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ABSTRACT
The emergence of Delay Tolerant Networks (DTNs) has culmi-
nated in a new generation of wireless networking. New commu-
nication paradigms using dynamic interconnectedness as people
encounter each other lead towards a world where digital traffic
flows. We focus on human-to-human communication in such en-
vironments, which exhibits the characteristics of social networks.
Among various social contexts, we examine hubs in dynamic hu-
man networks. Hubs are highly connected nodes within the net-
work. This paper describe hubs in time-dependent networks and
two distinct types of hubs:party and date hubs from real world
connectivity traces.

1. INTRODUCTION
Increasing numbers of mobile computing devices form dynamic
networks in everyday life. In such environments, nodes (i.e. lap-
tops, PDAs, smart phones) are sparsely distributed forming a net-
work which is often partitioned due to geographical separation or
node movement. We envision new communication paradigms us-
ing dynamic interconnectedness between people and urban infras-
tructure that lead towards a world where digital traffic flows as
people pass each other [13]. Delay Tolerant Networks (DTNs) [7]
aims a new communication paradigm to support such network en-
vironments, and our focus is a type of DTN that provides intermit-
tent communication for humans carrying mobile devices: Pocket
Switched Network (PSN) [2].

Efficient forwarding algorithms for such networks are emerging,
mainly based on epidemic protocols where messages are simply
flooded when a node encounters another node. Epidemic informa-
tion diffusion is highly robust against disconnection, mobility and
node failures, and it is simple, decentralised and fast. However,
careful tuning to achieve reliability and minimise network load
is essential. To reduce the overhead of epidemic routing, various
approaches have been reported ranging from count, timer, history
based controlled flooding to location-based strategies.

We have shown an approach using a logical connection topol-
ogy, where we uncovered a hidden stable network structure such
as social networks [12] [21] from the human connectivity traces,
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which consist of a group of people forming socially meaningful re-
lationships. In PSNs, social networks could map to computer net-
works since people carry the computer devices. We have shown im-
proved performance with controlled epidemic strategy by applying
extracted social contexts [11]. During the above work, we realised
that further understanding network structure is essential since prop-
erties of human contact networks such as community and weight
of interactions are important aspects of epidemic spread. Recently,
online based social networks have been studied. Understanding of
network structures and models hidden in pervasive dynamic human
networks is a still untouched research area.

Networks represent flows of information and make it possible
to characterise the complex systems of our world. A network is
a map of interactions because communication is fundamental in
our society. These networks are often neither regular lattices nor
are all units connected randomly, and the interaction patterns are
complex. This paper studies the network structure in such com-
plex dynamic human networks focusing on the characteristics of
hub nodes. Many studies for network modelling have been re-
ported, which are based on simulation or small collection of data.
We emphasise here the use of real world data and believe that our
study will also provide interesting insight into the real human in-
teraction. We consider a model for time paths based on graph evo-
lution: Time-Dependent Networks where links between nodes are
time-windows dependent. We report preliminary empirical results
in this paper.

The rest of this paper is structured as follows. We introduce the
experimental data sets in Section 2, followed by describing com-
plexity of real world connectivity data in Section 3. We discuss
hub nodes in Section 4 and party and date hubs in Section 5 fol-
lowed by related work. Finally we conclude the paper with a brief
discussion.

2. HUMAN CONNECTIVITY TRACES
The quantitative understanding of human dynamics is difficult and
has not been explored in depth. The emergence of capturing traces
of human interaction in online and pervasive environments allows
us to understand details of human activities. For example, the Re-
ality Mining project [5] collected proximity, location and activity
information, with nearby nodes being discovered through periodic
Bluetooth scans and location information from cell tower IDs. Sev-
eral other groups have performed similar studies. Most of these [5]
[4] [16] use Bluetooth to measure device connectivity, while others
[10] rely on WiFi. The duration of experiments varies from 2 days
to over 1 year, and the numbers of participants vary. We have anal-
ysed various traces from the Crawdad database [3] listed below and
Table 1 summarises the configuration.
MIT: in the MIT Reality Mining project [5], 100 smart phones
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Experimental data set MIT UCSD CAM INFC06 BATH

Device Phone PDA iMote iMote PC

Network type Bluetooth WiFi Bluetooth Bluetooth Bluetooth

Duration (days) 246 77 11 3 5.5

Granularity (seconds) 300 600 120 120 Continuous

Number of Devices 97 274 36 78 7431

Table 1: Characteristics of the experiments

were deployed to students and staff at MIT over a period of 9
months. These phones were running software that logged contacts.
UCSD: in the UCSD Wireless Topology Discovery [19], approx-
imately 300 wireless PDAs running Windows Pocket PC were
used collecting WiFi access points information periodically for 11
weeks.
CAM in the Cambridge Haggle project [14], 40 iMotes were de-
ployed to 1st and 2nd year undergraduate students for 11 days.
iMote detects proximity by Bluetooth.
INFC06: 78 iMotes were deployed at the Infocom 2006 confer-
ence for 4 days [2].
BATH: 9 Bluetooth scanners across the city of Bath are deployed to
monitor the presence of mobile devices within an approximate 10
metre radius in the Cityware project [17]. Collocation of a pair de-
vices is identified from the log data leading to construction of con-
nectivity graph in each timeunit. The scanners collect 7431 nodes
for 5.5 days.

Note that it is a complex task to collect accurate connectivity
traces using Bluetooth communication, as the device discovery pro-
tocol may limit detection of all the devices nearby. Bluetooth in-
quiry can only happen in1.28 second intervals.4 × 1.28 (i.e.
5.12 seconds) gives you more than 90% chance of finding a device.
However, there is no data available for many devices and many hu-
man bodies. Power consumption of Bluetooth also limits scanning
interval if devices have limited recharging capability. iMote con-
nectivity traces in Haggle use around 2 minutes scanning interval,
while the Reality Mining project uses 5 minutes. The advantage
of BATH data is scanning is done continuously. The propotion
of Bluetooth being turned on for the device in the city of Bath is
around 7%.

3. COMPLEX REAL WORLD NETWORKS
In general, to understand the network structure requires three key
metrics: the average path length to show the distance of a pair of
nodes, the cluster coefficient to indicate how well nodes are clus-
tered, and the degree distribution. Table 2 summarises the average
hop counts and cluster coefficient values. In DTNs the topology
changes every timeunit where data paths may not exist at any one
point in time but potentially do exist over time. Thus, existing met-
rics for static networks are difficult to apply. Previously the charac-
teristics of a pair of nodes have been explored in several studies [2]
such as inter-contact and contact distribution to which we refer for
further background information. We also described extracting in-
formation related to levels of clustering or network transitivity and
strong community structure in our previous work [21] [11] [12].

As PSNs are formed by humans, it is assumed that social net-
works take a major role in epidemic spread. Most social networks
are neither random nor regular but complex. The properties of
nodes include fixed states, variable states, neighbour nodes and net-
work positions (i.e. centralities). A complex system requires not
only understanding, the elements in the system but the interactions
and patterns between the elements is also important. Thus, observ-
ing communication over the network is expected to give some guide
to infer the network structure and, vice versa, the network structure

Experimental traces Average Hop Count Cluster Coefficient

MIT 1.6 0.44

UCSD 2.2 0.41

CAM 1.2 0.66

INFC06 1.5 0.52

BATH 3.3 0.45

Table 2: Average Hops and Cluster Coefficient

affects the communication.

3.1 Weighted Graph
The connectivity traces can be represented in the form of weighted
graphs called contact graphs, with the weight of an edge represent-
ing thecontact duration andcontact frequency for the two end ver-
tices. Hence understanding human interaction can be tackled from
the domain of weighted network analysis. Possible outcomes from
studying of the weighted contact graphs include community detec-
tion and weighted node centrality. Many real world networks are
weighted, but because of their complexity, little analysis has been
done in this area. The seminal work is a weighted network analysis
paper by Newman [15]. A weighted graph can be converted into a
multi-graph with many unit edges. In this paper, we only consider
symmetric edges. In reality, edges can be symmetric or asymmet-
ric (un-directional or directional) and can have different strength.
Fig. 1 depicts network evolution for 15 minutes in the UCSD trace
from our visualization work [22]. The network forms a small world
like formation at the beginning, which was broken into two groups
of nodes forming star topology.

3.2 Dynamic Human Behaviour
Analysing the structural properties of growing networks could be
relevant to social networks. At each timeunitn, a number of new
nodes appear/disappear and select/deselectk possible counter parts
from the existing networks. They join/disjoin the network with
probability p. Identifying the valuesk andp from the empirical
trace defines the network evolution form. Whenn andp are large,
network transition is significant. Fig. 2 depicts the largest frag-
ment size in each timeunit extracted from the BATH trace, which
shows the dynamics over 5 days of activities from Sunday through
Wednesday. The snapshot on Tuesday depicts a day activity, where
day and night dynamics are observed.

4. HUB NODES
Understanding nodes participation in the network is important.
Centrality measurements give insight into the roles and tasks of
nodes in a network. The centrality of a node in a network is a mea-
sure of the structural importance of the node. Freeman [8] defined
several centrality metrics and three well known centrality measures
areDegree, Betweenness, andCloseness. Degree andBetweenness
centralities are described below:

Degree Centrality: CD(a) = da, whereCD on a nodea mea-
sures the number of direct connectionsd. This indicates that the
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Figure 1: Evolution of Connection Map and Edge Characteristics (UCSD Trace)

node must be the most active in the network.
Social networks in general exhibit a small average degree com-

pared to a number of nodes, and there is huge inequality. On the
web, in a study from 2006, there were over 200 million web sites,
average degree only 7.5, most web sites less than 10 links, but some
has thousands of links. In time-dependent networks, ideallyDegree
centrality should be calculated within an appropriate time-window.
Fig. 3 depicts the degree distribution of BATH, INFC06 and UCSD
traces, where the BATH and INFC06 traces exhibit a power-law
distribution, while the UCSD trace shows that most nodes have
similar degrees. The UCSD data is WiFi based, which may not
have precise proximity information as the other traces have.
Betweenness Centrality:CB(a) =

P

b<c
[gbc(a)/gbc], whereCB

indicates a bridge node between two nonadjacent nodes.gbc is the
number of geodesics betweenb andc, andgbc(a) is the number of
geodesics betweenb andc that containa. In other words, it is a
sum over all pairs(b, c) of the proportion of geodesics linking the
pair that contains nodea. Thus, a high betweenness potentially
might have control over these two nonadjacent nodes. A between-
ness node in the network may impact data flow between two groups
of nodes.

We have defined the following hubs for thetime-dependent net-
work based on the above concept of centralities.

DEGREE Hub: is the total degree of each node in entire dura-
tion of the trace that indicates the popularity of the node (Degree
Centrality). With this metric, it is not possible to distinguish two
types of hubs: the node has high degree within a short time window
or a larger time window. Most nodes interact with only a few other
nodes, while a small number of hub nodes may have many interac-
tions. See Section 5 for further distinction of such types of hubs. In
[11], we have examined the degree per unit time such as the num-
ber of unique nodes seen per 6 hours. We experimented with a 6
hour time window based on our intuition that daily life is divided
into 4 main periods – morning, afternoon, evening and night. This
is a similar approach as described in [20]. However, it is sensitive
to select the time window at the absolute time of the day. As Fig.2
shows, the day cycle could be a more efficient time window in the
urban space.

RANK Hub: indicates how often each node is used to relay data
to other nodes. We simulate flooding over the temporal graph ex-
tracted from the trace and counted the number of times each node
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Figure 3: Aggregated Degree Distribution

used for relaying the data. We have exploited different counting al-
gorithms such as counting any time the node replays data or count-
ing when the node is used as part of the shorted path from the source
node to the destination node. Different algorithms result in a simi-
lar ranking. This metric indicatesBetweenness Centrality in time-
dependent networks.

CROSS Hub: defines how often a node appears at different lo-
cations that indicatesMobility Centrality. With the BATH trace,
9 locations are extracted, and the rate of appearance at an individ-
ual location is measured. Fig. 5 depicts the distribution of all the
nodes with extracted centrality metrics. Y axe shows a log scale of
centrality metrics.

We extracted the top 100 centrality nodes from the trace and ex-
plored the influence by such hub nodes.

4.1 Hub Nodes Similarity
Fig. 4 and Table 3 show the correlation of hub nodes. The co-
efficient values are high over 0.95 in every case. The correlation
betweenRANK HUB and CROSS HUB shows the highest value.
Table 4 depicts the membership similarity of hub nodes.RANK
and DEGREE hubs share many nodes, whileCROSS share only
around 50% of nodes with eitherDEGREE or RANK hub nodes.

Category All Nodes Top 100 Nodes Top 50 Nodes Top 30 Nodes

Rank/Degree 0.99 0.99 0.99 0.99

Degree/Cross 0.97 0.96 0.96 0.96

Corss/Rank 0.99 0.99 0.99 0.99

Table 3: Hub Nodes Correlation

Top n Nodes Rank/Degree Rank/Cross Degree/Cross

100 0.79 0.43 0.44

70 0.92 0.41 0.41

50 1.00 0.43 0.49

30 1.00 0.46 0.46

10 1.00 0.33 0.33

Table 4: Hub Node Membership Similarity
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4.2 Impact of Hubs in Epidemic Spread
We have exploited experiments to see the impact of hub nodes dur-
ing the epidemic spread using the human connectivity trace (see
[23] for the details). The top 100 of each type of hub node are inac-
tivated during the epidemic spread. The disappearance ofDEGREE
HUB or RANK HUB completely killed epidemic spread. BothDE-
GREE andRANK hubs show a similar impact. On the other hand,
CROSS HUB does not show as dramatic as impact as the other two
types of hub nodes do. Fig. 6 depicts an impact of inactivation of
top 100 hub nodes during the epidemic spread.
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5. PARTY AND DATE HUBS
When two hub nodes have the same degree distribution in time-
dependent networks, they could have same degree distributions at
each time unit, or each node might have different degree distribu-
tions in time and or space. Fig. 12 shows two distinct types of
hub nodes calledparty hubs anddate hubs, whereparty hubs al-
ways connects to the same nodes whiledate hubs connect to differ-
ent nodes in time. Both could show high degree distributions, but
the function as a hub is different. If we can distinguish these two
types of hubs, it will be useful for controlling the information flow.
Thus, we investigate the existence of two distinct types of hubs:
party hubs anddate hubs in a pair interaction in human connectiv-
ity traces.

In a biological study, Han et al. [9] describe that hubs in the pro-
tein to protein interaction network ofyeast have been classified as
party hubs, which are highly correlated in theirmRNA expression
with their partners during the cell cycle whiledate hubs show less
correlation. The study shows that intrinsic disorder is significant in
date hub proteins when compared with party hub proteins. The en-
richment of intrinsic disorder in date hubs may facilitate transient
interactions, which might be required for date hubs to interact with
different partners at different times. Fewer party hubs contain long
disordered regions compared to date hubs, indicating that these re-
gions are essential for flexible binding, while party hubs interact to
a large number of other proteins, supporting the idea of party hubs
as the cores of highly clustered functional modules.

Removal of date hubs may split the network into many frag-
ments, indicating a unique role of date hubs in global network
topology and, possibly, resilience to genetic disturbances. Because
sub-network fragments formed upon deletion of date hubs are func-
tionally more homogeneous than fragments formed upon deletion
of party hubs, it appears that party hubs reside within single mod-
ules that perform biologically discrete tasks, whereas date hubs me-
diate communication between different modules.

Cell cycle is molecular operation in cells, and complex human
networks may be explained with similar principles. In the next
sections, we explore human connectivity traces to examine if party
and date hubs exist.

5.1 Neighbourhood Similarity Rate
We define an intuitive formulation of theNeighbourhood Similar-

ity Rate (NSR). It indicates the dynamic change of neighbourhood
nodes, therefore a larger NSR confirms that connectivity does not
change much. A lower NSR indicates that neighbours enter and
leave a neighbour set.

NSR = Nt ∩ N(t+1)/Nt ∪ N(t+1) (1)

whereN is a set of neighbour nodes andt for timeunit.

The NSR could be used as a measure to distinguishparty and
date hubs, where a higher NSR value indicatesdate hub and a lower
value indicatesparty hub. We have calculated NSR values ofDE-
GREE hubs described in Section 4. To process the sparse traces and
highlight the change of neighbourhood node sets, we suppress the
node information at the timeunit when no connectivity is recorded.
Thus,t + 1 in (1) indicates the next timeunit when the node has
a connection with at least one node in this paper. Fig. 7 depicts
the NSR of MIT trace. The timeline in Fig.7-11 indicates one day
duration of node activities. Fig. 7 a) shows the characteristics of
the party hub, where nodes are together most of time, while Fig. 7
b) and c) depict date hub characteristics. For the date hubs, the
figures have a limit, only showing the evolution of rate but not the
size of neighbourhood. Fig. 7 d) shows the actual neighbourhood
nodes among 97 nodes. The change of NSR maps clear change of

Party Hub: Same Time and Space

Date Hub: Different Time and /or Space

tn tn+1

tn tn+1

tall

tall

Figure 12: Party Hub and Date Hub
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Figure 9: INFC06/CAM: Neighbourhood Similarity Rate
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Figure 10: INFC06/CAM: Neighbourhood plus Neighbourhood Similarity Rate
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the neighbourhood node set. Fig. 9 a) and b) depict the NSR of the
INFC06 trace and Fig. 9 c) and d) show the NSR of the CAM trace.
We calculated NSR of top 30 DEGREE Hubs. On average, 30% of
hub nodes show the characteristics of party hub, 40% for date hub,
while the rest shows the combined form. The combined case dis-
plays time dependent hub characteristics. The BATH data results
always in NSR value 0, which reveals extremely sparse network in
the urban scale trace.

Fig. 8 and Fig. 10 depict the same calculation using theNeigh-
bourhood plus Neighbourhood Similarity Rate (NNSR), whereNN
is calculated in the same way as NSR, except using a set of neigh-
bour nodes including all the sets of neighbour nodes of each neigh-
bour node. The NSR and NNSR show same characteristics in Fig. 8
and Fig. 10. On the other hand, Fig. 11 a) and b) depict slightly dif-
ferent characteristics, where Fig. 11 a) shows distinctparty hub
characteristics but not as significant as in Fig. 11 b). Fig. 11 c) and
d) depict a clear difference between the NSR and NNSR. The cause
of the change could be fast node movement, and further investiga-
tion is in progress.

In Section 4, we have shown a high correlation and membership
similarity between RANK Hub and DEGREE Hub. RANK Hubs
may split into two types of party and date hubs, where the for-
mer contributes to relay messages towards the inside of the cluster,
while the latter takes a task to link between clusters. Both types of
hubs exhibit a high degree distribution. Locally observing NSR at
the node helps to identify node ranking, making a distributed oper-
ation possible instead of calculating ranking in centralised manner.

6. RELATED WORK
The recent discovery of the properties of complex networks in a
structure of biological and social systems [18] brought different
perspectives on real world networks. Traditionally random net-
works have been extensively studied [6]. Random graphs are usu-
ally constructed by randomly adding links to a static set of nodes
and tend to have short paths between pair nodes. Power-law net-
works are networks where the probability that a node has the de-
greek is proportional tok. Many real-world networks have been
shown as power-law networks, including Internet topologies and
social networks.

Emerging wireless technologies are creating a physical network
in the actual physical space along virtual communication. Under-
standing this new pervasive network as a time-dependent dynamic
human network is still an open research area. Social relationships
and interactions (i.e. social context) is gaining importance. New
results in the area of complex network theory [1] allows us to see
the insight of social networks.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented our study of characteristics of hubs
in dynamic human networks from human connectivity traces. Hubs
can de-fragment the network and contain distinct characteristics to
influence data flow within the network. We are currently working
on further analysis on party and date hubs with our previous work
on community detection. The pervasive DTNs are dynamic, and we
are particularly interested in how the network structure affects the
information flow, and vice versa, how the ongoing communication
affects the network structure. Pair communication and social struc-
ture need to be integrated and modelled along dynamic interaction.
The social network reflects access to information, and change of
social activities can be seen as seeking better information access.
Our ultimate goal is complete understanding of human-to-human
network models in the urban space.
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