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Abstract

Building distributed grid applications is notoriously dif-
ficult: the complex interactions between concurrently run-
ning processes, middleware, operating systems, underlying
devices, and interconnecting networks can lead to unpre-
dictable and difficult to analyze errors. Yet debugging sup-
port for such systems is woefully inadequate; typically a
central user interface coordinates a set of conventional de-
buggers. This structure leads to synchronization problems
and is limited to debugging user-mode applications.

In this paper we present the design and implementation
of PDB, apervasive debuggerwhich executes in a virtual-
ization layer underneath the entire distributed system. By
running each node of a distributed application in a sepa-
rate virtual environment atop the debugger, PDB can exer-
cise full control over the entire execution environment.

1. Introduction

Developers often utilize parallelism for increased per-
formance. By decomposing an application into a number
of communicating components, the application can execute
concurrently on a machine with multiple CPUs. Parallelism
can be achieved with both data partitioning — running mul-
tiple copies of the same program logic concurrently on a dif-
ferent data subset — and functional decomposition — di-
viding the application into multiple functional units each
running on a separate CPU. The recent development of grid
computing extends the available parallelism further by dis-
tributing the application components across multiple ma-
chines connected by a network.

Grid applications or middleware using either form of de-
composition are more difficult to debug than applications
running on one machine. The interactions between inde-
pendent processes must be checked. Both the data mes-
sages passed and the timing of those messages are impor-
tant. The network between machines must be considered a

non-deterministic black box which may delay or re-order
messages.

Many current online debuggers for grid systems share a
common architecture, comprising a central console that co-
ordinates the activities of several independent debuggers.
Debug code running on each remote node receives com-
mands from the coordinator and then is responsible for in-
teracting with one part of the target application.

Debuggers based on this architecture suffer from two ba-
sic limitations. First, their reliance on an underlying net-
work makes it difficult to synchronize the activities of the
coordinator and each remote debugger. Messages sent from
the central control process cannot be guaranteed to be acted
upon at remote machines at exactly the same time. The in-
dividual processes will stop at different points in their exe-
cution, thus preventing the debugger from generating a con-
sistent global view of the entire distributed state.

Second, as a user-space application, each remote debug-
ger is limited in its ability to analyze and alter the environ-
ment in which the target is running. The debugger, running
as a peer to the target application, is constrained by the op-
erating system’s standard debugging interfaces. This visi-
bility is generally restricted to the target’s virtual address
space and CPU state. It would be useful to extend this to
deal with lower level events — e.g. to enter the debugger
when a network packet is dropped, or when a particular set
of processes are scheduled simultaneously.

1.1. Pervasive Debugging

Pervasive debugging places the debugger in a virtualiza-
tion layer above the hardware but beneath the target appli-
cation and operating systems. These virtual environments
can be implemented in several ways with differing empha-
sis on detail and performance. Hardware simulators, such
as Bochs [14] for a single x86 CPU and Proteus [4] for a
MIMD multi-processor, provide a highly accurate and de-
tailed simulation of the inner workings of the CPU and other
hardware components. They are useful for their ability to
perform very low-level analysis, for example the impact of
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Figure 1. Peer Debugging versus Pervasive
Debugging. On the top, a traditional debug-
ger is a user-level peer application of the tar-
get and thus is limited in scope and capabil-
ity. Below, the pervasive debugger can ana-
lyze and affect the entire distributed compu-
tation.

changes to a CPU cache or re-ordering memory accesses.
However, the use of detailed simulation comes at the cost
of extremely poor performance.

Alternative virtual environments trade precision for
greater performance. Para-virtualization provides a ma-
chine interface similar to the actual hardware. By requir-
ing that an operating system be ported to run on a virtual
machine monitor (VMM), a virtual environment can ex-
ecute with minimal performance degradation compared
to an operating system running directly on bare hard-
ware [2].

This paper describes PDB, a pervasive debugger that uti-
lizes the hardware and software abstractions provided by a
VMM. Each component from the original distributed ap-
plication runs in an isolated virtual machine that includes
a virtual CPU, memory, network, and disk. Unlike a tradi-
tional application-level debugger, which executes as an ad-
junct process on each node, the pervasive debugger concep-
tually operates below the virtual machine in which the tar-
get application executes, as shown in Figure 1. The devel-
oper can control all aspects of the application and its envi-
ronment.

One drawback of the application running on just one
physical machine is that fewer system resources are avail-
able. It may be necessary to debug a smaller representative
test case based on a subset of the original data. Alterna-
tively one could extend the architecture to operate over sev-
eral physical machines, as discussed in Section 5.

1.2. Horizontal and Vertical Debugging

PDB’s unique placement enables the combination of two
novel techniques,horizontal debugging andvertical debug-
ging, when examining distributed systems.

Horizontal debugging allows a single debugger to con-
trol all of the nodes of a distributed computation. Heteroge-
neous distributed environments are supported; each virtual
machine can run a different operating system. As there is
no physical network between the debugger in the VMM and
the target application on each node, PDB can synchronously
examine concurrently executing processes.

This makes PDB ideal for examining interactions be-
tween the various components of the target distributed
application. Instead ofprintf debugging or generat-
ing causal distributed breakpoints from different nodes
based on Lamport clock time stamps [8], it is possi-
ble to stop the entire distributed application instanta-
neously. The developer can then analyze and verify pro-
gram state either manually or with automated scripts.

Vertical debugging takes advantage of the hardware and
software abstractions of the VMM to allow the program-
mer to examine and control the entire software environment
including the operating system, system libraries, and vir-
tual devices. With traditional debuggers, programmers are
forced to treat the environment outside the application code
that they have written as a black box and assume that they
are correct. Unfortunately, this is not always true: an inter-
face may be specified incorrectly, an implementation may
be buggy, or a module may contain undocumented func-
tionality. Any of these may lead to erroneous behavior.

Since PDB resides outside all virtual components, it can
control the entire target application and virtual machine.
For example, it is possible to step from application code
through a system call into the operating system kernel and
vice versa. A developer can also examine or modify net-
work packets that have been transmitted by one node but
not yet received by another.

This might help a developer writing a network applica-
tion who is having trouble with packet loss. PDB can be
used to follow packets to determine where the error is oc-
curring. The debugger can successively examine the appli-
cation network queue, operating system queue, and device
queue to isolate the exact point where packets are lost.

The next section reviews existing debuggers for dis-
tributed systems. Section 3 describes the design of PDB,
and Section 4 describes the current status of our imple-
mentation. Finally Section 5 discusses future work and con-
cludes.



2. Related Work

Current debuggers for distributed systems can be charac-
terized asjust a bunch of debuggers: they share a common
architecture comprised of a central console that coordinates
the activities of independent debuggers on each node.

There is debug code running on each remote node inter-
acting with the target. This code is either a default debug-
ger supplied by the hardware vendor [19], a custom debug
program [7], or a third-party debugger like GDB [6, 12]. In
the case of heterogeneous distributed systems, the debugger
may use of a variety of remote programs, each supporting a
different target architecture [16]. This flexibility is achieved
at the expense of providing only lowest common denomi-
nator functionality; any functionality not supported by ev-
ery platform, such as the ability to examine a node’s mes-
sage queues [17], is lost.

Existing distributed debuggers may require source code
changes to provide hooks and entry points. The debug pro-
cesses have no way to intercede when the target application
is initially invoked, because they run as peers to the target
application. One solution requires special libraries with cus-
tom debug code for the distributed middleware to allow the
debugger to intercede once the application has started [12].

Some debuggers use theptrace system call or/proc
interface [15]. These are essentially forms of interprocess
communication that require context switches between the
debugger, operating system, and target process and so can
lead to poor overall performance.

An alternative mechanism is to add a new thread to the
target process [1]. Running in the same address space but
perhaps on a different processor, this debug thread can ef-
ficiently access the entire address space of the target. How-
ever, a malformed application can corrupt the debug thread.

Unpredictable communication delays between the mas-
ter debugger and each remote debugger make it difficult to
start or stop every participating node atomically [9]. Most
debuggers message each node sequentially [20] or with a
broadcast message [19]. This results in an imprecise opera-
tion; the nodes receive the messages at different times and
any state aggregation will not reflect a consistent view. An-
other option employs a distributed snapshot algorithm [5].
Such algorithms require source code modifications to the
target program to produce logical snapshots. These logical
snapshots use causal event ordering to form a global state
that only hypothetically may have existed; there is no guar-
antee that it actually did exist at any point.

Virtualized debugging [11] offers another approach to
debugging multi-process applications. Various virtualiza-
tion techniques are employed to control all of the resources
utilized by the target application. The application code is in-
terpreted [18] and runs with modified system libraries that
emulate disk and network I/O operations. Thus, the virtual-
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Figure 2. PDB Debugging a Grid Application.
The unadulterated application runs in virtual
machines atop a virtual machine monitor.
The debugger is embedded within the virtual
machine monitor and can control all aspects
of the application and its environment.

ized debugger has fine-grain control over the application’s
execution environment; this interpret-everything model is
suitable for a very detailed analysis of code execution and
can uncover low-level bugs such as dependencies on CPU
memory access ordering.

This extensive use of virtualization offers detailed pre-
cision at the expense of performance. The virtualized de-
bugger runs as a traditional user-level application emulat-
ing the target environment. PDB, on the other hand, resides
in a VMM below the operating system and supports native
execution of the target application.

3. Design

Since PDB can control the application’s virtual environ-
ment, its design is closely intertwined with the virtual ma-
chine monitor, as shown in Figure 2. The debugger is a
client-server application. The PDB client is a user applica-
tion that provides an interface for the user and sends com-
mands to the PDB server. The server receives the commands
and directs them to appropriate modules which interface
with the virtual machine monitor. Additional functionality
such as event processing is provided by specialized mod-
ules.

3.1. PDB Client

The PDB client provides a user interface that accepts
commands from the user and translates them into instruc-
tions which are sent to the PDB server. Since the server



only provides basic mechanisms for controlling the target,
the client is responsible for various high-level tasks such as
symbol table management and de-compilation.

3.2. Interface Protocol

The interface between the PDB client and server is based
on the GDB remote serial protocol [10], which mandates
basic functionality such as the ability to read and write
memory and registers. This protocol has been extended to
include a naming context and a security context to support
pervasive debugging.

PDB can manage multiple threads in different address
spaces; it is necessary to establish a target context for
each command. Instead of passing just a<virtual address>
to specify a particular memory location when installing a
breakpoint, a<virtual machine id, task id, thread id, vir-
tual address> tuple is required to fully qualify the desired
address.

A security context is also required when the debug ses-
sion is established. A particular developer’s access can be
restricted to only those processes comprising the target ap-
plication. These may run in just a subset of the virtual ma-
chines currently executing. Multiple developers, each with
a different context, can debug different applications concur-
rently without the ability to interfere with each other’s work.

The debug protocol may execute over a network inter-
face if the PDB client is running on a remote machine. Al-
ternatively, the client can run within a local virtual machine
and utilize a privileged debug interface to access PDB be-
low.

3.3. Virtual Memory and CPU

PDB supports both breakpoints, which trigger when a
particular instruction is reached, and watchpoints, which in-
dicate when a particular memory location is changed. These
can be implemented either in hardware using dedicated de-
bug registers, such as DR0-3 on the x86, or in software,
with the debugger automatically re-writing a particular in-
struction with another that generates a debug exception.

3.4. Virtual I/O Devices

With virtual I/O devices, the PDB can analyze data
reaching beyond the operating system. For disks, the de-
bugger can access and modify disk blocks directly. For net-
works, in-flight packets between virtual machines can be
examined.

The debugger also extends the functionality provided by
each virtual I/O device. For networks, a virtual topology can
be created between the virtual machines. Arbitrary band-

width, latency, and error characteristics can be assigned to
each link between machines.

3.5. Distributed Assertions

At certain points in the distributed computation, as de-
fined by when a particular line of code is reached, the
debugger can automatically check an assertion about the
global state of the entire computation. The assertion is de-
fined as a logical composition of a number of primitive
events.

Two types of primitive events are supported: temporal
events and spatial events. Temporal events, such as break-
points, trigger when the instruction at a particular address is
reached. Spatial events, which resemble watchpoints, check
the contents of an object such as a memory address range,
disk block, or network packet. The developer can check to
see if a particular byte string occurs at a fixed location or
anywhere within the target object.

3.6. Discussion

Placing PDB beneath the virtual environments enables
two novel mechanisms for debugging distributed systems:
horizontal debugging and vertical debugging. The debugger
can synchronously control multiple applications running in
different virtual machines and can examine the entire ap-
plication environment beyond just the application code in
question.

4. Implementation Status

The PDB server is being implemented within the Xen
virtual machine monitor [2] for the x86 platform. Xen uti-
lizes para-virtualization [21] to permit multiple guest oper-
ating systems to execute simultaneously, each in a protected
x86 virtual machine (domain). Linux and NetBSD guest op-
erating system ports to Xen have been completed; Windows
XP and FreeBSD are in progress.

4.1. Debugger Commands

The PDB client is currently an enhanced version of
GDB [10]. Developers can run the client on either a remote
machine or in a domain and connect to the debugger using
the PDB interface protocol. The PDB server is event driven.
Commands are received from the serial line, console key-
board driver, or via a Xen debug interface available to priv-
ileged virtual machines.

The debugger relies on GDB’s ability to set soft break-
points by re-writing an instruction with the one byte INT3
trap-to-debugger opcode. However, the PDB server must



track the breakpoints set by the client. When a debug ex-
ception occurs the debugger first checks to see if it set the
breakpoint. If not, then the exception is propagated back to
the appropriate virtual machine for the guest operating sys-
tem to handle; the exception was probably generated by a
user-level debugger running within a virtual machine.

While the breakpoints could be saved as a tuple of
<domain id, process id, virtual address>, it is more effi-
cient to perform the<domain id, process id> → <page
global directory> translation once and subsequently cache
the page global directory (PGD) value. Although in theory
it is possible for an operating system to change a process’
address space to another PGD, this does not occur in prac-
tice, and if necessary, the re-mapping could be caught and
the cache invalidated.

4.2. Reading and Writing Memory

VMM Memory.Every process maps Xen at the same vir-
tual address. It is easy to access memory in Xen’s address
space using the current task; any PGD can be used. PDB
can be used to analyze the VMM in which it is executing.

Operating System Memory.PDB fetches a virtual ma-
chine’s PGD from a task structure maintained by Xen.
Linear address translation is then used to find the appro-
priate page. Both three-level paging (4KB page size) and
two-level paging (4MB page size) are supported, as Xen
uses 4MB pages to minimize the number of L2 page ta-
ble entries required. The physical address is then converted
into an accessible virtual address.

Process Memory.Given a<domain id, process id, virtual
address>, the domain id and process id combination are
used to obtain a PGD. Operating system specific code is re-
quired for this step. Once the PGD has been fetched, lin-
ear address translation is used to access memory as in the
above operating system case.

4.3. OS module

The debugger includes operating system specific mod-
ules in order to access specific data structures. For exam-
ple, to find the PGD for a process in Linux, the code hashes
the process id into thepidhash array and searches for the
correcttask struct. This is used to fetch themm struct, or
memory management structure, in order to retrieve the PGD
for the particular process. Although this code presently re-
sides within the virtual machine monitor, we plan to relo-
cate it into the PDB client.

PDB currently supports Linux 2.4. Additional modules
for FreeBSD and Windows XP are planned.

4.4. Vertical Debugging

The debugger allows a developer to follow an applica-
tion from user-space code into the operating system kernel.
The developer can register interest when the target process
enters or exits a system call.

During initialization, the guest operating system regis-
ters an INT 0x80 software interrupt with Xen. The excep-
tion is not installed in the CPU’s IDT which causes the in-
struction, when executed, to generate a general protection
fault. Xen handles the resultant interrupt and rewrites the
entry point into the operating system with a software break-
point. When this debug exception is reached, Xen can op-
tionally set another software breakpoint to regain control
with the system call has completed and the CPU return to
user-level code.

5. Future Work

We are currently exploring advanced debugging tools
which build upon our prototype. Whereas a traditional de-
bugger operates on the contents of an applications virtual
address space and CPU state, the pervasive debugger can in-
corporate the entire system state. By treating network pack-
ets and disk blocks as debugging objects, the debugger can
execute actions based on them. For example, a conditional
breakpoint could depend on a particular value within a net-
work packet.

The VMM can also be used to implement bi-directional
debugging. Most replay algorithms for distributed systems
require custom debug libraries to log messages between
nodes for deterministic replay. Serial applications, however,
can take advantage of periodic checkpoints and repeated ex-
ecution for increased performance [3]. This concept could
be extended to a set of virtual machines. Xen offers two fea-
tures that can be used to efficiently checkpoint the applica-
tion and its environment: copy-on-write disks, and the abil-
ity to suspend and resume a virtual machine to/from disk.

PDB can inject faults to test an application’s robust-
ness to errors. The target system is perturbed in some fash-
ion and the resulting behavior analyzed. Emulated faults
can be introduced at many different levels, ranging from
hardware errors to software programming errors. Hardware
faults can occur within the disk, network, and memory sub-
systems. While these are difficult to reproduce without cus-
tom hardware, PDB can simulate their effects. Program-
ming errors are generally simpler to generate by changing
program state. PDB can also inject faults precisely. The de-
bugger can monitor the distributed application and inject
faults once a set of criteria, possibly defined on multiple
nodes, is satisfied.

Similar to fault injection, directed execution can analyze
a program’s behavior. PDB can modify many aspects of a



program’s execution environment in an effort to discover
bugs. For example, stress testing the network may uncover
bugs in an application’s networking code. Assigning differ-
ing workloads to each virtual CPU can cause different dead-
lock situations to emerge.

Finally, we intend to investigate extending PDB to oper-
ate across a set of physical nodes while still retaining full
control over the software under test. Using techniques bor-
rowed from time-warp simulation [13], we can run the en-
tire system optimistically in virtual time and use roll-back
if nodes become out of sync. Nodes of the system would
still be hosted within virtual machines; Xen’s facilities for
copy-on-write storage and tracking memory updates make
this approach more feasible than if PDB were operating di-
rectly below processes.

This paper has described the PDB, a new method of de-
bugging grid applications. By using a debugger incorpo-
rated into a virtual machine monitor, a developer gains the
ability to vertically debug an application’s entire execution
environment. By mapping the distributed computation onto
individual virtual machines, the developer can horizontally
debug a number of process running in different operating
systems.
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