
Xenoservers:
Accountable Execution of Untrusted Programs

Dickon Reed, Ian Pratt, Paul Menage, Stephen Early, Neil Stratford�

University of Cambridge Computer Laboratory, Cambridge, UK
Email e.g. Dickon.Reed@cl.cam.ac.uk

Abstract

Many networked applications could benefit from execut-
ing closer to the data or services with which they interact.
By doing this they may be able to circumvent long commu-
nication latencies or avoid transferring data over congested
or expensive network links. However, no public infrastruc-
ture currently exists that enables this. We propose a system
that can execute code supplied by an untrusted user, yet can
chargethis user for all resources consumed by the compu-
tation. Such servers could be deployed at strategic loca-
tions throughout the Internet, enabling network users such
as content providers to distribute components of their appli-
cations in a manner that is both efficient and economical.

We call such a server aXenoserver1. This paper dis-
cusses the construction of such a system, examining how
accounting, billing, and quality of service provision can be
achieved.

1. Introduction

It is increasingly recognised that the prevailing model
of computation for networked applications is insufficiently
flexible. Currently, programmable computation is per-
formed either in client workstations (e.g. web browser) or
on remote servers (e.g. web server); in each case the code
executing on a system has been trusted not to consume ex-
cessive resources.

In some situations either the client or the server might
benefit from being able to execute code at, or near, the other
end of the connection, for example when submitting multi-
ple inter-dependent queries to a database server. The speed
of light places a fundamental lower bound on the latency
experienced between endpoints in a network, and hence de-
termines the minimum response time to a query. Similarly

�This work was funded by the European Commission ESPRIT Pegasus
II Project LTR 21917

1From the Greek���o�, a travelling stranger invited into one’s house
for rest and sustenance.

there will always be outreaches of the network with little
available bandwidth; the optimal place to process a stream
of data will often be before it has had to cross congested or
low bandwidth links, or links for which a high usage charge
is incurred.

At the moment, the owner of a system on the Internet is
unlikely to permit the execution of untrusted user-supplied
code. This is because existing operating systems are in-
capable of preventing (possibly unintentional) denial of ser-
vice attacks due to excessive resource usage by applications.
Perhaps the owner may trust Unix or Java Virtual Machines,
but these provide only limited security and generally do not
address resource management.

Consider an ISP-hosted web server. The ISP owns com-
puting resources at a well-connected location close to the
network core and permits customers to store data on the web
server for a price. However, few ISPs will allow execution
of arbitrary CGI scripts (even though this may be of con-
siderable benefit to the user) for fear of malicious or badly
written scripts compromising the stability or performance
of the server.

We present an architecture to support organisations in
providing computation servers at strategic locations within
the Internet that execute untrusted code supplied by third
parties. Obviously it is necessary to ensure that user code
cannot violate the integrity of the system or interfere with
the execution of other (similarly untrusted) applications,
so security and stability are concerns. Crucially,we will
bill users for the resources consumed by their applications,
hence financing the service.

1.1. Applications

We perceive many exciting applications for Xenoservers.
Web content may be provided by applications running
on Xenoservers, for example, by providing programmable
front ends to large database servers, or by providing dy-
namic web content. Rather than relying on web caches,
content providers could use Xenoservers to deploy copies
of key parts of their web site throughout the network.



This would enable them to supply personalised content and
maintain accurate access statistics without causing the user
to experience poor performance. The provider could ar-
range for their special web server application to automati-
cally distribute itself around the network to where it is most
needed, carrying with it the parts of the web content that are
appropriate.

Multimedia stream processing is another potential ap-
plication; Xenoservers may transcode streams destined for
users at the end of congested links, or multiplex and mul-
ticast video conferences at the optimal place to reduce la-
tency. Data-mining robots may wander from Xenoserver to
Xenoserver, moving closer to databases before communi-
cating with them and then moving on to others.

Xenoservers would be ideal for hosting multi-player
games and other virtual reality applications, where reduc-
ing interaction latency is critical. A Xenoserver approxi-
mately equidistant to all players could be selected when-
ever a new game session is created. The suppliers of a new
multi-player game would not need to invest in a server pool
for all their players, instead giving game players the ability
to create games on Xenoservers as they choose. The exe-
cution charges incurred by the game server could be shared
between all the players.

If Xenoservers are to support temporally sensitive ap-
plications such as multi-user games and multimedia stream
processing then we must provide Quality of Service re-
source guarantees. The alternative is to substantially over-
provision Xenoservers, but operators are unlikely to find
this economical.

2. Xenoserver Implementation

Over the last six years we have developed Nemesis [15],
a vertically structured operating system for end-user sys-
tems. Nemesis has been designed to enable applications to
receive quality of service guarantees for all the resources
they require, enabling support for high quality multimedia
and other soft real-time applications. We are now using
Nemesis as the platform for our prototype Xenoserver.

In a Xenoserver all resources that an application con-
sumes — directly or indirectly — should be accounted to
the application. Nemesis provides accounting and Quality
of Service (QoS) scheduling for most resources. In Neme-
sis, applications are themselves responsible for performing
much of the work of traditional operating system services
(using shared libraries). Thus, such work is naturally ac-
counted directly to the applications responsible. (This led
to the term “vertical structuring”). Nemesis makes a dis-
tinction between control- and data-path operations:

Data-path operations are the frequent, “every day” activ-
ities of the computer: delivering and transmitting network
packets, file system operations, processing and so forth.

Servers and other privileged components only exist on the
data-path when they are necessary to provide protection, or
control the multiplexing of a resource amongst clients. Our
experience with Nemesis has been that such functionality
can normally be provided by a ‘wafer-thin’ privileged ker-
nel layer.

On the control-path — i.e. the rarer connection setup and
tear–down, admission control and authorisation events —
we use a real-time object request broker. Nemesis uses a
single virtual address space with different per-page protec-
tion mappings for different trust domains, in order to make
inter-process communication fast, yet secure. The control-
path servers are carefully designed to perform only small,
bounded operations on behalf of clients, so that they do
not become a source of Quality of Service crosstalk2. Even
these small pieces of work can, in some circumstances, be
charged back to the client.

Commodity operating systems do not prevent applica-
tions attempting denial of service attacks on the operating
system by causing shared servers to perform excessive work
on their behalf. No matter how good a system’s security is,
if the system can be made to spend all its time in a high
priority server then real applications will make little or no
progress. If we are to charge for resource usage meaning-
fully, we can no longer permit applications a “free ride”
from system services.

2.1. Security

Xenoservers will typically run applications provided by
many different users. It is essential that these applications
cannot interfere with each other. Each application is respon-
sible for its own access control: it can arbitrarily decide to
accept or deny requests from other applications. This ar-
rangement is quite different to the one used by Unix and
similar systems, where processes sharing a UID can inter-
fere with each other.

It is unsatisfactory for a Xenoserver to need to know in
advance the set of users who may run applications on it. If it
is open to everybody who can supply digital cash, for exam-
ple, then the set of possible users is potentially very large.
The use of ‘accounts’, as in Unix and similar systems, is
undesirable because it severely reduces the set of machines
on which user code may execute.

Applications will typically need to make use of stan-
dard system services to allocate memory, set up network
connections, obtain processor guarantees, etc. Some sys-
tem services need to be accessible externally, for exam-
ple the service that permits new applications to be created.
The Xenoserver must ensure that applications (and services)

2Quality of service crosstalk occurs where the behaviour of one appli-
cation leads to the violation of another application’s guarantees [17].



cannot interfere with each other, yet provide a mechanism
for them to communicate.

In our implementation, access control policy for standard
applications and system services is described in a simple
language. The system provides a library for interpreting this
language, which is based on OASIS [12]. The communica-
tion mechanism is an object-based system which securely
identifies the origin of messages.

There are many possible policies that applications can
use when deciding whether to service requests. Some ap-
plications, for example web servers, may choose to service
requests without requiring any authorisation. Other appli-
cations, like web crawlers and search programs, may only
accept requests from their sponsor. More detailed policies
are also possible, and applications may choose to make use
of the system policy interpreter library.

2.2. Accounting and Charging for Resources

There is no single accounting mechanism suitable for all
temporal and spatial resources, so we have to consider each
resource individually. All resources are scheduled or allo-
cated, and subsequently charged for. These include:

� CPU cycles spent executing an application.

� CPU scheduling guarantees (whether utilised or not).
We currently use the Atropos [17] scheduler.

� Guaranteed response latency to external events (e.g.
incoming connections).

� Context switches caused by an application.

� Packets and bytes received and transmitted, including
any network usage tolls and possibly device driver and
packet filter execution costs. We use the scheme de-
scribed in [6] to ensure that protocol processing is done
in applications, while maintaining network security.

� Disk space rental charges.

� Disk block read and write usage charges and band-
width guarantees.

� Significant resources used by system servers on behalf
of applications while performing control-path opera-
tions.

Xenoservers need to provide mechanisms for setting the
prices of system resources and for charging users for the to-
tal money spent by their applications. Additionally, a mech-
anism for advertising Xenoserver pricing, availability and
network location needs to be implemented, so that potential
users can select systems on which to run their applications.

Some owners of Xenoservers can choose to specify the
price of resources statically. Occasionally resources might
be very cheap or free on some Xenoservers to encourage
users onto those machines. Owners may choose to only
charge for CPU reservations and response time guaran-
tees and make CPU cycles and network packet reception
free. Some Xenoservers could use the free-market resource
paradigms described in [7, 18] to set prices.

2.3. System Services

One important system-supplied service will accept pro-
grams from users and prepare them for execution. The pol-
icy description for this service is likely to vary considerably
between Xenoservers. For example, it may refer to online
banking services, etc. to check whether the user should be
permitted to run a new service.

Nemesis minimises the work done by shared servers. We
log the work done by each server on behalf of each ap-
plication and charge applications for these pieces of work.
When transmitting over an Ethernet, for example, a server
is necessary to filter packets to ensure they are valid, and
this server will also contain a scheduler to perform traffic
shaping. We can use the scheduling parameters and logging
performed by this server to account and charge for network
usage. However, the server does not perform higher level
protocol processing, so only a small, constrained amount of
work is carried out by the server for each packet. Thus the
worst an application can do to the Xenoserver on which it
is running is to waste its own money.

If an application wishes to access a protected shared
filesystem (rather than a simple flat file), then a server must
exist to manipulate the filesystem metadata. Applications
are given access to the disk at block level, but the disk de-
vice driver filters access according to tables supplied by the
filesystem server [4]. This allows work such as the reading
of directories, indirect blocks, etc. to be performed by the
application, with the filesystem server only being involved
in control-path operations such as the opening of files, allo-
cation of new disk blocks, and writing of metadata.

The disk device driver schedules the activity of the disk
head itself, and accounts for usage by its various clients.
The filesystem server accounts for operations on the meta-
data. Applications may receive separate resource guaran-
tees for each of these; a service that allows multimedia data
files to be accessed over the network may require a large
disk bandwidth guarantee but only a very small guarantee
from the filesystem server.

It is not essential for a Xenoserver to provide filesystems
to its users. Not all applications will require filesystems,
and some (for example web servers) may prefer to manage
their own set of disk block extents.



2.4. Infrastructure

Users will probably want to limit the money spent by
applications (or at least the rate at which money is spent),
especially if an application is prone to consuming exces-
sive resources upon failure. The charging mechanism in
such cases must have a user-specified upper limit on money
spent per application. The billing mechanism should, ide-
ally, not require each user to be registered with each organ-
isation supplying Xenoservers. Ideally, different organisa-
tions would agree on a scheme for allowing any customer of
any organisation to pay for resources used on any machine.

When a Xenoserver application is started, initially a
script is executed. This script typically obtains more code
and perhaps some pickled program state, then may use a
machine-specific compilation library, or retrieve a cached
binary. Xenoserver applications communicate with each
other and system services through an ORB. Applications
can search for other Xenoservers, checkpoint their state and
start new applications remotely. Many common code com-
ponents such as web server libraries or transcoders will be
available that can be shared between applications.

Some applications will need to be written from scratch
for Xenoservers. Others may be written in a language
such as Java, using a standard Java Virtual Machine shared
library. Legacy applications can be ported using shared
libraries to emulate existing standards such as POSIX.
Newer applications can make use of higher level facilities
of Xenoservers to support mobility and persistence. For in-
stance, when a machine becomes loaded, some applications
may consult a trader to find a machine where resources are
cheaper and move themselves there. A document server
could split itself up in to servers running near groups of
clients, minimising network charging. Ultimately, with dy-
namic economic pricing, this may lead to automatic world-
wide load balancing, weighted by network performance and
charging.

3. Related Work

3.1. Distributed Execution Services

Active Services [2] proposes placing systems in the net-
work that can execute users’ applications. This fulfills the
goals of allowing program execution to take place closer
to data sources. However, the model has no support for
resource control or accounting. This is adequate for use
within a single organisation, where there is an assumed level
of trust between the servers and the clients. To permit the
deployment of such systems on the Internet in general, it is
necessary to augment the execution model with security and
accountability. WebOS [21] provides a similar model with
a more developed security mechanism.

3.2. Active Networks

The Active Network [19] community proposes that the
network itself — rather than systems within the network —
should be made programmable. The user protocol code to
be executed at routers in the network may either be sup-
plied with each packet [1, 14] or identified in some way by
packet headers and obtained through an out-of-band mech-
anism [22]. This permits the development of new protocols
to be accelerated, since it is no longer necessary for a pro-
tocol to be standardised before it can be deployed.

However, available bandwidth — particularly in the net-
work core — is increasing faster than general processing ca-
pacity. As a result high performance routers are built with
fast forwarding engines in hardware; no processor action
is required for the routine forwarding of IP packets. In-
voking user-supplied code whenever a packet is received
is likely to lead to orders of magnitude lower performance
than hardware-based routers.

3.3. Java as a computing platform

The Java Virtual Machine (JVM) is designed to provide
a secure, standardised computing platform and as such is an
obvious platform to provide on the network. However, the
basic JVM provides no facilities for fine-grained resource
management. JRes [8] uses binary rewriting techniques to
fit resource management on top of a standard JVM. A draw-
back of this approach is that the JVM specification does not
provide the necessary interfaces for measuring resource us-
age, or for controlling resource allocation and scheduling.
An alternative approach [20, 5] is to modify the JVM to
support resource control. However, since we do not wish
Xenoservers to be restricted to executing only Java code,
we prefer to exclude the JVM from the trusted codebase,
and provide security and resource management underneath
the JVM itself. This ensures that all resources used by Java
applications are managed and bugs in the JVM of the kind
discussed in [9] cannot compromise the system as a whole.

The JVM becomes just one language interpreter which
a user may choose to employ, rather than the computing
platform itself — if desired, a user could even make use of
a custom JVM. We also do not lose compatibility with the
canon of existing code in unsafe languages.

3.4. Resource Control in Operating Systems

Scout [16] associates resources withpaths(I/O channels
spanning multiple processing layers), rather than processes.
This permits efficient resource control, but presents prob-
lems when running untrusted code since the points for pro-
tection boundaries are unclear. Mach [10] and Spring [11]
support resource transfer between processes through thread



tunnelling. This attempts to solve the problem of QoS
crosstalk introduced by use of shared servers on the data
path, but with increased complexity when compared with
the Nemesis approach of performing work in the client pro-
cesses. Mungi [13] makes use of an economy-based model
for allocation of backing storage, to support garbage col-
lection of unwanted memory segments. In [3], Resource
Containers are proposed to allow servers to perform fine-
grained resource management between their clients, using
hierarchical resource allocations to account for resources
consumed within the kernel and shared servers.

4. Conclusion

Xenoservers are machines that can safely and securely
perform useful work on behalf of any user who is prepared
to pay for the resources consumed. Our experiences with
Nemesis [15, 6, 4] lead us to believe that the accounting
required can be achieved relatively cheaply. Xenoservers
have many useful applications and may revolutionise the
way content and services are supplied by allowing appli-
cation processing to be distributed around the network. We
believe that Xenoservers are an essential but currently un-
available component of the computing environment of the
future.

References

[1] D. S. Alexander, M. Shaw, S. M. Nettles, and J. M. Smith.
Active bridging.Proceedings of the Conference on Commu-
nications Architectures, Protocols and Applications (SIG-
COMM), Sept. 1997.

[2] E. Amir, S. McCanne, and R. H. Katz. An active ser-
vice framework and its application to real-time multimedia
transcoding. Proceedings of the Conference on Commu-
nications Architectures, Protocols and Applications (SIG-
COMM), 28(4), Oct. 1998.

[3] G. Banga, P. Druschel, and J. C. Mogul. Resource contain-
ers: A new facility for resource management in server sys-
tems. InProceedings of the 3rd Symposium on Operating
Systems Design and Implementation, USENIX Association,
Feb. 1999.

[4] P. Barham. A fresh approach to file system quality of ser-
vice.Network and Operating System Support for Distributed
Audio and Video (NOSSDAV), Apr. 1997.

[5] P. Benradat, D. Lambright, and F. Travostino. Towards
a resource-safe Java for service guarantees in uncoopera-
tive environments.Proceedings of the IEEE Workshop on
Programming Languages for Real-Time Industrial Applica-
tions, Dec. 1998.

[6] R. Black, P. Barham, A. Donnelly, and N. Stratford. Proto-
col implementation in a vertically structured operating sys-
tem. In IEEE Local Computer Networks ’97, pages 179–
188, Minneapolis, Minnesota, Nov. 1997.

[7] S. H. Clearwater. Market-based control; A paradigm for
distributed resource allocation. World Scientific, 1996.

[8] G. Czajkowski and T. von Eicken. JRes: A resource ac-
counting interface for Java. InObject-Oriented Program-
ming, Systems, Languages and Applications, Nov. 1998.

[9] D. Dean, E. W. Felten, D. S. Wallach, and D. Balfanz. Java
security: Web browsers and beyond. Technical Report TR-
566-97, Princeton University, Computer Science Depart-
ment, Feb. 1997.

[10] B. Ford and J. Lepreau. Evolving Mach 3.0 to a migrating
thread model. InProceedings of the Winter 1994 USENIX
Technical Conference and Exhibition, pages 97–114, Jan.
1994. Also Technical Report UUCS-93-022, University of
Utah, Department of Computer Science.

[11] G. Hamilton and P. Kougiouris. The Spring nucleus: a
microkernel for objects. Technical Report SMLI TR-93-
14, Sun Microsystems Laboratories, Apr. 1993. Also in
USENIX 93.

[12] R. J. Hayton, J. M. Bacon, and K. Moody. Access control
in an open distributed environment.IEEE Symposium on
Security and Privacy, pages 3–14, May 1998.

[13] G. Heiser, F. Lam, and S. Russel. Resource Management in
the Mungi Single-Address-Space Operating System. InPro-
ceedings of the 21st Australasian Computer Science Confer-
ence, Feb. 1998.

[14] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Net-
tles. PLAN: A packet language for active networks. InPro-
ceedings of the Third ACM SIGPLAN International Confer-
ence on Functional Programming Languages, pages 86–93.
ACM, 1998.

[15] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The Design and Im-
plementation of an Operating System to Support Distributed
Multimedia Applications.IEEE Journal on Selected Areas
in Communications, 14(7):1280–1297, Sept. 1996. Article
describes state in May 1995.

[16] A. Montz, D. Mosberger, S. O’Malley, L. Peterson, and
T. Proebsting. Scout: A communications-oriented operating
system. Technical report, Department of Computer Science,
University of Arizona, June 1994.

[17] T. Roscoe. The structure of a multi-service operating sys-
tem. Technical Report 376, Cambridge University Computer
Laboratory, Apr. 1995.

[18] N. Stratford and R. Mortier. An economic approach to adap-
tive resource management. InSeventh Workshop on Hot
Topics in Operating Systems (HotOS-VII), Mar. 1999.

[19] D. L. Tennenhouse and D. J. Wetherall. Towards an Active
Network Architecture.Computer Communications Review,
26(2), Apr. 1996.

[20] P. Tullmann and J. Lepreau. Nested Java processes: OS
structure for mobile code. InEighth ACM SIGOPS Euro-
pean Workshop, Sept. 1998.

[21] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Culler,
P. Eastham, and C. Yoshikawa. WebOS: Operating system
services for wide area applications. InProceedings of the
Seventh Symposium on High Performance Distributed Com-
puting, July 1998. http://www.cs.utexas.EDU/
users/dahlin/papers/hpdc98.ps .



[22] D. J. Wetherall, J. Guttag, and D. L. Tennenhouse. ANTS: A
toolkit for building and dynamically deploying network pro-
tocols.Proceedings of IEEE OPENARCH ’98, Apr. 1998.


