
Dependable Software Needs Pervasive Debugging

Timothy L. Harris
University of Cambridge Computer Laboratory

J J Thomson Avenue, Cambridge, UK
tim.harris@cl.cam.ac.uk

Abstract

Nobody would claim that debugging computer software
is easy: all too often it proceeds by trial-and-error experi-
ments in which programmers examine the behaviour of the
system and form hypotheses that could explain what they
see. These problems are exacerbated when developing dis-
tributed, peer-to-peer or multi-processor applications, or
when unreliable network links form part of the system un-
der test. Environments for pervasive computing take this to
an extreme, allowing user-supplied code to run or migrate
within and around the network.

In this paper we show how to perform pervasive debug-
ging, enabling complex multi-process applications to be de-
bugged and controlled as single entities and their robust-
ness to changes in network performance to be evaluated.
We do this by virtualizing the resources used by the system,
allowing the threads that it involves and the network links
that it uses to be modelled within a single controllable pro-
cess.

1 Introduction

Debugging computer programs often proceeds by intu-
ition: given some reports of how the system fails the pro-
grammer must try to deduce what might have led to those
failures and then re-run the program in the hope of re-
producing the same problem, or at least gaining a certain
amount of corroborative or conflicting information. Even-
tually sufficient evidence may be gathered to focus the pro-
grammer’s attention on the root cause of the problem.

This debugging process occurs even in simple projects
– where the program is being run within a debugging tool,
where it operates on a single computer or where it performs
no external communication. This is lamentable: the system
is deterministic and running in isolation, there should be no
need to run and re-run it experimentally.

These problems multiply with the emergence ofper-
vasive computingenvironments. For instance, in the

Xenoserver project we are building an infrastructure for
wide-area distributed computing [15]. We envisage a world
in which Xenoserver platforms are scattered across the
globe and are available for any member of the public to
submit code. Grid computing and programmable networks
present similar acute challenges [17]. Current methods for
debugging distributed applications require the user to or-
chestrate separate tools attached to each of the processes
involved; a tedious manual task.

In the remainder of this paper we first identify four key
problems (P1-P4) faced by users of current debuggers and
we then introduce the technique ofvirtualized debuggingas
a solution to these problems.

2 Challenges in Debugging

We believe that there are four particular problems that
exist with conventional debugging tools:

P1. Stop/Inspect/Go Interface. The abstraction pre-
sented by a traditional debugger is of a controllable proces-
sor with support for stepping through the code, for setting
breakpoints at which execution should halt and for inspect-
ing (perhaps updating) the contents of memory locations
in terms of the variables manipulated by the source code.
However, the programmer must typically either set a break-
point before a problem develops and step forwards (a slow
process if the problem is erratic or its origin uncertain), or
set a breakpoint when a problem is detected and examine
the system’s state to try to deduce how it reached that point.
Such archaeology wastes programmers’ time.

One solution is to generate extensive logging for off-line
analysis. Larus’whole program paths[10], and the ex-
tensions proposed by Zhang and Gupta [19] represent the
state of the art, recording the complete control-flow his-
tory of a single thread in a reasonably compact form. An
alternative combines logging withre-execution, typically
recording information during ‘forwards’ execution and us-
ing this to recover intermediate states during ‘reverse’ exe-
cution. The main problems are how to manage these logs



efficiently, how to handle I/O and how to expose a natu-
ral step backwardsoperation to the user. In single-threaded
systems Boothe’s recent paper presents good approaches to
all of these problems and extensive references to previous
work [2].

P2. Risk of Masking Bugs. In shared-memory multi-
processor systems it is typical that different threads do not
see memory access operations in a consistent total order –
for example if one thread writes to locationA and then to lo-
cationB then a second thread may well read the new value
of B and subsequently the old value ofA. Such orderings
might be caused by caching or write buffering within the
processors, or by more advanced techniques such as value-
based speculation. Adve and Gharachorloo provide a sur-
vey and tutorial of the subject [1]. The same problem exists
within multi-threaded virtual machines, either through run-
time code optimization or directly through the underlying
processor [14].

Practical mechanisms for identifying bugs caused by
these low-level problems have not progressed beyond ask-
ing experienced programmers to inspect the code. This
straightforward approach can work well in a collaborative
environment [7], but it does require an established and co-
operative community of experts. Moreover, the uptake of
SMP and SMT systems will accentuate the need for tools
that support fine-grained concurrency, both within applica-
tion code and within the OS.

P3. Poor Support for Concurrency. Co-operation is
required but often lacking between the debugger and the
thread system’s implementation. For example the debug-
ger may be aware of the threads managed by the operating
system kernel, but be unaware of how application threads
are multiplexed over each of these system threads (a prob-
lem we encountered usingdbx under Tru64 UNIX). Con-
ditional breakpoints must still be set in terms of the state
of individual threads – not system-wide properties such as
‘stop if Thread 1 holds lock A and Thread 2 holds lock B’.
More generally operations such as single-stepping or re-
suming one thread do not take into account other threads
in the system – for example whether they run freely, step
forwards a similar amount or are suspended.

Deterministic replayschemes have been designed to al-
low consistent re-execution of multi-threaded processes.
LeBlanc and Mellor-Crummey developed a systemInstant
Replaywhich, during forwards execution, logs the relative
order of significant events by associating a version num-
ber with each shared object and tracking which threads ac-
cess which versions [11]. For efficiency they assume that
shared state is governed by multiple-reader single-writer
locks. Choi and Srinivasan’s work is typical of more gen-
eral schemes in which significant events include accesses to

Application communication

Execution platform Execution platform

P
ro

ce
ss

 1

D
eb

ug
ge

r

P
ro

ce
ss

 2

D
eb

ug
ge

r

Virtualizing debugger

Execution platform

P
ro

ce
ss

 2

P
ro

ce
ss

 1

Figure 1. A traditional system (top) and a vir-
tualizing debugger (bottom). Both are shown
hosting a two-process distributed system. In
the first case two separate machines and de-
buggers must be used; in the second case a
single debugger provides two virtualized en-
vironments and communication occurs under
its control.

shared memory and operations on mutual exclusion locks
and condition variables [5].

A complementary approach is to identify classes of error
automatically. TheErasersystem is a dynamic data race
detector [16] using binary rewriting to update per-location
records of the set of locks protecting that address in the
heap. Each time a location is accessed the associated lock
set is intersected with the set of locks currently held: a
warning is reported if the lock set becomes empty.

All these systems assume an interleaved model of single-
process execution and so do not consider P2 or extensions
to distributed systems.

P4. Poor Support for Distribution or Communication.
Distributed programs pose even more substantial problems
than those of multi-threaded or multi-processor systems:
separate debuggers must be attached to the various pro-
cesses involved. There is no central way to control system-
wide parameters – e.g. to impose loss patterns or delays on
communications, to corrupt or duplicate messages, to insert
spurious ones or to control the relative execution speeds of
threads. Such features must either be intrinsic in the plat-
form running the tests or must be implemented as additional
testing code by the programmer.



The Pilgrim debugger provides support for debug-
ging distributed systems built using remote procedure call
(RPC) [6], allowing call histories to be shown across ma-
chine boundaries. Thep2d2distributed debugger provides
a unified user interface to processes on different machines,
and allows for interaction with e.g. MPI libraries [9]. We
are not aware of any systems that attempt to support more
general communication, for example at the level of TCP,
UDP or indeed ‘raw’ sockets.

3 Virtualized Debugging

Each of the challenges identified in Section 2 arises be-
cause aspects of the system’s behaviour depend on func-
tions implemented outside the debugger’s control. To ad-
dress these problems we propose the technique ofvirtual-
ized debuggingin which all of the resources used by the
system under test are virtualized by the debugger – rang-
ing from low-level details such as the precise implementa-
tion of processor instructions to the scheduling of threads,
the provision of separate virtual address spaces to different
processes and network communication between those pro-
cesses. Retaining control over the resources in use allows
the debugger to ensure deterministic execution, to expand
or contract the detail with which parts of the system are
modelled, to manage distributed applications as single enti-
ties and to control the performance of external components
such as communication links.

Conceptually, as shown in Figure 1, this places a sin-
gle debugger below the entire system that it is being used
to study, rather than having separate debuggers attached
to each process. Brewer and Weihl suggested a similar
structure for debugging high-performance parallel applica-
tions on a workstation-hosted simulator – we take their ap-
proach to an extreme by considering all resources and mul-
tiple machines [3]. In contrast to their processing-based en-
vironment, the execution of many distributed applications
is dominated by communication latencies: programs being
debugged may sometimes actually run faster under the de-
bugger.

3.1 Scope

We envisage virtualized debugging being most useful in
developing applications that use a moderate number of com-
municating threads or communicating processes – perhaps
up to a dozen – each operating using the same instruction
set and linked against the same libraries. Of course, allow-
ing more heterogeneity would allow the system to have even
broader applicability; but we see no shortage of problems to
tackle given our assumed environment (either as construc-
tors of the debugger, or as its eventual users).

Target system
configuration

platform
Core run−time

application
Instrumented Modified

librariesvirtualizer
Instruction−levelApplication

code

Figure 2. The interaction between the system
components.

Hosting the entire system within a single debugger obvi-
ously imposes practical limits since it must be executed on
a single machine. Raising these limits provides an avenue
for future work, perhaps by re-distributing the virtualized
environment. However, during our own work on lock-free
data structures we have found diminishing returns, in terms
of the number of bugs observed, going beyond four concur-
rent threads.

An interesting question is the extent that virtualized de-
bugging can be used on code forming part of an OS. This is
another ‘classical’ environment in which a lack of reprod-
ucable behaviour hinders methodical development – for in-
stance the occurance of a deadlock may depend on the locks
held by the application executing on the CPU to which an
interrupt is delivered. Our current design will not support
such an environment directly: although virtualized kernel-
mode execution has been attempted elsewhere many times
(for example recently by VMWare) incorporating it here
raises a number of additional challenges. The first is the
technical difficulty of virtualizing access to devices at the
lowest level – that is, through I/O operations, DMA and
the like. Secondly, the virtualizing debugger would require
knowledge of the particular notions of ‘thread’ and ‘pro-
cess’ that are used by the operating system it is hosting. We
view the most direct application of virtualized debugging
to OS implementation as being through the development of
reliable libraries and modules from which the OS is con-
structed.

3.2 System Structure

The structure of the virtualizing debugger can be divided
into three components: theinstruction-level virtualizer, the
modified librariesand thecore run-time platform. The in-
teraction of these is shown in Figure 2.

The instruction-level virtualizeris responsible for trans-
forming the application code to allow it to be executed di-
rectly during debugging. For example by:



� Inserting periodicyield operations to return control to
the main loop of the debugger (e.g. by using a software
instruction counter [13]);

� Using sandboxing to check that memory accesses
made by the application are to valid addresses [18].
This is necessary to prevent it from interfering with
the enclosing debugger;

� Expanding accesses to shared memory locations into
code sequences that emulate access-reordering, write-
buffering or caching;

� Giving processes in a multi-process application the il-
lusion of access to separate virtual address spaces, ei-
ther by integrating operating system support or, more
generally, by adding a per-process offset to each mem-
ory access made.

This transformation may either be performed ahead of
time, or actually be performed dynamically on program ‘hot
spots’ with a simple emulator used for uncommon code.
External calls made by the resultinginstrumented applica-
tion are resolved againstmodified libraries– for example
to emulate network access for communication between pro-
cesses (perhaps introducing loss or delay). The modified
libraries can also record the behaviour of I/O operations
if reverse execution is to be supported. Thecore run-time
platform is responsible for controlling the execution of the
threads. During forwards execution, its main loop selects
which thread should continue next and then executes that
thread until it yields control.

Thread Scheduling. The implementation of the system
requires care in order to avoid it masking further classes of
bug. In particular, a simple regular placement of yield op-
erations within the instrumented application risks limiting
the execution schedules that could occur. Of course, the de-
bugger could systematically explore all possible execution
schedules around a program point; there is a clear trade-off
between the number of schedules tested and the eventual
coverage. However unlike traditional debugging the range
of schedules could be changed dynamically, allowing the
user to focus on specific parts of the program. In contrast,
existing tools either require complete re-execution for each
schedule, or perform exhaustive testing over entire runs (an
impractical solution for non-trivial software) [4].

An alternative option is to ensure that the thread schedul-
ing implemented by the virtualizing debugger remains typ-
ical of the behaviour that the real scheduler would provide.
This could be achieved by having the run-time platform dy-
namically enable and disable a larger set of yield points so
that, over a long execution run, thread switches would be
considered at each possible location. If thread switches are

based on a software instruction counter then the counter val-
ues that trigger switches could be drawn from a random dis-
tribution. A complementary approach would be to introduce
a random (virtual) delay upon each thread switch to reduce
the weak coupling effects that may lead to threads moving
in lock-step [8].

Binary Re-writing. The concern of identifying access to
‘external’ resources is, of course, superficially similar to
previous work on executing untrusted binary code – Wahbe
et al introduce that area in their work on Software Fault Iso-
lation (SFI) [18]. However, here we can benefit from closer
integration between the debugger and the remainder of the
tool chain – e.g. by introducing sandboxing checks before
optimization rather than using simplistic binary rewriting,
or by exploiting guarantees made by the language’s type
system.

Efficient Execution. The structure of distributed applica-
tions can be exploited to aid efficient execution over a vir-
tualizing debugger: for instance, different nodes within a
peer-to-peer system may run concurrently where allowed
by the communications that they attempt. Similarly, if the
instrumented application supports roll-back, then the core
run-time platform may execute multiple threads from within
the same process, check whether they did make conflicting
memory accesses and, if they did, step back to before the
conflict and then re-run sequentially. In each case the user
is presented with the illusion of a single deterministic sys-
tem whose execution they can control at all levels.

3.3 Dependable Systems

The availability of efficacious debugging tools does not
in itself automatically lead to dependable computing sys-
tems. However, aside from the general practical benefits
that virtualized debugging can bring to the software devel-
opment cycle, there are extensions that could be of partic-
ular use for dependability. In particular, by exposing in-
strumentation and control interfaces for thread scheduling,
it would be possible to express a variety of alternative tools
using this same framework.

Firstly, simple coverage testing can be performed by
recording each range of addresses that are executed and
subsequently identifying code sections that have not been
exercised. Secondly, for smaller programs, exhaustive test-
ing is possible. This could be performed directly at a low
level, testing each thread schedule in turn up to a specified
depth or until a previously-observed state is reached. Alter-
natively, the programmer could define a mapping function
from the concrete state of the system to a logical state and
the search could explore that logical state space.



An important attraction of both techniques over sym-
bolic model checking is that they operate using the same
code that will ultimately be executed. While any exhaus-
tive technique has limited scalability, integrating state-space
exploration with the debugger could allow the program-
mer to initially run threads to a point at which problematic
behaviour is observed and then use exhaustive exploration
around that point to search for problems. Effectively this al-
lows a limited test case to be generated directly from the full
system, rather than requiring that it be extracted by hand.

4 Conclusion

Virtualized debugging provides an effective solution to
the four problems identified in Section 2:

P1 Arbitrary system states can be recovered by re-running
the system from a previously recorded position. As
with Boothe’s work we can trade-off between the fre-
quency with which checkpoints are taken and the time
required to recover an intermediate point.

P2 Arbitrary levels of processor detail can be included by
the appropriate expansion of instructions. In addition
to modelling memory accesses we could consider, for
example, cache behaviours, TLB performance or the
availability of specialized functional units.

P3 The debugging interface has control over the schedul-
ing policy and can therefore provide deterministic re-
execution and selective stepping (or reversing) of spe-
cific threads.

P4 By supporting multiple virtual address spaces within
a single debugger it is possible to use the same frame-
work with distributed applications. Breakpoints can be
set according to system-wide properties and emulated
communication links can be made subject to spurious
transmission, to loss or to duplication.

In this paper we have outlined the technical infrastruc-
ture needed to support virtualized debugging: a further chal-
lenge is how to expose the facilities of this system to pro-
grammers. For example, in terms of the interfaces provided
to control execution, or to set the delay and loss characteris-
tics of links, or the thread and process scheduling policies.

Our implementation work is ongoing, building on tech-
niques we developed for a currently-unpublished tool used
to allow shared libraries containing static data to be
used with our single-address-space Nemesis operating sys-
tem [12] and on the open-source binary-instrumentation
Valgrind tool. We hope to demonstrate a prototype at the
Workshop in September 2002.

The delivery of dependable computer systems must be
underpinned by the testing and evaluation of each of the

components involved. As we have shown, existing debug-
ging tools provide few of the facilities desired by today’s
programmers, let alone tomorrow’s. Virtualized debugging
provides a key remedy for this, applicable to a spectrum
of settings ranging from distributed, peer-to-peer and agent
based applications down to the implementation of concur-
rency primitives within a multi-processor OS.

References

[1] S. V. Adve and K. Gharachorloo. Shared memory consis-
tency models: a tutorial.IEEE Computer, 29(12):66–76,
Dec. 1996.

[2] B. Boothe. Efficient algorithms for bidirectional debug-
ging. In Programming Language Design and Implementa-
tion (PLDI ’00), volume 35(5) ofACM SIGPLAN Notices,
pages 299–310, May 2000.

[3] E. A. Brewer and W. E. Weihl. Developing parallel appli-
cations using high-performance simulation. InProceedings
of the ACM/ONR Workshop on Parallel and Distributed De-
bugging, pages 158–168, May 1993.

[4] D. Bruening. Systematic testing of multithreaded Java pro-
grams, 1999.

[5] J.-D. Choi and H. Srinivasan. Deterministic replay of Java
multithreaded applications. InProceedings of the ACM SIG-
METRICS Symposium on Parallel and Distributed Tools,
pages 48–59, Aug. 1998.

[6] R. C. B. Cooper.Debugging concurrent and distributed pro-
grams. PhD thesis, University of Cambridge Computer Lab-
oratory, Feb. 1988. Also available as UCAM-CL-TR-128.

[7] J. Domingue and P. Mulholland. Fostering debugging
communities on the Web.Communications of the ACM,
40(4):65–71, Apr. 1997.

[8] S. Floyd and V. Jacobson. The synchronization of peri-
odic routing messages.ACM Transactions on Networking,
2(2):122–136, Apr. 1994.

[9] R. Hood. Thep2d2Project: Building a Portable Distributed
Debugger. InProceedings of ACM SIGMETRICS Sympo-
sium on Parallel and Distributed Tools (SPDT’96), Philadel-
phia, PA, May 1996.

[10] J. R. Larus. Whole program paths. InProgramming
Language Design and Implementation (PLDI ’99), volume
34(5) of ACM SIGPLAN Notices, pages 259–269, May
1999.

[11] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging par-
allel programs with Instant Replay.IEEE Transactions on
Computers, C-36(4):471–482, Apr. 1987.

[12] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and im-
plementation of an operating system to support distributed
multimedia applications.IEEE Journal on Selected Areas
In Communications, 14(7):1280–1297, Sept. 1996.

[13] J. M. Mellor-Crummey and T. J. LeBlanc. A software in-
struction counter. InArchitectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’89),
Apr. 1989. ACM SIGARCH Computer Architecture News
17(2):78–86, April 1989.



[14] W. Pugh. Fixing the Java memory model.Proceedings of
the ACM 1999 Conference on Java Grande, pages 89–98,
June 1999.

[15] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.
Xenoservers: accounted execution of untrusted code. In
Proceedings of the fifth Workshop on Hot Topics in Oper-
ating Systems (HotOS-VII), 1999.

[16] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A dynamic data race detector for multi-
threaded programs.ACM Transactions on Computer Sys-
tems, 15(4):391–411, Nov. 1997.

[17] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survey of active network
research. IEEE Communications Magazine, 35(1):80–86,
Jan. 1997.

[18] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. InProceedings of
14th ACM SOSP, pages 175–188, Dec. 1993.

[19] Y. Zhang and R. Gupta. Timestamped whole program
path representation and its applications. InProgramming
Language Design and Implementation (PLDI ’01), volume
36(5) of ACM SIGPLAN Notices, pages 180–190, May
2001.


