subset of threads will not prevent forward progress
by the rest of the system.

The weakest non-blocking guarantee is obstruction-freedom: if at any time a
thread runs in isolation, it will complete its operation within a bounded number
of steps. This precludes mutual exclusion, as suspension of a lock-holding thread
will prevent others waiting on that lock from making progress. Lock-freedom
combines this with guaranteed throughput: any active thread taking a bounded
number of steps ensures global progress. Unfortunately, creating practical non-
blocking forms of even simple data structures is notoriously difficult.

2.2 Related Work

Externally-chained hashtables store each bucket’s collisions3 in a list. Michael
introduced the first practical lock-free hashtables based on external chaining
with linked lists [8]. Shalev and Shavit described split-ordered lists that allow
the number of buckets to vary dynamically [9]. Fraser detailed lock-free skip-lists
and binary search trees [2]. Recently, Lea has contributed a high-performance,
scalable, lock-based, externally-chained hashtable design to the latest version
of Java (5.0), which avoids locking on most read-operations, preserving read-
parallelism.

3 We refer to a key stored outside its primary bucket as a collision.

All of the above designs rely on an out-of-band garbage collector. Michael
reported that reference counting was unacceptably slow for this purpose as it
did not preserve read-parallelism; he proposed using safe memory reclamation [7]
to get a strictly bounded memory overhead. Fraser used a simple low-overhead
garbage collection scheme, epoch-based reclamation, where all threads maintain
a current epoch, and memory is reclaimed only after all epochs change; this has
a potentially unbounded memory footprint, and a large one in practice.

Tombstones are the traditional means of handling deletion in an open ad-
dressed hashtable [3], but cause degenerate search times in the face of a random
workload with frequent deleting. Martin and Davis [5] proposed using periodic
table replication to limit tombstone growth, relying on garbage collection to re-
claim old tables. More recently, Gao et al. [1] presented a design with in-built
garbage collection.

Both designs limit tombstone reuse to reinsertions of the old key, to achieve
linearizability, and do not address the issue of storing multi-word keys directly
in the table. The rest of our paper presents solutions to these problems, which
we believe are compatible with the replication algorithms already proposed.

3 Memory-Management-Free Open Addressing

Each bucket in our hashtable stores a bound on its collisions’ indices in the
probe sequence (Figure 1). When running in isolation, a reader follows the probe
sequence this number of steps before terminating; an insert that collides raises
the bound if necessary; and an erase that empties the last bucket in this truncated
probe sequence searches back for the previous collision and decreases the bound
accordingly.

We make this safe for concurrent use in two steps, first maintaining each
bucket’s bound in Section 3.1, then ensuring keys are not duplicated in Sec-
tion 3.2.

0

-

2

9

0

2

0

-

1

17

0

12

0

-

0

7

Probe bound

Key

2 steps in probe sequence

Fig. 1. Bounds on collision indices for a hash table holding keys {3, 7, 9, 12, 17}. Hash
function is (key mod 8), probe sequence is quadratic [1

2
(i2 + i)]. Key 17 is stored two

steps along the probe sequence for bucket 1, so the probe bound is 2.

Probe bound

Key

3

17 1 - -- 5 --

0 0 0 0 0 00

After a collision is removed, a thread scans for the previous collision.

Probe bound

Key

1

17 - - -- 5 --

0 0 0 0 0 00

If a concurrent erasure is missed, the bound may be left too large.

Probe bound

Key

1

17 1 9 -- 5 --

0 0 0 0 0 00

Worse, if a concurrent insertion is missed, the bound may be made too small.

Fig. 2. Problems maintaining a shared bound after a collision is removed from the end
of the probe sequence.

3.1 Bounding Searches

Maintaining the probe bounds concurrently is complicated by the need to lower
them: simply scanning the probe sequence for the previous collision and swapping
it into the bound field may result in the bound being too large if the collision is
removed, slowing searches, or too small if another collision is inserted, violating
correctness (Figure 2).

In order to keep the bounds correct during erasures, we use a scanning phase
during which the thread erasing the last collision in the probe sequence searches
through the previous buckets to compute the new bound (lines 18–22). A thread
announces that it is in this phase by setting a scanning bit to true (line 18);
this bit is held in the same word as the bound itself, so both fields are updated
atomically.

Dealing with insertions is now easy: they atomically clear the scanning bit
and raise the bound if necessary (lines 9–12). Deletions also clear the scanning
bit (line 16), but are complicated by the scanning phase. We rely on the fact
that at most one thread can be in the process of erasing a given collision, and
that threads only start scanning when erasing the last collision in the probe

sequence. The collision’s index value thus identifies the scanning thread and, if
it is still present as the bound when scanning completes, and if the scanning bit
is still set, we know there have been no concurrent updates (line 22). Otherwise,
we retry the scanning phase.

Given a lock-free atomic compare-and-swap (CAS) function, the pseudocode
in Figure 3 is lock-free. We represent the packing of an int and a bit into a
machine word with the 〈., .〉 operator.

1 class Set {
word bounds[size] // 〈bound,scanning〉

3 void InitProbeBound(int h):
bounds[h] := 〈0,false〉

5 int GetProbeBound(int h): // Maximum offset of any collision in probe seq.
〈bound,scanning〉 := bounds[h]

7 return bound

void ConditionallyRaiseBound(int h, int index): // Ensure maximum ≥ index
9 do

〈old bound,scanning〉 := bounds[h]
11 new bound := max(old bound,index)

while ¬CAS(&bounds[h],〈old bound,scanning〉,〈new bound,false〉)
13 void ConditionallyLowerBound(int h, int index): // Allow maximum < index

〈bound,scanning〉 := bounds[h]
15 if scanning = true

CAS(&bounds[h],〈bound,true〉,〈bound,false〉)
17 if index > 0 // If maximum = index > 0, set maximum < index

while CAS(&bounds[h],〈index,false〉,〈index,true〉)
19 i := index-1 // Scanning phase: scan cells for new maximum

while i > 0 ∧ ¬DoesBucketContainCollision(h, i)
21 i--

CAS(&bounds[h],〈index,true〉,〈i,false〉)

Fig. 3. Per-bucket probe bounds (continued below)

3.2 Inserting and Removing Keys

Inserting and removing keys concurrently is complicated by the lack of a pre-
determined bucket for any given key. Inserting into the first empty bucket is
not sufficient because, as Figure 4 shows, a concurrent erasure may alter which
bucket is ‘first’, and a key may be duplicated. If duplicate keys are allowed in
the table, concurrent key erasure becomes impractical.

To ensure uniqueness, we split insertions into three stages (Figure 5). First,
a thread reserves an empty bucket and publishes its attempt by storing the
key it is inserting, along with an ‘inserting’ flag. Next, the thread checks the
other positions in the probe sequence for that key, looking for other threads
with ‘inserting’ entries, or for a completed insertion of the same key. If it finds
another insertion in progress in a bucket then it changes that bucket’s state

Probe bound

Key

2

9 - 1 -- 13 5-

0 0 0 1 0 00

One thread determines that the first empty bucket is at offset 1, and prepares to
insert key 17 there.

Probe bound

Key

2

- - 1 -- 13 5-

0 0 0 1 0 00

Another thread removes key 9, and prepares to insert key 17. The first empty bucket
is now at offset 0.

Probe bound

Key

2

17 17 1 -- 13 5-

0 0 0 1 0 00

The two threads now insert, creating a duplicate of the key.

Fig. 4. Problems concurrently inserting keys

to ‘busy’, stalling the other insertion at that point in time. If it finds another
completed insertion of the same key, then its own insertion has failed: it empties
its bucket and returns ‘false’. In the final stage, it attempts to finish its own
insert, changing the ‘inserting’ flag in its bucket to ‘member’. It must do this
with a CAS instruction so that it fails if stalled by another thread; if stalled, the
thread republishes its attempt and restarts the second stage.

The pseudocode in Figure 6 is obstruction-free. Each bucket contains a four-
valued state, one of empty, busy, inserting or member, and, for the latter two
states, a key. The key and state must be modified atomically; we use the 〈., .〉
operator to represent packing them into a single word. A key k is considered
inserted if some bucket in the table contains 〈k,member〉. The Hash function
selects a bucket for a given key. The three insertion stages can be found in lines
42–50, 51–60 and 61, respectively.

Unlike Martin and Davis’ approach [5], deleted buckets are immediately free
for arbitrary reuse, so table replication is not needed to clear out tombstones. The
algorithm preserves read parallelism and, assuming disjoint keys hash to separate
memory locations, disjoint access parallelism. In the expected case where the

0 2 0 0 1 0 0 0

empty
-

member
9

member
1

empty
-

member
17

inserting
12

empty
-

member
7

Probe bound

State
Key

Initial state

0 2 0 0 1 1 0 0

empty
-

member
9

member
1

empty
-

member
17

inserting
12

inserting
12

member
7

Probe bound

State
Key

Publish the attempted insertion in the second cell in the probe sequence, and raise
the probe bound to cover it.

0 2 0 0 1 1 0 0

empty
-

member
9

member
1

empty
-

member
17

busy
-

inserting
12

member
7

Collision
offset bound

State
Key

Stall all concurrent insertion attempts.

0 2 0 0 1 1 0 0

empty
-

member
9

member
1

empty
-

member
17

busy
-

member
12

member
7

Probe bound

State
Key

Move bucket into ‘member’ state.

Fig. 5. Inserting key 12

bucket contains no collisions, the operation footprint is two words — a single
cache line if buckets and bounds are interleaved.

3.3 Extensions: Lock-Freedom and Multi-word Keys

We now turn to two flaws in the above algorithm. The first is that concurrent
insertions may live-lock, each repeatedly stalling the other. One solution is to
use an out-of-line contention manager: Scherer and Scott have described many
suitable for use in any obstruction-free algorithm [10], which are easy to adopt.
Another solution, which we cover in more detail as it is a non-trivial problem,
is to make the algorithm lock-free.

The standard method of achieving lock-freedom is to allow operations to
assist as well as obstruct each other. As given, however, the hash table cannot
support concurrent assistance, as Figure 7 demonstrates: a cell’s contents can
change arbitrarily before returning to a previous state, allowing a CAS to succeed
incorrectly. This is known as the ABA problem, and we return to it in a moment.

The second problem is storing keys larger than a machine word: in the algo-
rithm as given, this requires a multi-word CAS, which is not generally available.
However, we note that a cell’s key is only ever modified by a single writer,
when the cell is in busy state. This means we only need to deal with concurrent
single-writer multiple-reader access to the cell, rather than provide a general

23 word buckets[size] // 〈key,state〉
word* Bucket(int h, int index): // Size must be a power of 2

25 return &buckets[(h + index*(index+1)/2) % size] // Quadratic probing

bool DoesBucketContainCollision(int h, int index):
27 〈k,state〉 := *Bucket(h,index)

return (k 6= - ∧ Hash(k) = h)

29 public:
void Init():

31 for i := 0 .. size-1
InitProbeBound(i)

33 buckets[i] := 〈-,empty〉
bool Lookup(Key k): // Determine whether k is a member of the set

35 h := Hash(k)
max := GetProbeBound(h)

37 for i := 0 .. max
if *Bucket(h,i) = 〈k,member〉

39 return true
return false

41 bool Insert(Key k): // Insert k into the set if it is not a member
h := Hash(k)

43 i := 0 // Reserve a cell
while ¬CAS(Bucket(h,i), 〈-,empty〉, 〈-,busy〉)

45 i++
if i ≥ size

47 throw ”Table full”
do // Attempt to insert a unique copy of k

49 *Bucket(h,i) := 〈k,inserting〉
ConditionallyRaiseBound(h,i)

51 max := GetProbeBound(h) // Scan through the probe sequence
for j := 0 .. max

53 if j 6= i
if *Bucket(h,j) = 〈k, inserting〉 // Stall concurrent inserts

55 CAS(Bucket(h,j), 〈k,inserting〉, 〈-,busy〉)
if *Bucket(h,j) = 〈k,member〉 // Abort if k already a member

57 *Bucket(h,i) := 〈-,busy〉
ConditionallyLowerBound(h,i)

59 *Bucket(h,i) := 〈-,empty〉
return false

61 while ¬CAS(Bucket(h,i), 〈k,inserting〉, 〈k,member〉)
return true

63 bool Erase(Key k): // Remove k from the set if it is a member
h := Hash(k)

65 max := GetProbeBound(h) // Scan through the probe sequence
for i := 0 .. max

67 if *Bucket(h,i) = 〈k,member〉 // Remove a copy of 〈k, member〉
if CAS(Bucket(h,i), 〈k,member〉, 〈-,busy〉)

69 ConditionallyLowerBound(h,i)
*Bucket(h,i) := 〈-,empty〉

71 return true
return false

73 }

Fig. 6. Obstruction-free set (continued from Figure 3)

empty inserting

- 12

State

Key

A single thread is about to complete its insertion of key 12. The next step is to
atomically move the cell from inserting to member state.

empty member

- 12

State

Key

The thread is suspended, and its insertion assisted to completion by another thread.

member inserting

12 12

State

Key

The key is now removed, and two other threads are concurrently attempting to
reinsert key 12. One has just succeeded, and the other is about to remove itself. If the
first thread wakes up at this point, it will still atomically move the cell from inserting

to member state, duplicating key 12.

Fig. 7. Problems assisting concurrent operations

multi-word atomic update. We can therefore use Lamport’s version counters [4]
(Figure 8).

If a cell’s state is stored in the same word as its version count, the ABA
problem is circumvented, allowing threads to assist concurrent operations. This
lets us create a lock-free insertion algorithm (diagram in Figure 9, pseudo-code
in Figure 10).

Each bucket contains: a version count; a state field, one of empty, busy,
collided, visible, inserting or member; and a key field, publically readable during
the latter three stages. The version count and state are maintained so that no
state (except busy) will recur with the same version.

As before, a thread finds an empty bucket and moves it into ‘inserting’ state
(lines 65–76), and checks the probe sequence for other threads with ‘inserting’
entries, or a completed insertion of the same key (lines 86–106). However, if
multiple ‘inserting’ entries are found, the earliest in the probe sequence is left
unaltered, and the others moved into ‘collided’ state. When the whole probe
sequence has been scanned and all contenders removed, the earliest entry is
moved into ‘member’ state (line 105) and the insertion concludes (lines 78–83).

This version of the hashtable is lock-free.

3.4 Open Problems: Dynamic Growth and Key Replacement

If the set population approaches the number of buckets, we must replicate into
a larger table. The Gao et al. [1] replication algorithm may be adaptable for this
purpose. No aggregate time or memory cost is incurred on operations, as if the
population stabilises, no further replications are required. Assuming each new

23 struct BucketT {
word vs // 〈version,state〉

25 Key key
} buckets[size]

27 word buckets[size] // 〈key,state〉
BucketT* Bucket(int h, int index): // Size must be a power of 2

29 return &buckets[(h + index*(index+1)/2) % size] // Quadratic probing

bool DoesBucketContainCollision(int h, int index):
31 〈version1,state1〉 := Bucket(h,index)→vs

if state1 = visible ∨ state1 = inserting ∨ state1 = member
33 if Hash(Bucket(h,index)→key) = h

〈version2,state2〉 := Bucket(h,index)→vs
35 if state2 = visible ∨ state2 = inserting ∨ state2 = member

if version1 = version2
37 return true

return false

39 public:
void Init():

41 for i := 0 .. size-1
InitProbeBound(i)

43 buckets[i].vs := 〈0,empty〉
bool Lookup(Key k): // Determine whether k is a member of the set

45 h := Hash(k)
max := GetProbeBound(h)

47 for i := 0 .. max
〈version,state〉 := Bucket(h,index)→vs // Read cell atomically

49 if state = member ∧ Bucket(h,index)→key = k
if Bucket(h,index)→vs = 〈version,member〉

51 return true
return false

53 bool Erase(Key k): // Remove k from the set if it is a member
h := Hash(k)

55 max := GetProbeBound(h)
for i := 0 .. max

57 〈version,state〉 := Bucket(h,index)→vs // Atomically read/update cell
if state = member ∧ Bucket(h,index)→key = k

59 if CAS(Bucket(h,i)→vs, 〈version,member〉, 〈version,busy〉)
ConditionallyLowerBound(h,i)

61 Bucket(h,i)→vs := 〈version+1,empty〉
return true

63 return false

Fig. 8. Version-counted derivative of Figure 6 (continued in Figure 10)

0 2 0 0 1 0 0 0

18 2

9

3

1

6 4

17

3

12

24 7

7

Probe bound

Version

Key

empty member member empty member inserting empty memberState

Initial state

0 2 0 0 1 1 0 0

18 2

9

3

1

6 4

17

3

12

24

12

7

7

Probe bound

Version

Key

empty member member empty member inserting inserting memberState

Write key and raise probe sequence bound

0 2 0 0 1 1 0 0

18 2

9

3

1

6 4

17

3

12

24

12

7

7

Probe bound

Version

Key

empty member member empty member inserting collided memberState

Earlier ‘inserting’ entry found; move bucket into ‘collided’ state.

0 2 0 0 1 1 0 0

18 2

9

3

1

6 4

17

3

12

24

12

7

7

Probe bound

Version

Key

empty member member empty member member collided memberState

Assist completion of earlier entry

0 2 0 0 1 0 0 0

18 2

9

3

1

6 4

17

3

12

25 7

7

Probe bound

Version

Key

empty member member empty member member empty memberState

Empty bucket, lower probe sequence bound and return false.

Fig. 9. Inserting key 12 (lock-free algorithm)

bool Insert(Key k): // Insert k into the set if it is not a member
65 h := Hash(k)

i := -1 // Reserve a cell
67 do

if ++i ≥ size
69 throw ”Table full”

〈version,state〉 := Bucket(h,i)→vs
71 while ¬CAS(&Bucket(h,i)→vs, 〈version,empty〉, 〈version,busy〉)

Bucket(h,i)→key := k
73 while true // Attempt to insert a unique copy of k

*Bucket(h,i)→vs := 〈version,visible〉
75 ConditionallyRaiseBound(h,i)

*Bucket(h,i)→vs := 〈version,inserting〉
77 r := Assist(k,h,i,version)

if Bucket(h,i)→vs 6= 〈version,collided〉
79 return true

if ¬r
81 ConditionallyLowerBound(h,i)

Bucket(h,i)→vs := 〈version+1,empty〉
83 return false

version++

85 private:
bool Assist(Key k,int h,int i,int ver i): // Attempt to insert k at i

87 // Return true if no other cell seen in member state
max := GetProbeBound(h) // Scan through probe sequence

89 for j := 0 .. max
if i 6= j

91 〈ver j,state j〉 := Bucket(h,j)→vs
if state j = inserting ∧ Bucket(h,j)→key = k

93 if j < i // Assist any insert found earlier in the probe sequence
if Bucket(h,j)→vs = 〈ver j,inserting〉

95 CAS(&Bucket(h,i)→vs, 〈ver i,inserting〉, 〈ver i,collided〉)
return Assist(k,h,j,ver j)

97 else // Fail any insert found later in the probe sequence
if Bucket(h,i)→vs = 〈ver i,inserting〉

99 CAS(&Bucket(h,j)→vs, 〈ver j,inserting〉, 〈ver j,collided〉)
〈ver j,state j〉 := Bucket(h,j)→vs // Abort if k already a member

101 if state j = member ∧ Bucket(h,j)→key = k
if Bucket(h,j)→vs = 〈ver j,member〉

103 CAS(&Bucket(h,i)→vs,〈ver i,inserting〉,〈ver i,collided〉)
return false

105 CAS(&Bucket(h,i), 〈ver i,inserting〉, 〈ver i,member〉)
return true

107 }

Fig. 10. Lock-free insertion algorithm (continued from Figure 8)

table doubles in size, discarding the old table after growth is a memory overhead
no greater than the final size of the table.

Even if a garbage collector is running, the bounded memory footprint pro-
vides several advantages. Many collectors are only activated when memory be-
comes scarce, so will benefit from less memory usage. Lacking pointers, no costly
read or write barriers are needed to ensure memory is not leaked. Finally, the
small number of memory allocations needed helps avoid any synchronization the
allocator code may contain. The performance and latency benefits of these will
depend on the memory management algorithms used.

As given, the algorithm cannot implement a dictionary, storing a value with
each key, as there is no way to replace keys.

We hope to report these modifications in future work.

4 Results

In order to assess the performance of our new obstruction-free hashtable, we
implemented a range of designs from the literature: Michael’s ‘dynamic lock-free
hashtable’, which uses external chains to manage collisions and safe-memory-
reclamation (MM-SMR) to manage storage, a variant of Michael’s design using
epoch-based garbage collection (MM-Epoch), a further variant of Michael’s de-
sign using reference counting (MM-RC), and Shalev and Shavit’s ‘split-ordered
lists’ using epoch-based garbage collection (SS-Epoch). We also tested Lea’s
lock-based hashtable design, again using epoch-based collection. Since perfor-
mance depends on the locking algorithm and the level of granularity (number of
locks), we used a basic spinlock and the MCS lock [6] at different granularities.
We compared these against our new design, as presented in Figures 3, 8 and 10
(PH).

Our benchmark is parameterized by the number of concurrent threads and
by the range of key values used. We present results for 1–12 threads (running
on a Sun Fire V880 with eight 900MHz UltraSPARC-III CPUs) and with 215

keys chosen from [0, 215M), M = 2 or 10. Each update step consists of removing
a key then inserting another; finding keys and empty slots is done by trial-and-

repetition, choosing candidates uniformly at random, giving M2

M−1 searches on
average for each update step. This was designed to avoid hashtable resizing,
which simplifies our algorithm, as well as allowing a fine locking granularity and
greater read-parallelism in Lea’s, but which unfortunately negates the benefit of
split-ordered lists.

Each trial lasted ten seconds, after a three second warm-up period to fill
caches, and trials were repeated 20 times, interleaved to avoid short-lived anoma-
lies, to obtain a 90% confidence interval. Our results are shown in Figure 11.

MM-Epoch and MM-SMR consistently outperform MM-RC and SS-Epoch
(which, for clarity, are not shown in the results), thanks to low overhead and
read-parallelism. Below 8 threads, DL-Epoch performs best with low-overhead
spinlocking, avoiding the high cost of spinning with a fine locking granularity.

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10 11 12

M
ic

ro
se

cs
 p

er
 u

pd
at

e
(9

0%
 c

on
fid

en
ce

 in
te

rv
al

)

Number of threads

4 reads : 1 update (M=2)

 0
 1
 2
 3
 4
 5
 6
 7

 1 2 3 4 5 6 7 8 9 10 11 12

M
ic

ro
se

cs
 p

er
 u

pd
at

e
(9

0%
 c

on
fid

en
ce

 in
te

rv
al

)

Number of threads

11 reads : 1 update (M=10)

MM-Epoch
PH

DL-Epoch
MM-SMR

Fig. 11. Performance on 8-way SPARC machine

Searching for a key that is not in the table requires two memory accesses
for the PH algorithm, but only one for all others tested. In the absence of con-
tention, this is clearly visible in the results. Applications with a higher lookup
hit rate would lower this cost. However, in all test with at least four threads, PH
outperforms the other designs; this can largely be attributed to touching fewer
cachelines (one rather than two) in the common-case code path for update op-
erations — inter-processor cacheline exchange dominates runtime in massively
parallel workloads. Applications with much larger, multi-cacheline keys would
lose most of this advantage, and may favour an externally-chained scheme to
lower the memory footprint of empty buckets.

5 Conclusions

We have presented a lock-free, disjoint-access and read parallel set algorithm
based on open addressing, with no need for garbage collection, and touched
upon removing population constraints. It has high straight-line speeds and a
low operation footprint leading to excellent performance, matching and besting
state-of-the-art external-chaining implementations in the tests we performed.

We wish to thank Sun Microsystems, Inc. for donating the SPARC v880
server on which this work was evaluated, and the University of Rochester, New
York, for hosting it.

References

1. Gao, H., Groote, J. and Hesselink, W. Almost Wait-Free Resizable Hashta-
bles In Proceedings of the 18th International Parallel and Distributed Processing
Symposium, April 2004, p.50a.

2. Fraser, K. Practical Lock-Freedom. University of Cambridge Computer Labora-
tory, Technical Report number 579, February 2004.

3. Knuth, D. The Art of Computer Programming. Part 3, Sorting and Searching.
Addison-Wesley, 1973.

4. Lamport, L. Concurrent Reading and Writing. In Communications of the ACM,
1977, pp.806-811.

5. Martin, D. and Davis, R. A Scalable Non-Blocking Concurrent Hash Table Im-
plementation with Incremental Rehashing. Unpublished manuscript, 1997.

6. Mellor-Crummey, J. and Scott, M. Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors. In ACM Transactions on Computer Systems,
Volume 9, Issue 1, February 1991, pp. 21–65.

7. Michael, M. Safe Memory Reclamation for Dynamic Lock-Free Objects using
Atomic Reads and Writes. In Proceedings of the 21st Annual Symposium on Prin-
ciples of Distributed Computing, July 2002, pp.21-30.

8. Michael, M. High performance dynamic lock-free hash tables and list-based sets
In Proceedings of the 14th Annual Symposium on Parallel Algorithms and Architec-
tures, August 2002, pp.73-82.

9. Shalev, O. and Shavit, N. Split-Ordered Lists: Lock-free Extensible Hash Ta-
bles. In Proceedings of the 22nd Annual Symposium on Principles of Distributed
Computing, July 2003, pp.102-111.

10. Scherer, W. and Scott, M. Contention Management in Dynamic Software
Transactional Memory. In PODC Workshop on Concurrency and Synchronization
in Java Programs, July 2004, pp.70–79.

11. Purcell, C. and Harris, T. Non-blocking Hashtables with Open Address-
ing. University of Cambridge Computer Laboratory, Technical Report number 639,
September 2005.

