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Abstract. The emergence of Delay Tolerant Networks (DTNs) has culminated in
a new generation of wireless networking. New communication paradighish

use dynamic interconnectedness as people encounter each otheuoisgioally,

lead towards a world where digital traffic flows more easily. We focustondn-
to-human communication in environments that exhibit the characteristi®s-of
cial networks. This paper describes our study of information flow duepidemic
spread in such dynamic human networks, a topic which shares mae issti
network-based epidemiology. We explore hub nodes extracted frahwald
connectivity traces and show their influence on the epidemic to demonisteate
characteristics of information propagation.
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1 Introduction

Increasing numbers of mobile computing devices form dycamtworks in daily life.

In such environments, the nodes (i.e. laptops, PDAs, sniemigs) are sparsely dis-
tributed and form a network that is often partitioned due ¢ographical separation
or node movement. We envision new communication paradigsisg dynamic inter-
connectedness between people and urban infrastructadin¢etowards a world where
digital traffic flows in small leaps as people pass each dtt#r Delay Tolerant Net-
works (DTNs)[9] are a new communication paradigm to support such network env
ronments, and our focus is a type of DTN that provides inttemi communication for
humans carrying mobile devices: the Pocket Switched Nét@REN)[2].

Efficient forwarding algorithms for such networks are enrgggmainly based on
epidemic protocols where messages are simply flooded whedesancounters another
node. Epidemic information diffusion is highly robust aggtidisconnection, mobility
and node failures, and it is simple, decentralised and ftmtiever, careful tuning to
achieve reliability and minimise network load is essenflaaditional ndve multiple-
copy-multiple-hop flooding schemes have been empiricdligns to work well in
dense environments, and they provide fair performance amsspsettings — such as
city-wide communications — in terms of delivery ratio andegg2]. However, in terms
of delivery cost, the rige approach is far from satisfactory, because it createsge |
amount of unwanted traffic as a side-effect of the deliveheste. To reduce the over-
head of epidemic routing, various approaches have beenteepoanging from count-,



2 Eiko Yoneki et al.

timer- or history-based controlled flooding to locatiorsed strategies (see Section 7
for further details).

We have previously reported an approach that uses a logioalection topology,
and that uncovers hidden stable network structures, susbaal networkg14] [34],
from the human connectivity traces. In PSNs, social neteaduld map to computer
networks since people carry the computer devices. We hawersimproved perfor-
mance by applying these extracted social contexts to a atmdrepidemic strategy
[13]. During this work, we have realised that further undersitagnaf network mod-
els is essential, because the properties of human contaatms — such as community
and weight of interactions — are important aspects of epiclepread. Recently, online-
based social networks have been studied; however, unddirsganetwork structures
and models hidden in pervasive dynamic human networks ifi-arstouched research
area.

Networks represent flows of information and make it possibleharacterise the
complex systems of our world. A network is a map of interadidoecause communi-
cation is fundamental in our society. These networks aendafiither regular lattices,
nor are all units connected randomly, but the interactidtepas are complex. This pa-
per shows a preliminary study of patterns of information febuving epidemic spread
in complex dynamic human networks, which share many issutsnetwork-based
epidemiology. Many studies have been conducted, and thiedeaaed either on sim-
ulation or a small collection of data. Our study uses realldvdata, and we believe
that it gives an interesting insight on real human intecarsti We consider a model for
time paths based on graph evolution, calléthie-Dependent Networki® which links
between nodes depend on a time window. We explore epiderairgehby exploiting
device connectivity traces from the real world and demanstthe characteristics of
information propagation. We describe preliminary empiriesults, but further mathe-
matical modelling work is outside the scope of this paper.

The rest of this paper is structured as follows. We introdheeexperimental data
sets in Section 2, and then describe the complexity of realdwmnnectivity data in
Section 3. We discuss the result of the epidemic spread iexgets in Section 4, and
the influence of hub nodes for the epidemic spread in Sectidfe®lescribe a summary
of community detection in Section 6, which is followed by th&ated work. Finally, we
conclude the paper with a brief discussion.

2 Real World Human Connectivity Traces

The guantitative understanding of human dynamics is diffiand has not yet been
explored in depth. The emergence of human interactiongdroen online and perva-
sive environments allows us to understand details of hurotwitees. For example, the
Reality Mining project7] collected proximity, location and activity information jtiv

Experimental data set MIT |UCSD| CAM| INFCO6 BATH
Device Phone PDA iMote iMote PC|

Network type Bluetoothh WiFi|BluetoothBluetoothl Bluetooth
Duration (days) 246 77 11 3 55
Granularity (seconds) 300, 600 120 120| Continuou
Number of Experimental Devices 97| 274 36| 78| 7431

Table 1: Characteristics of the experiments



Wireless Epidemic Spread in Dynamic Human Networks 3

70000
60000
50000
40000
30000
20000
10000

1400
1200
1000

Fig. 1: Node Contact: BATH and MIT traces

nearby nodes being discovered through periodic Bluetamhsand location informa-
tion from cell tower IDs. Several other groups have perfatmsienilar studies. Most of
thesd7] [6] [22] use Bluetooth to measure device connectivity, while otfiigely on
WiFi. The duration of experiments varies from 2 days to oves gear, and the num-
bers of participants vary. We have analysed various traoes the Crawdad database
[3] listed below, and Table 1 summarises the configuration.

MIT: in the MIT Reality Mining project7], 100 smart phones were deployed to stu-
dents and staff at MIT over a period of 9 months. These phomres mnning software
that logged contacts.

UCSD: in the UCSD Wireless Topology Discove[#9], approximately 300 wireless
PDAs running Windows CE were used to collect WiFi accesstpofarmation period-
ically for 11 weeks.

CAM: in the Cambridge Haggle projefis], 40 iMotes were deployed to 1st year and
2nd year undergraduate students for 11 days. iMotes detdtity using Bluetooth.
INFCO6: 78 iMotes were deployed at the Infocom 2006 conference fay$d].

BATH: in the Cityware project, 9 Bluetooth scanners across tlyeofiBath were de-
ployed to monitor the presence of mobile devices within graximate 10 metre radius
[23]. The co-location of a device pair is identified from the loged@lso part of devices
are equipped with a Bluetooth scanning progiagj and detected device information
is collected via GPRS. This leads to the construction of aneotivity graph for each
time unit.

Note that it is a complex task to collect accurate conndgtivaces using Bluetooth
communication, as the device discovery protocol may liratedtion of all the devices
nearby. Bluetooth inquiry can only happenli28 second intervals. An interval df x
1.28 = 5.12 seconds gives a more than 90% chance of finding a device. Howev
there is no data available when there are many devices angllmaman bodies around.
The power consumption of Bluetooth also limits the scaniierval, if devices have
limited recharging capability. The iMote connectivity ¢ess in Haggle use a scanning
interval of approximately 2 minutes, while the Reality Migiproject uses 5 minutes.
The advantage of BATH data is that scanning is done contislyothe ratio of devices
with Bluetooth enabled to the total number of devices is ado@%. Because of the
uniqueness of urban-scale human connectivity data, wesfoouanalysis using the
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BATH trace in this paper. Fig. 1 depicts all contact pointsasen two nodes along
the timeline in 3D form. Thes-axis represents time, with 300 seconds per unit. This
depicts the same node pair encountering repeatedly, whictarked with circles. The
Bath data dictates 5 days repeating contact patterns, WigléMIT trace shows as a
vertical line during 9 months.

3 Complexity of Real World Networks

In general, to understand the network structure one regjtliree key metrics: the aver-
age path length to show the distance between a pair of ndues|uster coefficient to
indicate how well nodes are clustered, and the degreelitibn. In DTNs, the topol-
ogy changes every time unit and data paths, which may not &ixeny one point in
time, potentially arise over time. Thus, existing metrios $tatic networks are diffi-
cult to apply. Previously, the characteristics of a pair ofl@s — such as inter-contact
and contact distribution — have been explored in severdiesd(P] to which we refer
the reader for further background information. We also deed the extraction of in-
formation related to levels of clustering or network traimgy, and strong community
structure in our previous worfig4] [14].

As PSNs are formed by humans, it is assumed that social netwake a major
role in epidemic spread. Most social networks are neithadoen nor regular but com-
plex. The properties of nodes include fixed states, varistaies, neighbour nodes and
network positions (i.e. centralities). Understanding eptex system requires not only
understanding of the elements in the system, but also of d@fterps of interactions
between the elements. Thus, observing communication beerdtwork is expected to
give some information about the network structure and, wéesa, the network structure
affects the communication. In this paper, we focus on infdiom flow during epidemic
spread, including the impact of hub nodes. In the followingsections, we discuss var-
ious metrics that can be used in expressing dynamic timerabgnmt networks.

3.1 Node Distance and Clustering

The average shortest path length between any two random$gealpeople on the planet
(i.e. 6.5 billion people) is 6. This is easy to explain if sdties are highly random. How-
ever, real social networks are not random, as they exhibiéatgleal of clustering, and
the average distance between two nodes is small. Theresarstabrcuts between clus-
tered groups. A network with small average degrees, higitating, and small average
distances has been called a small world network by WiatisTable 2 summarises the
average hop counts and cluster coefficient values for each.the cluster coefficient
value of the MIT trace .44 — is the probability that, if node A knows nodes B and C,
nodes B and C know each other. The BATH trace, where proxiddtg is collected in
city scale, shows an average hop count.dfand cluster coefficient value 6f45.

Experimental tracggwerage Hop CounCluster Coefficient
MIT 1.6 0.44
UCSD 2.2 0.41
CAM 1.2 0.66
INFCO06 1.5 0.52
BATH 3.3 0.45

Table 2: Average Hops and Cluster Coefficient
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Fig. 2: Evolution of Connection Map and Edge Characteristics (UCSDirace)

3.2 Weighted Graph

The connectivity traces can be represented by weightechgramalso called contact
graphs — in which the weight of an edge representsctirgact durationand contact
frequencyfor the two end vertices. Understanding human interactortben be tackled
in the domain of weighted network analysis. Possible outnfrom studying of the
weighted contact graphs include community detection ateroéning node centrality.
Many real world networks are weighted, but due to complekitje analysis has been
done in this area. The seminal work is a weighted networkyaigpaper by Newman
[20]. A weighted graph can be converted into a multi-graph witiynanit edges. Here,
we only consider symmetric edges. In reality, edges can barstric (undirected)
or asymmetric (directed), possibly with a different strnop either direction. Fig. 2
depicts network evolution over a period 15 minutes in the DGfce (taken from
our visualization work35]). The network exhibits a small-world-like formation at fjrs
which breaks down into two groups, each forming a star tapol&ee Section 6 for
further community detection.

3.3 Node Centrality

Understanding a network and a node’s participation in the/oi is important. Cen-
trality measurements give insight into the roles and tagksodes in a network. The
centrality of a node in a network is a measure of the strutiemaortance of that node.
Freeman defined several centrality metfi® and three of the best-known metrics are
described below:

DegreecentralityC'p of a nodez measures the number of direct connectiénk indi-
cates how active a node is in the network.

C(D (CL) = du (1)

Social networks in general exhibit small average degreepemed to the number of
nodes, where people have limited connections to the ottapl@eThere are over 200
million web sites, with an average degree of only 7.5, andtrsitss with less than 10
links, but some sites have thousands of links. In time-dépenhnetworks, the degree
centrality should ideally be calculated within an apprafgitime-window (see further
discussion in Section 5). Fig. 3 depicts the degree digtabwof BATH, INFC06 and
UCSD traces: the BATH and INFCO06 traces exhibit a power-l&strithution, whereas
the UCSD trace shows that most nodes have a similar degredJTBD data is based
WiFi and may not have as precise proximity information ualike other traces. Fig. 4
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Fig. 3: Aggregated Degree Distribution

Fig. 4: Degree Distribution: Gates in Bath Trace

shows the degree distribution at the scanner locationsarB#IH trace that exhibit
power-law distribution.

BetweennesgentralityCp indicate that a node acts as a bridge between two nonadja-
cent nodes. Thus, a node with high betweenness potentedlgdntrol over these two
nonadjacent nodes. A high-betweenness node in the netwaykimpact on the data
flow between two groups of nodes.

Cp(a) = Z[gbc(a)/gbc]

b<c

(2)

where gy is the number of geodesics betwelgand c, and g, (,) is the number of
geodesics betwednandc that containz. In other words, the betweenness centrality is
a sum over all pairgb, ¢) of the proportion of geodesics linking the pair that contain
nodea. Betweenness centrality in time-dependent networks magabzulated using
traffic simulation to establish the role of each node (sethéurdiscussion in Section 5).

Closenesscentrality C indicates the visibility of a node in the network and sub-
network. Maximising closeness centrality yields the nodid whe shortest path to all
others and the best visibility. We have used closenessatiyto build an overlay over
the communitieg34]. It is a measurement of how long it will take data to spread the
others in the community. The closeness centrafity(a), for a vertexa is inverse of
the sum of distances to all other nodes:

Ccl(a) = 3)

1 / Zdab
b

3.4 Dynamic Human Behaviour

Analysing the structural properties of growing networksildobe relevant for social
networks. In each time unit, several nodes appear or disappear, and each selects or
deselects: possible counter parts from the existing networks. They fwileave the
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network with probabilityp. Identifying the value& andp from the empirical trace de-
fines the form of network evolution. Whenis large, over many time steps the network
transition is significant.

Fig. 5 depicts the size of the largest connected subgraphdh #me unit, based
on the BATH trace, which shows the network dynamics @vdays (Sunday through
Wednesday) The snapshot on Tuesday depicts a single day’s activitidestinct day-
and night-time dynamics can be observed. Fig. 6 shows the ggmamics, including
monthly periodicity, based on the MIT and UCSD traces. Nio&t the size of the largest
fragment in the BATH trace is slightly larger than in the MUIZSD traces, because
the BATH trace covers all devices in the city of Bath, whetgs MIT/UCSD traces
only consider a known group of 100-270 participants. Theseaf larger fragment
sizes in the BATH trace raises an interesting question:teagat due to temporal/spatial
connections or tighter social connections?

4 Epidemic Dynamics

Epidemiology can be used to deal with intermittent connégtin DTN environments.
The small-world topology of interpersonal connection atsdhierarchical structure
yields a two-level structure that has a strong impact onespid spread in a popula-
tion. DTNs bring a further complex new network structure;doese devices can either
communicate through the communication mechanism likeritexhet, or directly when
they are in the communication range using short-range @gsstommunication.
Pastor-Satorras has conducted an analytical and numetigh} on a large-scale
dynamical model on epidemic spread in synthetic netwfa&i25]. In this section, we
show various epidemic characteristics from our experisasing the real world traces.
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Fig. 7: BATH: Epidemic Spread
4.1 SIS Model

For epidemic spread, we use tBaisceptible-Infected-Susceptible (Stg)del. Each
node in the network represents an individual, and each $imkdonnection along which
the virus infection can spread from between individualse BiS model is defined as
follows:

1. Each node can be in one of two states:
— Susceptible (not currently infected)
— Infectious (infected)
2. The initial infectious nodes may be drawn from the follog/groups. These nodes
do not participate in epidemic propagation until they appe#he trace.
— Top percentile of the degree distribution
— 50" percentile of the degree distribution (i.e. average)
— Bottom percentile of the degree distribution
3. When a node is infectious, it can infect the other nodes prittvability A, where
A = 1. At each time unit, if that node has a link with a susceptibdelay the
susceptible node becomes infectious.
4. In each infectious node, the virus has a time-to-live (' MZhen the TTL expires,
the node reverts to the susceptible state.

Fig. 7 depicts how the infectious nodes change with timesthas the BATH trace,
and using the nodes in the top percentile of the degreelisitsin as the original in-
fectious nodes. When the TTL is set to 6 hours, we do not obsgidemic spread
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BATH: Active Infection Nodes Time Unit (600 seconds)
Fig. 8: BATH: Active Infected Nodes
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at all; while, if the TTL is set to 1 day, the effect is similar having an infinite TTL.
Fig. 8 depicts the number of infectious nodes during epidespiead. With a TTL of 12
hours, a circadian cycle can be observed, with an increatbeinumber of infectious
nodes during day-time and the virus dying out at night. Hawvethe resilient epidemic
comes back during the next day. The trace is not long enougeedhe trend towards
the end of Wednesday and we plan to conduct extended expesrtieat will yield
traces ranges from a month to a year in length.

We have conducted experiments to investigate the impactlettng different
source nodes. As stated above, we base our selection onsthibution of node de-
grees. When the bottom percentile of this distribution (78a®) is selected to give
source nodes, epidemic spread only begins after 1 day, afstarting with high de-
gree nodes causes epidemic spread to begin immediatelg.tbmepidemic spread has
begun, the spread proceeds at a similar rate in either case.

Fig. 7(b) shows three stages of epidemic spread during a@dgeriod. The stages
are (1) a rapid increase at first where propagation may ta@ephithin clusters, (2)
slow climbing when infectious nodes encounter externaltelis, and (3) exhaustion of
infection as the epidemic spread hits the upper limit ofdtite. During the first stage,
linking between clusters may occur, and this acceleragemtirease of infected nodes.
This three stages can be observed in the MIT and UCSD traged$(g. 9 and Fig. 10).
Fig. 9(b) and Fig. 10(b) depict the second stage with an gathtime unit scale.

97
9
(a) o6 (®)
g 8 o5 ‘
g $ 17 days
Z o4
3 60 3 \
3 NOTTL —— ]
2 50 TTL=1DAY k) ‘
= TTL=1WEEK = 92
S 40 ( )
] 3 9
5 £
Z 20 2 9
10 89
0 88
0 10000 20000 30000 40000 50000 60000 70000 4000 6000 8000 10000120001400016000180002000022000
MIT: Time Unit (300 seconds) MIT: Time Unit (300 seconds)
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Fig. 10: UCSD: Epidemic Spread

5 Influence of Hub Nodes

In this section, we investigate hub nodes and their influemcepidemic spread using
the BATH trace. We have defined hubs based on the following&igies and extracted
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the top 100 such hub nodes from the trace. We then ran themjgidpread simulation
described in Section 4 but excluding the hub nodes, in olebserve how much in-
fluence they have on the spread.

DEGREE Hub: The total degree of each node over the entire duration ofélee indi-
cates the popularity of the nodBégree Centrality. With this metric, it is not possible
to distinguish two types of hubs: the node has high degrdamét short time window
(party hub or a larger time windowdate hub [11]. Most nodes interact with only a
few other nodes while a small number of hub nodes may have mgmactions.

In [13], we examined the degree per unit time (e.g. the number ofierrqdes seen
per 6 hours). We chose a 6-hour time window based on our imtuihat daily life is
divided into 4 main periods: morning, afternoon, evening aight. This is similar to
the approach described [83]. However, it is sensitive to starting the time window at
different absolute times of the day. As Fig. 5 shows, the dayeccould be a more
efficient time window in the urban space.

RANK Hub: The frequency that a node is used to relay data to other nodiestes the
centrality of the node. We simulated flooding over the terapgraph extracted from
the trace and counted the number of times each node is usegldging the data. We
exploited different counting schemes, such as countingtiamy a node relays data or
only when the node is on the shortest path from the sourceetddhtination. Different
schemes result in a similar ranking. This metric is equiveie Betweenness Centrality
in time-dependent networks.

CROSS Hub: The appearance of a node at different locations indicatgstthasMo-
bility Centrality. With the BATH trace, 9 locations are extracted and the rétape
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pearance at each location is measured. Fig. 11 depictsdtrbdtion of all nodes with
extracted centrality metrics. Theaxis shows a centrality metric on a logarithmic scale.

5.1 Hub Nodes Similarity

Fig. 12 and Table 3 show the correlation between the setstohbdes using differ-
ent metrics. The coefficient values are greater than 0.98dryecase. The correlation
betweerRANK HUBandCROSS HURas the highest value. Table 4 depicts the mem-
bership similarity of hub nodes. THRANK HUBandDEGREE HUBsets share many
nodes, while th&€ROSS HUBet has only around 50% of nodes in common with the
DEGREE HUBor RANK HUBsets.

Category |All Nodes| Top 100 NodegTop 50 NodesTop 30 Nodes
Rank/Degre¢ 0.99 0.99 0.99 0.99
Degree/Crogs 0.97 0.96 0.96 0.96

Corss/Rank|  0.99 0.99 0.99 0.99

Table 3: Hub Nodes Correlation

Top n NodesRank/DegregRank/CrossDegree/Cross
100 0.79 0.43 0.44
70 0.92 0.41 0.41
50 1.00 0.43 0.49
30 1.00 0.46 0.46
10 1.00 0.33 0.33

Table 4: Hub Node Membership Similarity

5.2 Inactivation of Hub Nodes

Fig. 13 depicts the impact of deactivating hub nodes dutiegpidemic spread. Fig. 13
shows inactivation of the top 50 nodes. Removing the toPEGREE HUBor RANK
HUB nodes significant reduces the epidemic spread. B&BREE HUBand RANK
HUB nodes have a similar impact. On the other hand, removinGR@SS HUBodes
does not show as dramatic an impact as does removing the ttheypes of hub
nodes. Randomly selected 1% of top 30% of high degree nodeassed as the source
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Fig. 13: Inactivation of Hub Nodes
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Fig. 14: k-cLIQUE Community Detection in INFCO06 Trace

of the infection. The result indicates the strong influentkbub nodes. We are further
investigating what differentiates static hubs from dynamibs in a pair interaction.

6 Inferring Human Communities

People inherently form groups, yielding social structumashich prominent patterns or
information flow can be observed. We have worked on uncogéhia structure and dy-
namics of social communities from human connectivity teade which social groups
must be embedd€d4] [34]. We have shown various community detection mechanisms
which can be applied to human connectivity traces in bothrérakksed and a decen-
tralised way.

Community detection in complex networks has attracted aflattention in recent
years. In the Internet, community structures corresporatonomous systems. It is
crucial to construct efficient algorithms for identifyinget community structure in a
generic network. Many community detection methods have Ipeeposed and exam-
ined in the literature (see the recent review papers by Newaid and Danoret al.
[51).

We have exploited different algorithni$3]. The k-cLIQUE method has been de-
signed for binary graphs, and we therefore need to threghel@dges of the contact
graphs in the tracgg4], while Weighted Networks Analyg&0] can work on weighted
graphs directly without any threshold.

6.1 K-CLIQUE Community Detection
Pallaet al.define a community as a union of &Hcliques (complete sub-graphs of size

k) that can be reached from each other through a series ofesdjacliques, where
two k-cliques are said to be adjacent if they shiare 1 nodes. Ask is increased, the
k-cligue communities shrink, but on the other hand becomeemohesive since their
member nodes have to be part of at least biodique. An advantage of this approach
is that it allows overlapping communities, which is usefs) en human society, one
person may belong to multiple communities.

Fig. 14 depicts the detected communities in the INFCO6 trabenk = 5. Three
distinct communities are detected, which include two ndbasbelong to two commu-
nities. Fig. 15(a) shows the detected communities witredifitk values and Fig. 15(b)
depicts the community size distribution whenr= 5 in the BATH trace.

6.2 Inter- and Intra-Gate Communities
It is known that the location is an important attribute focisb community structure.

The BATH trace includes the location of scanners (i.e. Gated), and Fig. 16 depicts
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the appearance rate of community members at Gates 2, 4, 7. &uat 8xample, the
members of community 17 (with solid circle) are observed atte@, but almost never
at the other locations; whereas the members of communitesd115 (with dashed
circle) appear at every gate. We refer to the former type afirnanity as arintra-
Communityand to the latter type as amter-CommunityIntra-communities may have
a strong tie with the location, while inter-communities niaglicate a group of people
moving together.

We ran a simulation to investigate the effect of deactigatl®0 nodes of each
community type. Communities 1 and 15 were selected at rartdorapresent inter-
communities, and 7 and 17 are selected as intra-communiiesmoving intra-
communities causes an up-to-10% reduction in infectioweapwhile removing inter-
communities has no effect in this scenario. It is well knowrsocial networks that
inter-relationship within a group is stronger than extétimks. The experiment result
indicates the characteristics of social networks.

The communities detected in the traces may be static scmmaiinities or tran-
sient communities, such as a group of people who happen tothe same location. Our
current approach does not distinguish between these tferetit community concepts
and further refinement of community concepts, along with imenrship management is
part of our ongoing work.

7 Related Work

The recent discovery of complex network properties in thecstire of biological and
social system¢$28] has brought different perspectives on real world networkadi-
tionally, random networks have been studied extensifglyRandom graphs are usu-
ally constructed by randomly adding links to a static setafes. Random graphs tend
to have short paths between a pair of nodes. Recent work alomagraphs has pro-
vided mechanisms to construct graphs with specified degstébdtions. Power-law
networks are networks where the probability that a node ltegeeek is proportional
to k. Many real-world networks have been shown to be power-lawaorks, including
Internet topologies and social networks. Scale-free ndsvare a class of power-law
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networks where the high-degree nodes tend to be connectéldenhigh degree nodes.
Small world networks have a small diameter and exhibit higistering[31]. Studies
have shown that the Web, scientific collaboration on re$epapers, film actors, and
general social networks have small world properfliek has become clear that this pat-
tern of interactions, which forms the network, plays a fundatal role in understanding
these systems.

Most forwarding algorithms in DTNs are based on epidemictinguprotocol§30],
whereby messages are simply flooded when a node encount¢heanode. The opti-
misation of epidemic routing by reducing the number of ceita message has been
explored. Many approaches calculate the probability af’dgl to the destination node,
where the metrics are derived from the history of node castapatial information and
so forth. The pattern-based Mobyspace Routing by Legual. [17], location-based
routing by Lebrunet al. [16] and PROPHETRouting [19] fall into this category. The
Message Ferry approach of Zhabal. [32] takes a different approach by controlling
the movement of each node. Recently, attempts to uncoveehistable network struc-
ture in DTNs and social networks have emerged. For exampteB& Routing4] uses
ego-centric centrality and its social similarity. Messagee forwarded towards a node
with higher centrality to increase the possibility of findithe potential carrier to the
final destination.

Emerging wireless technologies are creating physical ot the actual physical
space along online communication (e.g. social networkisesyemail). Understanding
this new pervasive network as a time-dependent dynamic humetwork is still an
open research area. Social relationships and interadiiensocial context) is gaining
importance. New results in the area of complex network $heidrgive new insight on
social networks.

8 Conclusions and Future Work

In this paper, we have shown our study of epidemic spreadnamijc human networks
from human connectivity traces. The human networks exipigitodic activity. Daily
circulation is significant, and epidemic spread demonessrtitat if the virus has over one
day of life, the spread rate reaches almost the same levehes thie virus has infinite
life. Removing the top 100 hub nodes (using various defingiof “hub”) out of over
7500 nodes from consideration yields a significant reduaciiothe rate of epidemic
spread.

In the BATH trace, some communities exhibited strong tiegadicular locations.
Therefore the local network structure could possibly forty@e of small-world net-
work, and a small number of nodes could connect with exterodés, forming a scale
free network. We are currently working to prove this assuampby constructing cor-
responding synthetic networks that can be compared withwedd networks. Our
future work includes investigating an asymmetric commatiah model (i.e. forming a
directed graph) and defining new network measurementiergech as time-dependent
centralities and cluster coefficient values. We are takingempirical approach and
therefore obtaining accurate and fine grained trace datsenéal. We are planning to
deploy several urban scale experiments for data colleatiohinformation diffusion.

Pervasive DTNs are dynamic, and we are particularly intedesn how network
structure affects information flow, and vice versa: how thgang communication af-
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fects the network structure. Pairwise communication ardasstructure need to be
integrated and modelled alongside dynamic interactiohg Jocial network reflects
access to information and change of social activities caselea as seeking better in-
formation access. Our ultimate goal is a complete undedsigrof human-to-human
network models in the urban space.
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