
Chapter 1

Hardware

The hardware specifications of testbed machine are as follows.

CPU

processor_no 8

vendor_id GenuineIntel

cpu family 6

model 26

model name Intel(R) Xeon(R) CPU E5504

cpu MHz 2G MHz

cache size 4096 KB

Hard drive

Capacity 500 GB, 500107862016 bytes

Memory

TotalMem 24GB (24612632 KB)

1

Chapter 2

Installation

The Xen Haggle Simulator (XHS) can be installed on the Debian Linux 5.0
(Lenny) with kernel 2.6.26-2-xen-amd64. Debian was chosen due to its sustained
support for Xen. The more information on installation of Debian (Lenny) can
be found via http://www.debian.org/releases/stable/amd64/index.

2.1 Xen

In order to install Xen on Debian system, the following packages are required
to be installed from Debian repositories.

• linux-headers-2.6.26-2-common-xen - Common header files

• linux-headers-2.6.26-2-xen-amd64 - Header files

• linux-image-2.6.26-2-xen-amd64 - Linux 2.6.26 image on AMD64

• linux-modules-2.6.26-2-xen-amd64 - Linux 2.6.26 modules on AMD64

• xen-linux-system-2.6.26-2-xen-amd64 - XEN system

• xen-docs-3.2 - Documentation for Xen

• xen-hypervisor-3.2-1-amd64 - The Xen Hypervisor on AMD64

• xen-utils-3.2-1 - XEN administrative tools

• xenstore-utils - Xenstore utilities for Xen

• xen-utils-common - XEN administrative tools - common files

• xen-shell - Console based Xen administration utility

• xen-tools - Tools to manage Debian XEN virtual servers

You probably need to add the following non-free sources to /etc/apt/sources.list.

2

deb http://ftp.uk.debian.org/debian/ lenny main contrib non-free

deb-src http://ftp.uk.debian.org/debian/ lenny main contrib non-free

Xen configuration file can be found in /etc/xen/xend-config.sxp. In this
file, one line with (network-script network-bridge) need to be uncommented. In
order to make linux bridge work, you need install bridge-utils package from
repos. After changing the network configuration, it is required to reset all xend
and network settings to activate the new settings with the following commands.

$ sudo /etc/init.d/xend restart

$ sudo /etc/init.d/networking restart

2.2 Haggle

First step you need to install Mercurial from Debian repos. Then you have
to download the latest haggle source code from Mercurial repositories by the
following command.

hg clone https://haggle.googlecode.com/hg/ haggle

For the latest LABEL, RANK, and BUBBLE source code, you have to check
out the repositories by the following command.

svn checkout http://haggle-cambridge.googlecode.com/svn/trunk/ haggle

In order to successfully compile Haggle code on Linux, you are required to
install standard development environment, including gcc, g++, standard devel-
opment headers and libtools. Additional development packages for OpenSSL,
Sqlite, and LibXML2 are also needed depending on your configurations.

A typical set of packages for Debian required for Haggle is as follows :

• build-essential (including libc6-dev, gcc, g++, make, etc.)

• automake

• autoconf

• libtool

• libsqlite3-dev

• libxml2-dev

• libbluetooth-dev

• libdbus-1-3

3

• libdbus-1-dev

• libssl-dev

Please install all of them with apt-get or aptitude.
In order to compile and installl haggle on the Xen Haggle Simulator, you need

to go to the downloaded souce code directory and do the following commands.

./autogen.sh

./configure --enable-debug--prefix=/usr/local/haggle

make

sudo make install

note: The prefix should be consistent with HAGGLE_INSTALL_PATH

in create_testbed.sh in testbed folder.

To run haggle, you need to go to bin directory in the source code and
type ./haggle. Or you need to add /usr/local/haggle/bin in your PATH
environment.

2.3 Haggle testbed

Download Haggle testbed source1 in the any folder and unzip them. You will
find there are 4 directories under the haggle testbed folder:

controller – used for remote control

scripts – used to run the testbed

testbed – used to create the testbed

vendetta – is the java GUI for testbed (not working at the moment)

To create testbed, you have to do as follows.

run_create_testbed.sh

The script will automatically use debootrap to create the image file and xen
configuration file. Finally, the program will ask you for the password for the
user and root for the virtual nodes.

1The source code for haggle testbed can be found in http://code.google.com/p/haggle-
cambridge/downloads.

4

Tips:

It is better to create a user without sudo password. Otherwise, you

have to give the password every time when the testbed is manipulated

(create nodes, start/stop nodes, filter traffic, etc.)

To do this, you need to add the following line into your /etc/sudoers file.

yourusename ALL=NOPASSWD: ALL

Then you need to go to the scripts folder. You will see a lot of shell files
which are used to manipulate the testbed. Most of time you can guess their
functions from their names.

The reliable way to run the testbed is based on preconfigured scenarios.
There is one java file called scenariorunner2.java, which is the main program
to run the testbed in non-interactive way in the scripts folder. To run the
experiments, you have to create your own scenario.xml file as follows.

<Scenario>

<Magic>haggle</Magic>

<Architecture>haggle -c -f -I</Architecture>

<Configuration>config.xml</Configuration>

<Tracefile>simple.trc</Tracefile>

<Iterations>1</Iterations>

<Warmup>300</Warmup>

<Application>luckyMe</Application>

</Scenario>

You have to create your own trace file to describe your scenarios. The trace
file must be in the format as follows.

nodeA nodeB linkup_time linkdown_time

Then you are able to run the scenario with following command.

java scenariorunner2 scenario.xml

In addition, there is a automatic way to run the testbed by using the
queue_executer.sh, which will take care of logging the performance of the
testbed, execute scenarios, and save logs with a timestamp. To run a scenario
you only have to create a tar.gz file containing the following files.

config.xml – configuration for haggle

markov.trc – trace file

scenario.xml – scenario file

5

You have to put thetar.gz file to the queue/ folder in your home directory
on the testbed. You can copy several files there and they will be executed in
the order they were copied. Observe that you cannot copy a file with the same
name twice to the queue folder. That will overwrite the current file. (The tar
file has to have the same name as the folder inside the tar file.)

2.4 Run LABEL, RANK and BUBBLE

We have implemented three forwarding2 algorithms in this testbed, namely
LABEL, RANK, and BUBBLE.

In order to simulate LABEL forwarding algorithm, you need to install the
haggle executive file into /usr/local/haggle/bin/ and rename it to haggle-label
then change the Architecture tag in scenario.xml as follows.

<Scenario>

<Architecture>haggle-label -c -f -I</Architecture>

</Scenario>

As for RANK forwarding algorithm, haggle-rank executive file is required
to be installed into /usr/local/haggle/bin/ then change the Architecture tag in
scenario.xml as follows.

<Scenario>

<Architecture>haggle-rank -c -f -I</Architecture>

</Scenario>

Finally for BUBBLE forwarding algorithm, the haggle executive file is needed
to be into /usr/local/haggle/bin/ and rename to haggle-bubble then change the
Architecture tag in scenario.xml as follows.

<Scenario>

<Architecture>haggle-bubble -c -f -I</Architecture>

</Scenario>

2.5 Community configuration

To enable community configuration you need to replace Forwarder configu-
ration in config.xml with the following line and rename config.xml to con-
fig.template.xml.

<Forwarder label=$LABEL rank=$RANK />

2All code can be found via http://code.google.com/p/haggle-cambridge/

6

New ComConfig tag need to be added to scenario.xml in order to update
community structure to forwarding algorithm in hagglekernel. You have to add
one line to scenario.xml as follows.

<Scenario>

<ComConfig>true</ComConfig>

</Scenario>

In this way, the testbed will run upload.py to update the community struc-
ture according to predefined configuration. The RANK value for each node
should be covert into a dictionary format, i.e. {node:rank}, as indicated in up-
load.py file. All community structure information should be added in the format
as indicated in upload.py file below. Finally you can run the simulation just as
normal.

community=[[94,2,63,97,82,47],

[26,65,93],

[20,46,84,35,50,73,92],

[12,19,20,23,31,4,72],

[29,14,16,18,6,81,83,85,86,96,39,57,75,95,37,49],

[21,51,7,74,54],

[85,28,71,89],

[15,76,80,91,78,32,37]]

#Rank average

dictRank={1:30,

2:55,

3:76,

....

36:28}

def sedfunc(rep , ch):

if ch=="label":

sedstr="sed \"s/\$LABEL/"+rep+"/g\""

if ch=="rank":

sedstr="sed \"s/\$RANK/"+rep+"/g\""

return sedstr

os.system("rm "+localName+"node-*.xml")

for x in range(commNum):

nodeLabel="label"+str(x+1)

if debug==1:

print community[x]

7

for i in community[x]:

node_name="node-"+str(i)

nodeRank=str(dictRank[i])

fileName=localName+node_name+".xml"

cmd_genxml=sedfunc(nodeLabel,"label")+" "+configTemplate+

" | "+sedfunc(nodeRank,"rank")+" > "+fileName

cmd_mkdir="ssh "+userName+"@"+node_name+" mkdir .Haggle"

cmd_mkscp="scp "+fileName+" "+userName+"@"

+node_name+":.Haggle/"+remoteName

if debug ==1:

print node_name

print cmd_mkdir

print cmd_mkscp

print cmd_genxml

os.system(cmd_genxml)

os.system(cmd_mkdir)

os.system(cmd_mkscp)

8

