
Musketeer: all for one, one for all in data processing systems

Ionel Gog Malte Schwarzkopf Natacha Crooks† Matthew P. Grosvenor
Allen Clement†∗ Steven Hand∗

University of Cambridge † Max Planck Institute for Software Systems
∗ now at Google, Inc.

Abstract
Many systems for the parallel processing of big data are
available today. Yet, few users can tell by intuition which
system, or combination of systems, is “best” for a given
workflow. Porting workflows between systems is tedious.
Hence, users become “locked in”, despite faster or more ef-
ficient systems being available. This is a direct consequence
of the tight coupling between user-facing front-ends that ex-
press workflows (e.g., Hive, SparkSQL, Lindi, GraphLINQ)
and the back-end execution engines that run them (e.g.,
MapReduce, Spark, PowerGraph, Naiad).

We argue that the ways that workflows are defined should
be decoupled from the manner in which they are executed.
To explore this idea, we have built Musketeer, a workflow
manager which can dynamically map front-end workflow
descriptions to a broad range of back-end execution engines.

Our prototype maps workflows expressed in four high-
level query languages to seven different popular data pro-
cessing systems. Musketeer speeds up realistic workflows
by up to 9× by targeting different execution engines, with-
out requiring any manual effort. Its automatically generated
back-end code comes within 5%–30% of the performance of
hand-optimized implementations.

1. Introduction
Choosing the “right” parallel data processing system is dif-
ficult. It requires significant expert knowledge about the
programming paradigm, design goals and implementation
of the many available systems. Even with this knowledge,
any move between systems requires time-consuming re-
implementation of workflows. Furthermore, head-to-head

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys’15, April 21–24, 2015, Bordeaux, France.
Copyright © 2015 ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2741948.2741968

Coupled (current)

Hive

Giraph

SparkSQL

GraphX

Lindi

GraphLINQ

Hadoop

Spark

Naiad

Decoupled (Musketeer)

Hive

Giraph

SparkSQL

GraphX

Lindi

GraphLINQ

Hadoop

Spark

Naiad

Figure 1: Decoupling front-end frameworks and back-end
execution engines (right) increases flexibility.

comparisons are difficult because systems often make differ-
ent assumptions and target different use cases. Users there-
fore stick to their known, favorite system even if other, “bet-
ter” systems offer superior performance or efficiency gains.

We evaluated a range of contemporary data processing
systems – Hadoop, Spark, Naiad, PowerGraph, Metis and
GraphChi – under controlled and comparable conditions.
We found that (i) their performance varies widely depending
on the high-level workflow; (ii) no single system always out-
performs all others; and (iii) almost every system performs
best under some circumstances (§2).

It thus makes little sense to force the user to target a single
system at workflow implementation time. Instead, we argue
that users should, in principle, be able to execute their high-
level workflow on any data processing system (§3). Being
able to do this has three main benefits:

1. Users write their workflow once, in a way they choose,
but can easily execute it on alternative systems;

2. Multiple sub-components of a workflow can be executed
on different back-end systems; and

3. Existing workflows can easily be ported to new systems.

In this paper, we present our Musketeer proof-of-concept
workflow manager to show that this is feasible, and that the
resulting implementations are competitive with hand-written
baseline implementations for specific systems.

Note: In the electronic version of this paper, most figures link to descrip-
tions of the experiments and our data sets (http://goo.gl/BMdT0o).

http://goo.gl/BMdT0o

To decouple workflows from their execution, we rely on
the fact that users prefer to express their workflows using
high-level frameworks, which abstract the low-level details
of distributed execution engines (Figure 1). For example,
the Hive [40] and Pig [35] frameworks present users with
a SQL-like querying interface over the Hadoop MapReduce
execution engine; SparkSQL and GraphX [15] offer SQL
primitives and vertex-centric interfaces over Spark [43]; and
Lindi and GraphLINQ [31] offer the same over Naiad [34].

Musketeer breaks the tight coupling between frameworks
and execution engines (§3). It achieves this by (i) mapping
workflow specifications for front-end frameworks to a com-
mon intermediate representation; (ii) determining a good
decomposition of the workflow into jobs; and (iii) auto-
generating efficient code for the chosen back-end systems.

Musketeer currently supports four front-end frameworks
(Hive, Lindi, a custom SQL-like DSL with iteration, and
a graph-oriented “Gather-Apply-Scatter” DSL). It can map
workflows to seven back-end execution systems: Hadoop,
Spark, Naiad, PowerGraph, GraphChi, Metis and simple,
serial C code. Users can explicitly target back-end execution
engines, or leave it to Musketeer to automatically choose a
good mapping using a simple heuristic (§5).

In a range of experiments with real-world workflows,
Musketeer offers compelling advantages (§6):

1. Better system mapping: Musketeer enables existing
workflows implemented for Hive on Hadoop MapRe-
duce to be executed on alternative systems, and achieves
a 2× speedup on a TPC-H query workflow as a result.

2. Optimization of executed code: by choosing the most
suitable Naiad execution primitive independent of the
front-end used to implement the workflow, Musketeer
speeds up a TPC-H query workflow by up to 9×.

3. Intelligent system combination: Musketeer can com-
bine different execution engines within a workflow, and
doing so outperforms fixed, single system mappings for
a cross-community PageRank workflow.

4. Competitive generated code: Musketeer’s generated
code has no more than a 5–30% overhead over hand-
optimized baseline implementations.

5. Good automatic system choice: an automated heuristic
for choosing back-ends in Musketeer derives reasonably
good mappings without manual user action.

These results and our experience of using Musketeer in prac-
tice (§7) indicate that decoupling front-end and back-end
systems can bring real benefits. Nonetheless, we believe our
work represents only the first step in a promising direction.
In Section 8, we describe current limitations of our system,
and suggest some concrete future work before discussing re-
lated research (§9) and concluding (§10).

0.1 0.5 1 2 4 8 16 32
Input size [GB; log2-scale]

0

50

100

150

200

250

300

M
ak

es
pa

n
[s

ec
]

Hive
Hadoop
Metis
Spark
Lindi

(a) PROJECT on a relation.

Asymmetric Symmetric

Input relation sizes

0

100

200

300

400

500

M
ak

es
pa

n
[s

ec
] 91

7Hive
Hadoop
Spark
Lindi
Serial C

(b) JOIN two data sets.

Figure 2: Different systems perform best for simple queries.
Lower is better; error bars show min/max of three runs.

2. Motivation
There are many diverse “big data” processing systems and
more keep appearing.2 This makes it difficult to determine
which system is best for a given workflow, data set and
cluster setup. We illustrate this using a set of simple bench-
marks. In all cases, we run over a shared HDFS installation
that stores input and output data, and we either implement
jobs directly against a particular execution engine, or use a
front-end framework with its corresponding native back-end.
We measure the makespan – i.e., the entire time to execute
a workflow, including the computation itself and any data
loading, pre-processing and output materialization required.

We find that no single system systematically outperforms
all others. Roughly speaking, system performance depends
on: (i) the size of the input data, as single machine frame-
works outperform distributed frameworks for small inputs;
(ii) the structure of the data, since skew and selectivity im-
pact I/O performance and work distribution; (iii) engineering
decisions, with e.g., the cost of loading inputs varying signif-
icantly across systems; and (iv) the computation type, since
specialized systems often operate more efficiently.

2.1 Query processing micro-benchmarks

Query-based data analytics workflows often consist of rela-
tional operators. In the following, we consider the behavior
of two operators in an isolated micro-benchmark. Here we
use a local cluster of seven nodes as an example of a small-
scale data analytics deployment. Later experiments show
that our results generalize to more complex workflows and
to larger clusters.

Input size. We first look at a simple string processing
workload in which we extract one column from a space-
separated, two column ASCII input. This corresponds to
a PROJECT query in SQL terms, but is also reminiscent
of a common pattern in log analysis batch jobs: lines are
read from storage, split into tokens, and a few are written
back. We consider input sizes ranging from 128MB up to

2 For a brief summary of systems’ properties, see Table 3.

http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig2a.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig2b.html

0 200 400 600 800
Makespan [sec]

GraphLINQ

Spark

Hadoop

PowerGraph

GraphLINQ

GraphChi

10
0

no
de

s
16

no
d.

1
no

d.

(a) Orkut (3.0M vertices, 117M edges).

0 1500 3000 4500
Makespan [sec]

GraphLINQ

Spark

Hadoop

PowerGraph

GraphLINQ

GraphChi

10
0

no
de

s
16

no
d.

1
no

d.

(b) Twitter (43M vertices, 1.4B edges).

Figure 3: Varying makespan for PageRank on social network graphs; lower is better; error bars: ±σ of 10 runs.

32GB. Figure 2a compares the makespan of this workflow
on five different systems. Two of these are programmer-
friendly SQL-like front-ends (Hive, Lindi), while the oth-
ers require the user to program against a lower-level API
(Hadoop, Metis and Spark). For small inputs (≤ 0.5GB), the
Metis single-machine MapReduce system performs best.3

This matters, as small inputs are common in practice: 40–
80% of Cloudera customers’ MapReduce jobs and 70% of
jobs in a Facebook trace have ≤ 1GB of input [8].

I/O efficiency. Once the data size grows, Hive, Spark and
Hadoop all surpass the single-machine Metis, not least since
they can stream data from and to HDFS in parallel. However,
since there is no data re-use in this workflow, Spark performs
worse than Hadoop: it loads all data into a distributed in-
memory RDD [43] before performing the projection. The
Lindi front-end implementation for Naiad performs surpris-
ingly poorly; we tracked this down to an implementation de-
cision in the Naiad back-end, which uses only a single input
reader thread per machine, rather than having multi-threaded
parallel reads. Since the PROJECT benchmark is primarily
limited by I/O bandwidth, this decision proves detrimental.

Data structure. Second, we consider a JOIN workflow.
This is highly dependent on the structure of the input data: it
may generate less, more, or an equal amount of output com-
pared to its input. We therefore measure two different cases:
(i) an input-skewed, asymmetric join of the 4.8M vertices
of a social network graph (LiveJournal) and its 69M edges,
and (ii) a symmetric join of two uniformly randomly gener-
ated 39M row data sets. Figure 2b shows the makespan of
different systems (plus a simple implementation in serial C
code) for this workflow. The unchallenging asymmetric join
(producing 1.28M rows/1.9GB) works best when executed
in single-threaded C code on a single machine, as the com-
putation is too small to amortize the overheads of distributed
solutions. The far larger symmetric join (1.5B rows/29GB),
however, works best on Hadoop. Other systems suffer from
inefficient I/O (e.g., Lindi using a single-threaded writer),

3 The bottleneck here is not the computation, but reading the data from
HDFS. With the data already local, Metis performs best up to 2 GB.

or have overhead due to constructing in-memory state and
scheduling tasks sub-optimally (Spark).

2.2 Iterative graph processing

Many common workflows involve iterative computations on
graphs (e.g., social networks). In the following, we compare
different systems running PageRank on such graphs. We also
vary the size of the EC2 cluster (m1.xlarge instances) in
order to determine systems’ efficiency at different scales.

Performance. Several specialized graph processing sys-
tems based on a vertex-centric or gather-and-scatter (GAS)
approach have been built. These computation paradigms are
limited, but can deliver significantly better performance for
graph workloads. In Figure 3, we show the makespan of a
five-iteration PageRank workflow on the small Orkut and
the large Twitter graph. It is evident that graph-oriented
paradigms have significant advantages for this computation:
a GraphLINQ implementation running on Naiad outper-
forms all other systems.4 PowerGraph also performs very
well, since its vertex-centric sharding reduces the communi-
cation overhead that dominates PageRank.

Resource efficiency. However, the fastest system is not al-
ways the most efficient. While PageRank in GraphLINQ us-
ing 100 Naiad nodes has the lowest runtime in Figure 3b,
PowerGraph performs better than GraphLINQ when using
only 16 nodes (due to its improved sharding).5 Moreover,
when the graph is small (e.g., in Figure 3a), GraphChi per-
forms only 50% worse than Spark on 100 nodes, and only
slightly worse than PowerGraph on 16 nodes, despite using
only one machine.

2.3 Summary

Our experiments show that the “best” system for a given
workflow varies considerably. The right choice – i.e., the
fastest or most efficient system – depends on the workflow,
the input data size and the scale of parallelism available.

4 Only the GraphLINQ front-end for Naiad is shown here; Lindi is not
optimized for graph computations and performs poorly.
5 Running PowerGraph on 32 or 64 nodes showed no benefit over 16 nodes.

http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig3a.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig3b.html

This information may not be available at workflow imple-
mentation time, which motivates our approach of decoupling
workflow expression from the execution engine used.

3. All for one, one for all data processing
We believe that a decoupled data processing architecture
(Figure 4) gives users additional flexibility. In this approach,
we break the execution of a data processing workflow into
three layers. First, a user specifies her workflow using a
front-end framework. Next, this workflow specification is
translated into an intermediate representation. Third, jobs
are generated from this representation and executed on one
or more back-end execution engines.

Front-ends
Hive
Pig

DryadLINQ
GAS DSL
GreenMarl
SQL DSL
SparkSQL

GraphX
Lindi

GraphLINQ

Intermediate
representation

Data-flow DAG

Back-ends
Hadoop

Metis
Dryad
Spark
Naiad
CIEL

Giraph
PowerGraph

GraphChi
X-Stream

Figure 4: To decouple processing, we translate front-end
workflow descriptions to a common intermediate represen-
tation from which we generate jobs for back-end execution
engines. Our Musketeer prototype supports systems in bold.

We give an overview of the three layers below; §4 will
describe their realization in our Musketeer prototype.

Front-ends. User-facing high-level abstractions for work-
flow expression (“frameworks”) act as front-ends to the
system. Many such frameworks exist: SQL-like querying
languages and vertex-centric graph abstractions are espe-
cially popular. We assume that users write their workflows
for such frameworks. The front-end workflow specifications
must then be translated to a common form; we do this by
either parsing the user input directly, or by building an API-
compatible shim for the front-end.

Intermediate representation. Ideally, all available front-
end frameworks and back-end execution engines would
agree on a single common intermediate representation (IR).
The IR must simultaneously (i) be sufficiently expressive
to support a broad range of workflows, and (ii) maintain
enough information to optimize back-end job code to a level
competitive with a competent hand-coded implementation.

Our intermediate representation is a dynamic directed
acyclic graph (DAG) of data-flow operators, with edges cor-
responding to input-output dependencies. This abstraction is
general: it supports specific operator types (cf. Dryad’s ver-
tices [19]) and general user-defined functions (UDFs); it can
handle iteration by successive expansion of the DAG (as in

CIEL [32] and Pydron [30]); and it can be extended with new
operators in order to enable end-to-end optimizations.

We can also perform query optimizations on the data-
flow DAG (e.g., to reduce intermediate data volume where
possible), as is already commonly done between front-end
and back-end in other systems [21, 41].

Back-ends. Finally, the system must generate code for
specific distributed data processing systems (“execution en-
gines”) at the back-end. A naı̈ve approach would simply
generate a job for each operator, but this fails to exploit
opportunities for optimization within the execution engines
(e.g., sharing data scans). Instead, we typically want to run
as few independent jobs as possible.

However, some execution engines have limited expressiv-
ity and therefore require the data-flow DAG to be partitioned
into multiple jobs. Many valid partitioning options exist, de-
pending on the workflow and the execution engines avail-
able. In §5, we show that exploring this space is an instance
of an NP-hard problem (k-way graph partitioning), and in-
troduce a heuristic to solve it efficiently for large DAGs.

Given a suitable partitioning, we generate jobs for the
chosen execution engines and dispatch them for execution.

Extensibility. Our approach is extensible: new front-end
frameworks can be added by providing translation logic
from framework constructs to the intermediate representa-
tion. Similarly, further back-end execution engines can be
supported as they emerge by adding appropriate code tem-
plates and code generation logic.

Limitations. Decoupling increases flexibility, but it may
obfuscate some end-to-end optimization opportunities from
expert users. Our scheme is best suited for non-specialist
users writing analytics workflows for high-level front-end
frameworks. This is common in industry: up to 80% of
jobs running in production clusters come from front-end
frameworks such as Pig [35], Hive [40], Shark [41] or
DryadLINQ [42], according to a recent study [8].

4. Musketeer implementation
Musketeer is our proof-of-concept implementation of the de-
coupled “all for one, one for all” approach that we advo-
cate. It translates a workflow defined in a front-end frame-
work into an intermediate representation, applies optimiza-
tions and generates code for suitable back-end execution en-
gines. In this section, we describe Musketeer in detail. Fig-
ure 5 illustrates the different stages a Musketeer workflow
proceeds through from specification to execution.

4.1 Workflow expression

Distributed execution engines simplify data processing by
shielding users from the intricacies of writing parallel, fault-
tolerant code. However, they still require users to express
their computation in terms of low-level primitives, such as
map and reduce functions [10] or message-passing ver-

1 SELECT id, street, town FROM properties AS locs;
2 locs JOIN prices ON locs.id = prices.id
3 AS id_price;
4 SELECT street, town, MAX(price) FROM id_price
5 GROUP BY street AND town AS street_price;

Listing 1: Hive code for max-property-price workflow.

tices [34]. Hence, higher-level “frameworks” that expose
more convenient abstractions are commonly built on top.

Musketeer supports two types of front-end frameworks:
(i) SQL-like query languages, and (ii) vertex-centric graph
processing abstractions.

4.1.1 SQL-like data analytics queries

Query languages based on SQL are used to express relational
queries on data of tabular structure. Listing 1 shows an ex-
ample analytics workflow that computes the most expensive
property on each street for a real-estate data set.

Musketeer currently supports three SQL-like data ana-
lytics front-ends: Hive, Lindi and BEER, our own domain-
specific workflow language with support for iteration. Trans-
lation from these front-ends to the intermediate representa-
tion proceeds by mapping the relational operations to opera-
tors in the IR DAG; most relational primitives have directly
corresponding Musketeer IR operators.

4.1.2 Graph computations

Domain-specific front-end frameworks for expressing graph
computations are popular: Pregel [26] and Giraph abstract
over MapReduce, the GreenMarl DSL [18] can emit code for
multi-threaded and distributed runtimes, and GraphLINQ
offers graph-specific APIs over Naiad vertices and times-
tamps [28]. These front-ends include user-defined code that
is concurrently instantiated for every vertex, and adjacent
vertices communicate using messages in repeated rounds.
This vertex-centric programming pattern is generalized by
the Gather, Apply and Scatter (GAS) model in Power-
Graph [14]. In this paradigm, data are first gathered from
neighboring nodes, then vertex state is updated and, finally,
the new state is disseminated (scattered) to the neighbors.

Musketeer currently supports graph computations via a
domain-specific front-end framework built around combin-
ing the GAS model with our BEER DSL. Users run graph
computations by defining the three GAS steps, with each
step represented by relational operators or UDFs. In List-
ing 2, we show the implementation of PageRank in Muske-
teer’s GAS front-end framework.

While HiveQL and our BEER DSL have directly corre-
sponding operators in the IR, the GAS DSL requires both
syntactic translation and transformation from the vertex-
centric paradigm to the data-flow DAG. Musketeer uses id-
iom recognition to achieve this, which we describe in §4.3.1.

1 GATHER = {
2 SUM (vertex_value)
3 }
4 APPLY = {
5 MUL [vertex_value, 0.85]
6 SUM [vertex_value, 0.15]
7 }
8 SCATTER = {
9 DIV [vertex_value, vertex_degree]

10 }
11 ITERATION_STOP = (iteration < 20)
12 ITERATION = {
13 SUM [iteration, 1])
14 }

Listing 2: Gather-Apply-Scatter DSL code for PageRank.

4.1.3 Other workloads

In addition to SQL-like query languages and GAS-style
graph computations, Musketeer can also support other types
of front-ends. If their abstractions map to Musketeer IR oper-
ators, they can be translated directly. Abstractions for which
no IR operator exists can be mapped to a user-defined func-
tion (UDF), or to a “native” back-end via a “black box”
operator. We discuss extension to other front-ends in §8.

4.2 Intermediate representation

Musketeer uses a directed acyclic graph (DAG) of data-
flow operators as its intermediate representation. We chose
this abstraction because it is expressive [19, 32, 43] and
amenable to analysis and optimization [21, 23].

Musketeer’s set of operators is extensible: not all front-
ends use all operators, and not all back-ends must support
all operators. Our initial set of operators is loosely based on
relational algebra and covers the most common operations
in industry workflows [8]. It includes SELECT, PROJECT,
UNION, INTERSECT, JOIN and DIFFERENCE, plus ag-
gregators (AGG, GROUP BY), column-level algebraic oper-
ations (SUM, SUB, DIV, MUL), and extremes (MAX, MIN).
This set of operators is, in our experience, already sufficient
to model many widely-used processing paradigms. For ex-
ample, MapReduce workflows can be directly modeled as a
MAP, GROUP BY and AGG step, and many complex graph
workflows can be mapped to a specific JOIN, MAP, GROUP
BY pattern, as shown by GraphX [15] and Pregelix [3].

However, workflows may also involve iterative computa-
tions. To allow data-dependent iteration, Musketeer must be
able to dynamically extend the IR DAG based on operators’
output. We use a WHILE operator to do this: it successively
extends the DAG every time another iteration is required. As
shown by Murray [33, §3.3.3], a DAG with this facility is
sufficient to achieve Turing completeness as it can express
all while-programs (though not necessarily efficiently).

Optimizing the IR. Many front-end frameworks already
optimize workflows before execution. For example, Pig [35],

SQL
query

GAS
kernel

§4.1

translate
to IR

§4.2

optimize
IR

recognize
idioms

merge
operators

map to
systems

§4.3

expand
templates

dispatch
jobs

DAG partitioning algorithm, §5

Figure 5: Phases of a Musketeer workflow execution. Dotted, gray operators show previous state; changes are in red.

Hive [40], Shark [41] and SparkSQL optimize relational
queries via rewriting rules and FlumeJava [6], Optimus [21]
and RoPE [1] apply optimizations to DAGs. Yet, each such
optimization must be implemented independently for each
front-end framework.

One of the advantages of decoupling front-ends from
back-ends is the ability to apply optimizations at the inter-
mediate level, as observed e.g., in the LLVM modular com-
piler framework [25]. Musketeer can likewise provide ben-
efits to all supported systems (and future ones) by applying
optimizations to the intermediate representation.

We currently perform a small set of standard query rewrit-
ing optimizations on the IR. Most of these re-order operators
– e.g., bringing selective ones closer to the start of the work-
flow and pushing generative operators to the end.

4.3 Code generation

After Musketeer has translated the workflow to the inter-
mediate representation, it must generate code for execution
from the IR. For the time being, we assume that the user ex-
plicitly specifies which back-end execution engines to use;
in §5, we show how Musketeer can decide automatically.

Musketeer has code templates for specific combinations
of operators and back-ends. Conceptually, it instantiates and
concatenates these templates to produce executable jobs. In
practice, however, optimizations are required to make the
performance of the generated code competitive with hand-
written baselines. Musketeer uses traditional database opti-
mizations (e.g., sharing data scans and operator merging),
combined with compiler techniques (e.g., idiom recognition
and type inference) to improve upon the naı̈ve approach. In
the following, we explain these optimizations with respect to
the max-property-price Hive workflow example (Listing 1)
and the GAS PageRank example (Listing 2).

4.3.1 Idiom recognition

Some back-end execution engines are specialized for a spe-
cific type of computation. For example, GraphChi has a
vertex-centric computation model and PowerGraph uses the
GAS decomposition. Neither system can express computa-
tions that do not fit its model. Musketeer must therefore rec-

ognize specific computational idioms in the IR to decide if
a back-end is suitable for a workflow. Idiom recognition is a
technique used in parallelizing compilers to detect computa-
tional idioms that allow transformations to be applied [36].
We use a similar approach to detect high-level paradigms in
Musketeer’s IR DAG.

Our prototype detects vertex-oriented graph-processing
algorithms in the IR, even if they were originally expressed
in a relational front-end (e.g., in Hive instead of the GAS
DSL). The idiom is a reverse variant of the way GraphX ab-
stracts graph computation as data-flow operators [15, §3].
Musketeer looks for a combination of the WHILE and JOIN
operators with a GROUP BY operator in a particular struc-
ture: the body of the WHILE loop must contain a JOIN op-
erator with two inputs that represent vertices and edges. This
JOIN operator must be followed by a GROUP BY operator
that groups data by the vertex column.

This structure maps to the graph computation paradigms
as follows: the JOIN on the vertex column represents
sending messages to neighbors (vertex-centric model), or
the “scatter” phase (GAS decomposition); the GROUP BY
is equivalent to receiving messages, or the “gather” step
(GAS); and any other operators in the WHILE body are part
of the superstep (vertex-centric) or the “apply” step (GAS),
updating the state of each vertex.

Other idioms can also be detected: for example, depend-
ing on whether the AGG operator performs an associative or a
non-associative (e.g., subtraction, division) aggregation, dif-
ferent operator implementations are appropriate in different
back-ends. We plan to support this in future work.

4.3.2 Merging operators

General-purpose systems such as Spark and Naiad can ex-
press complex workflows as a single job. However, more re-
stricted systems only support particular idioms (e.g., Power-
Graph, GraphChi) or require multiple jobs to express certain
operations (e.g., MapReduce). Each back-end job generated
for an execution engine comes with some per-job overhead.
Musketeer therefore merges operators in order to reduce the
number of jobs executed.

1 locs =
2 properties.map(c => (c.uid, c.street, c.town))
3 id_price = locs
4 .map(l => (l.uid, (l.street, l.town)))
5 .join(prices)
6 .map((key, (l_rel, r_rel)) => (key, l_rel, r_rel))
7 street_price = id_price
8 .map(ip => ((ip.street, ip.town), ip.price)
9 .reduceByKey((left, right) => Max(left, right))

Listing 3: Naı̈ve Spark code for max-property-price. Four
maps are required as data structures must be transformed.

1 locs =
2 properties.map(c => (c.uid, (c.street, c.town)))
3 id_price = locs
4 .join(prices)
5 .map((key, (l_rel, r_rel)) =>
6 ((l_rel.street, l_rel.town), r_rel.price))
7 street_price = id_price
8 .reduceByKey((left, right) => Max(left, right))

Listing 4: Optimized Spark code for max-property-price.
Scan sharing and type inference reduce the maps to two.

Consider an example: MapReduce-based execution en-
gines only support one group-by-key operation per job [35].
Hence, even a simple workflow like max-property-price re-
quires at least two jobs: (i) Lines 1–3 in Listing 1 (§4.1.1)
result in a job that selects columns from the properties
relation and joins the result with the prices relation us-
ing id as the key; and (ii) lines 4–5 group by a different
key than the prior join, requiring a second job. By contrast,
Listing 3 shows simple generated code for the max-property-
price workflow in Spark, where only one job is required.

To model these limitations and avoid extra jobs when
possible, Musketeer has a set of per-back-end mergeability
rules. These indicate whether operators can be merged into
one job either (i) bidirectionally, (ii) unidirectionally, or (iii)
not at all. If execution engines only support certain idioms,
only operator merges corresponding to these idioms are fea-
sible. The operator merge rules are used by the DAG parti-
tioning algorithm (§5) to decide upon job boundaries. Oper-
ator merging is necessary for good performance: in §6.5, we
show that it reduces workflow makespan by 2–5×.

4.3.3 Sharing data scans

Operator merging allows Musketeer to execute several oper-
ators as a single job, and thus eliminates job creation over-
heads where possible. However, this is not enough to ob-
tain competitive results compared to hand-coded baselines.
For example, the first SELECT and the JOIN operator from
the max-property-price in Spark get translated into two map
transformations and a join (Listing 3, lines 3–6). The first
map selects only the columns required by the workflow,

while the second map establishes a key→ 〈tuple〉 mapping
over which the join is going to be conducted.

Even though Spark holds the intermediate RDDs in mem-
ory, scanning over the data twice yields a significant perfor-
mance penalty. Musketeer avoids redundant scans by com-
bining them where supported by the back-end. For example,
in the optimized generated Spark code (Listing 4) for the
max-property-price workflow, the anonymous lambdas from
the first two map transformations (Listing 3, lines 4 and 6)
are combined into a single one (Listing 4, lines 5–6). As a
result, the generated code only scans the data once, select-
ing the required columns and preparing the relation for the
join transformation in one go.

4.3.4 Look-ahead and type inference

Many execution engines (e.g., Spark and Naiad) expose
a rich API for manipulating different data types. For ex-
ample, the SELECT . . . GROUP BY clause in the max-
property-price workflow (Listing 1, lines 4–5) can be im-
plemented directly in Spark using a reduceByKey trans-
formation. However, such API calls often require a specific
representation of the input data. In the example, Spark’s
reduceByKey requires the data to be represented as a set
of 〈key, value〉 tuples. Unfortunately, the preceding join
transformation outputs the data in a different format (viz.
〈key, 〈left relation, right relation〉〉). Hence, the naı̈ve gen-
erated code for Spark ends up generating two map transfor-
mations, one to flatten the output of the join (Listing 3, line
6), and another to key the relation by a 〈town,street〉 tu-
ple (line 8).

To mitigate this, Musketeer looks ahead and uses type in-
ference to determine the input format of the operators that
ingest the current operator’s output. With this optimization,
the two map transformations can be expressed as a single
transformation (Listing 4, lines 5–6). In combination with
shared scans, look-ahead and type inference enable Muske-
teer to guarantee that no unnecessary data scans will take
place in most cases.

5. DAG partitioning and automatic mapping
To generate back-end jobs, Musketeer partitions the IR DAG
into sub-regions, each representing a job. As we explained in
§4.3.2, some execution engines constrain the operators that
can be combined in a single job.

Our method of partitioning the IR DAG must therefore
generalize over different back-end constraints and extend to
future systems’ properties. Hence, we consider all possible
partitionings; when this is too expensive, we apply an effi-
cient heuristic based on dynamic programming (§5.1).

Provided that back-ends’ relative performance can be pre-
dicted with reasonable accuracy, Musketeer can also auto-
matically decide which back-ends to use. The goodness of
different options is quantified using a simple cost function
that considers information specific to both workflows and
back-ends (§5.2).

edges

COUNT

SUM

MULTIPLY

AGGREGATE

PROJECT

SUM

MULTIPLY

AGGREGATE

PROJECT

DIVIDE
DIVIDE

JOIN

WHILE

JOIN

COUNT

JOIN

WHILE

COUNT

JOIN

To
po

lo
gi

ca
l

S
or

t

D
yn

am
ic

P

ro
gr

am
m

in
g

Hadoop job

GraphChi
job

1 2

JOIN

WHILE

JOIN

DIVIDE

PROJECT

AGGREGATE

MULTIPLY

SUM

vertices

Figure 6: The dynamic partitioning heuristic takes an IR
DAG, (1) transforms it to a linear order, and (2) computes
job boundaries via dynamic programming. On the right, we
show several possible partitions and system mappings.

5.1 DAG partitioning

There are many ways of breaking the IR DAG into partitions
(≡ back-end jobs). Musketeer uses a simple cost function to
compare different partitioning options. The cost of any par-
tition containing non-mergeable operators is infinite; other-
wise it is finite and depends on the back-ends (see §5.2).

With a known optimal number of jobs, k, partitioning
the DAG is an instance of the k-way graph partitioning
problem [22]. Unfortunately, k-way graph partitioning is
NP-hard [13]: the best solution is guaranteed to be found
only by exploring all k-way partitions. Moreover, the optimal
number of jobs into which to partition the DAG is unknown.
Hence, Musketeer must solve k-way graph partitioning for
all k ≤ N, where N is the number of operators in the DAG.

Where possible, Musketeer uses an exhaustive search to
find the cheapest partitioning (in practice, up to about 18
operators). It switches to a dynamic programming heuristic
for larger, more complex workflows.

5.1.1 Exhaustive search

The exhaustive search explores all possible graph partition-
ings. It first considers the cost of running each operator in
isolation. Next, it looks at all merge opportunities, and fi-
nally, it recursively generates all valid (finite-cost) partitions.
The algorithm is guaranteed to find the optimal solution with
respect to the cost function. However, it requires exponential
time in the number of operators.

5.1.2 Dynamic heuristic

Some industry workflows consist of large DAGs containing
up to hundreds of operators [6, §6.2]. To support these work-
flows, we use a dynamic heuristic. Its execution time scales

linearly with the number of operators, and it obtains good
solutions in practice. The dynamic heuristic explores only
a subset of the possible partitions by focusing on a single
linear ordering of operators. In Figure 6, we illustrate the
algorithm using the IR DAG for PageRank (Listing 2).

First, Musketeer topologically sorts the DAG to produce a
linear ordering. This ordering maintains operator precedence
– i.e., an operator does not appear in the linear ordering
before any of its ancestors. Second, Musketeer finds the
optimal partitioning of the linear ordering using dynamic
programming. The dynamic programming algorithm uses
the cost function, cs(o1,o2, . . . , o j), which estimates the cost
of running the operators o1, o2, . . . , o j in a single job. It then
computes the matrix C[n][m], which stores the minimum cost
of running the first n operators in exactly m jobs:

C[n][m] = min
k<n

(
C[k][m−1]+min

s
(cs(ok+1 . . .on))

)
In other words, we determine the best combination that runs
a k-element prefix of operators in m−1 jobs and the remain-
der in a single job. This approach finds a good solution be-
cause it considers all partitions of the linear ordering. The
cost function guides it to merge as many operators as possi-
ble within each individual job.

The dynamic heuristic can miss out on opportunities to
merge operators due to the linear ordering breaking operator
adjacencies. We discuss this further and show an example in
§8; in practice, we found the dynamic heuristic to work well.

5.2 Automatic system mapping

A simple extension of the DAG partitioning algorithm al-
lows Musketeer to automatically choose back-end execu-
tion engine mappings. To achieve this, we use Musketeer’s
cost function and run the DAG partitioning algorithm for all
back-ends. We then pick the best k-way partitioning.

The cost function scores the performance of a particular
combination of operators, input data and execution engine.
The score is based on three high-level components:

1. Data volume. Each operator has bounds on its output
size based on its behavior (e.g., whether it is generative
or selective). These bounds are applied to the run-time
input data size to predict intermediate and output sizes.

2. Operator performance. In a one-off calibration, Muske-
teer measures each operator in each back-end and records
the rate at which it processes data.

3. Workflow history. Musketeer collects information about
each job it runs (e.g., runtime and input/output sizes), and
uses this information to refine the scores for subsequent
runs of the same workflow.

The operator performance calibration only requires modest
one-off profiling for a deployed cluster. It supplies Muske-
teer with the four rates listed in Table 1. PULL and PUSH
quantify read and write HDFS throughput at the start and end
of a job. We measure them using a “no-op” operator. LOAD,

Parameter Description
PULL Rate of data ingest from HDFS.
LOAD Rate of loading or transforming data.

PROCESS Rate of processing operator on in-memory data.
PUSH Rate of writing output to HDFS.

Table 1: Rate parameters used by Musketeer’s cost function.

by contrast, corresponds to back-end-specific data loading
or transformation steps (e.g., partitioning the input in Pow-
erGraph). Finally, PROCESS approximates the rate at which
the operator’s computation proceeds. In some systems, we
measure this directly, while in others, we subtract the esti-
mated duration of the ingest (from PULL) and output (from
PUSH) stages from the overall runtime to obtain PROCESS.

This information lets us estimate the benefit of shared
scans: we pay the cost of PULL, LOAD and PUSH just once
(rather than once per-operator) and combine those with the
costs of PROCESS for all the operators.

These rate parameters enable generic cost estimates, but
we can achieve more accurate scoring by using workflow-
specific historical information. When a workflow first exe-
cutes, no such information is available. Musketeer thus ap-
plies conservative data size bounds and only merges selec-
tive operators and generative operators with small output
bounds. As a result, more jobs may be generated on the
first execution – e.g., due to JOIN operators, which have un-
known data size bounds. On subsequent executions, Muske-
teer tightens the bounds using historical information, which
may unlock additional merge opportunities.

6. Evaluation
Musketeer’s goal is to improve flexibility and performance
of data processing workflows by dynamically mapping from
front-end frameworks to back-end execution engines. In this
section, we show that Musketeer meets these goals:

1. Legacy workflow speedup: Musketeer reduces legacy
workflows’ makespan by up to 2× by mapping them to a
different back-end execution system (§6.2).

2. Flexible combinations of back-ends: by exploring com-
binations of multiple execution systems for a workflow,
Musketeer finds combinations that perform well (§6.3).

3. Increased portability: compared to time-consuming,
hand-tuned implementations for specific back-ends, Mus-
keteer’s automatically generated code has low overhead,
yet offers superior portability (§6.4, §6.5).

4. Promising automatic system mapping: our automated
mapping prototype makes good choices based on simple
parameters characterizing execution engines (§6.6, §6.7).

We implemented seven real-world workflows to evaluate
Musketeer: three batch workflows, three iterative workflows
and a hybrid one. The batch workflows are (i) TPC-H query
17, (ii) top-shopper, which identifies an online shop’s top
spenders, and (iii) the Netflix movie recommendation algo-

System Modification
Hadoop Tuned configuration to best practices.

Spark Tuned configuration to best practices.
GraphChi Added HDFS connector for I/O.

Naiad Added support for parallel I/O and HDFS.

Table 2: Modifications made to systems deployed.

rithm. The iterative ones are (i) PageRank, (ii) single-source
shortest path (SSSP), and (iii) k-means clustering; the hybrid
workflow is PageRank with a batch pre-processing stage.

6.1 Setup

Most of our experiments run on a 100-node cluster of
m1.xlarge instances on Amazon EC2. However, we also
run some experiments on a local, dedicated seven-machine
cluster with low variance in performance. We deployed all
systems supported by Musketeer6 on these clusters. We use a
shared HDFS as the storage layer; this makes sense as HDFS
is already supported by Hadoop, Spark and PowerGraph. In
order to establish a level playing field for our experiments,
we tuned and modified some systems (see Table 2).

Metrics. As in §2, the makespan of a workflow refers to
its total execution time, measured from its launch to the
final result appearing in HDFS. This includes time to load
inputs from HDFS, pre-process or transform them (e.g. in
PowerGraph and GraphChi) and write the outputs back. As
a result, the numbers we present are not directly comparable
to those in some other papers, which measure the actual
computation time only.

Resource efficiency, on the other hand, is a measure of
the efficiency loss incurred due to scaling out over multi-
ple machines. We compute it by normalizing a workflow’s
fastest single-node execution (assumed to be maximally
resource-efficient) to its aggregate execution time over all
nodes in a distributed system. For example, a workflow that
runs for 30s on all 100 nodes of the EC2 cluster has an
aggregate execution time of 3,000s. If the best single-node
system completes the same workflow in 2,000s, the resource
efficiency of the distributed execution is 66%.

6.2 Dynamic mapping to back-end execution engines

We consider both batch and iterative graph processing work-
flows to investigate the benefits of Musketeer’s ability to
dynamically map workflows to back-ends. This mirrors our
motivational experiments in §2.

Batch workflows. To illustrate the flexibility offered by
Musketeer, we run query 17 from the TPC-H business de-
cision benchmark using the HiveQL and Lindi front-ends.
Figure 7 shows the resulting makespan as the data size in-
creases from 7.5 GB (scale factor 10) to 75 GB (factor 100).

6 Hadoop 2.0.0-mr1-chd4.5.0, Spark 0.9, PowerGraph 2.2, GraphChi 0.2,
Naiad 0.2 and Metis commit e5b04e2.

0 200 400 600 800
Makespan [sec]

Musketeer
GraphLINQ

Spark
Hadoop

Musketeer
GraphLINQ

PowerGraph
Musketeer

GraphChi

10
0

no
de

s
16

no
d.

1
no

d.

(a) Orkut (3.0M vertices, 117M edges).

0 1500 3000 4500
Makespan [sec]

Musketeer
GraphLINQ

Spark
Hadoop

Musketeer
GraphLINQ

PowerGraph
Musketeer

GraphChi

10
0

no
de

s
16

no
d.

1
no

d.

(b) Twitter (42M vertices, 1.4B edges).

0% 25% 50%
Resource efficiency

Musketeer
GraphLINQ

Spark
Hadoop

Musketeer
PowerGraph
GraphLINQ
Musketeer

GraphChi
100%
100%

10
0

no
de

s
16

no
d.

1
no

d.

(c) Resource efficiency, Twitter.

Figure 8: Musketeer’s performs close to the best-in-class system for five iterations of PageRank on 100, 16 and 1 nodes. In (a)
and (b), the x-axis is makespan (less is better); in (c), it is resource efficiency (more is better). Error bars are ±σ over 5 runs.

0 20 40 60 80 100
TPC-H scale factor

0

100

200

300

400

500

600

700

M
ak

es
pa

n
[s

ec
]

Hive on Hadoop
Lindi on Naiad
Musketeer (Naiad)

Figure 7: Musketeer reduces the makespan of TPC-H query
17 on EC2 compared to Hive and Lindi on native back-ends.
Less is better; error bars show min/max of three runs.

When running the Hive workflow directly using its native
Hadoop back-end, the makespan ranges from 200–400s.

Musketeer, however, can map the Hive workflow spec-
ification to different back-ends. In this case, mapping it to
Naiad reduces the makespan by 2×. This is not surprising:
Hive must run the workflow as three Hadoop jobs due to the
restrictive MapReduce paradigm, while Naiad can run the
entire workflow in one job.

However, a user might also specify the workflow us-
ing the Lindi front-end and target Naiad directly. When
using Lindi however, the query scales less well than us-
ing Hive and Hadoop, despite running in Naiad. This re-
sult comes because Lindi’s high-level GROUP BY operator
is non-associative, meaning that data must be collected on
a single machine before the operator can be applied. Mus-
keteer supplies an improved GROUP BY operator imple-
mented against Naiad’s low-level vertex API. Consequently,
its generated Naiad code scales far better than the Lindi ver-
sion (up to 9× at scale 100). The Naiad developers may of
course improve Lindi’s GROUP BY in the future, but this ex-
ample illustrates that Musketeer’s decoupling can improve

performance even for a front-end’s native execution engine
by generating improved code.

Iterative workflows. While batch workflows can be ex-
pressed using SQL-like front-end frameworks such as Hive
and Lindi, iterative graph processing workflows are typically
expressed differently (see §4.1.2). To evaluate Musketeer’s
benefit for graph computations, we implemented PageRank
using our GAS DSL front-end (Listing 2, §4.1.2). We run
this workflow on the two social network graphs we evalu-
ated PageRank on in §2 (Orkut and Twitter).

Figure 8 compares the makespan of a five iterations of
PageRank using Musketeer-generated jobs to hand-written
baselines for general-purpose systems (Hadoop, Spark), an
implementation using Naiad’s GraphLINQ front-end and
special-purpose graph processing systems (PowerGraph,
GraphChi). Different systems achieve their best performance
at different scales, and we only show the best result for each
system. The only exception to this is GraphLINQ on Naiad,
which is competitive at both 16 and 100 nodes. At each scale,
Musketeer’s best mapping is almost as good as the best-
in-class baseline. On one node, Musketeer does best when
mapping to GraphChi, while a mapping to Naiad (Orkut) or
PowerGraph (Twitter) is best at 16 nodes, and a mapping to
Naiad is always best at 100 nodes.

Figure 8c shows the resource efficiency for the same con-
figurations for PageRank on the Twitter graph. Musketeer
achieves resource efficiencies close to the best stand-alone
implementations at all three scales.

This demonstrates that Musketeer’s dynamic mapping ap-
proach adds flexibility for batch and iterative computations.

6.3 Combining back-end execution engines

In addition to mapping an entire workflow to different back-
ends, Musketeer can also map parts of a workflow to differ-
ent systems. We find that this ability to explore many dif-
ferent combinations of systems can yield useful (and some-
times surprising) results.

We use the hybrid cross-community PageRank workflow
to demonstrate this. This workflow yields the relative popu-

http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig8a.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig8b.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig8c.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig7.html

0 150 300 450 600
Makespan [sec]

Lindi & GraphLINQ

Hadoop & GraphChi
Hadoop & PowerGraph

Hadoop & Spark

Lindi only
Spark only

Hadoop only

Figure 9: A cross-community PageRank workflow is accel-
erated by combined back-ends. Local cluster, all jobs apart
from the “Lindi & GraphLINQ” combination were gener-
ated by Musketeer. Error bars show the min/max of 3 runs.

larity of the users present in both of two web communities. It
involves a batch computation followed by an iterative com-
putation: first, the edge sets of two communities (e.g., all
LiveJournal and WordPress users) are intersected, and sub-
sequently, the PageRank of all links present in both commu-
nities is computed.

Figure 9 shows the makespan of cross-community PageR-
ank for different combinations of systems, explored using
Musketeer.7 The inputs are the LiveJournal graph (4.8M
nodes and 68M edges) and a synthetically generated web
community graph (5.8M nodes and 82M edges). Out of the
three single-system executions, the workflow runs fastest in
Lindi at 153s. However, the makespan is comparable when
Musketeer combines Hadoop with a special-purpose graph
processing system (e.g., PowerGraph), even though these
systems use fewer machines. This happens because general-
purpose systems (like Hadoop) work well for the batch phase
of the workflow, but do not run the iterative PageRank as fast
as specialized systems. However, a combination of Lindi and
GraphLINQ, which both use Naiad as their back-end execu-
tion engine, does even better. This comes as this combina-
tion avoids the extra I/O to move intermediate data across
system boundaries. Musketeer currently does not fully au-
tomatically generate the low-level Naiad code to combine
Lindi and GraphLINQ; we will support this in future work.

Musketeer’s ability to flexibly partition a workflow makes
it easy to explore different combinations of systems.

6.4 Overhead over hand-tuned, non-portable jobs

For Musketeer to be attractive to some users, its generated
code must add minimal overhead over an optimized hand-
written implementation. In the following, we show that the
overhead over an optimized baseline does not exceed 30%
and is usually around 5–20%.

Batch processing. We measure the NetFlix movie recom-
mendation workflow [2]. This workflow highlights any over-
heads: it contains a large number of operators (13) and is

7 The 100-node EC2 cluster had similar results, albeit at increased variance.

0 200 400 600 800 1000 1200
Number of movies selected

0

500

1000

1500

2000

2500

3000

M
ak

es
pa

n
[s

ec
]

Musketeer (Hadoop)
Hadoop
Musketeer (Spark)
Spark
Musketeer (Naiad)
Lindi on Naiad

Figure 10: Makespan of the NetFlix movie recommendation
workflow on the EC2 cluster. Error bars: ±σ over five runs.

Hadoop Spark Naiad PG GraphChi

-20%
0%

20%
40%
60%
80%

O
ve

rh
ea

d
100 nodes 16 nodes 1 node

Figure 11: Generated code overhead for PageRank on the
Twitter graph (PG ≡ PowerGraph). Error bars show σ over
five runs; negative overheads are due to variance on EC2.

very data-intensive, with up to 600 GB of intermediate data
generated. The workflow takes two inputs: a 100 million-
row movie ratings table (2.5GB) and a 17,000-row movie list
(0.5MB). The algorithm computes movie recommendations
for all users, and finally outputs the top recommended movie
for each user. We control the amount of data processed by
the algorithm by varying the number of movies used for the
prediction. Figure 10 compares Musketeer-generated code
for the NetFlix workflow to hand-optimized baselines for
the three general-purpose systems that support it (Hadoop,
Spark and Lindi on Naiad). We extensively tuned each of the
baselines to deliver good performance for the given system,
taking advantage of system-specific optimizations available.

For all three systems, the overhead added by Musketeer’s
generated code is low: it is virtually non-existent for Naiad
and remains under 30% for Spark and Hadoop even as the
input grows. The remaining overhead for Spark is primarily
due to the simplicity of our type-inference algorithm, which
can cause the Musketeer-generated code to make an extra
pass over the data.

Graph processing. We also measure Musketeer’s over-
head for the iterative PageRank workflow. Figure 11 shows
the overhead of Musketeer-generated jobs over hand-written
baselines for the back-ends compatible with the PageRank
workflow. The average overhead remains below 30% in all
cases. Variability in overhead (and improvements over the

http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig9.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig10.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig11.html

Hadoop Spark

0 20 40 60 80 100
Millions of users

0

50

100

150

200

M
ak

es
pa

n
[s

ec
]

(a) top-shopper workflow run-
ning on the EC2 cluster.

Had
oo

p

Had
. mer

ge
d

Had
. ba

se
lin

e
Spa

rk

Sp.
mer

ge
d

Sp.
ba

se
lin

e
0

400

800

1200

1600

M
ak

es
pa

n
[s

ec
]

(b) Hybrid cross-community
PageRank on the local cluster.

Figure 12: Operator merging (§4.3.2) helps bring generated
code performance close to hand-written baselines.

baseline) are due to performance variance on EC2. Further
optimizations of the code generation are possible. Most such
optimizations benefit all code Musketeer generates for a par-
ticular back-end.

In conclusion, Musketeer generates code that performs
nearly as well as hand-written baselines. Combined with the
improved portability and the ability to dynamically explore
multiple execution engines, we believe that this makes for a
compelling case.

6.5 Impact of operator merging and shared scans

One key technique that Musketeer uses to reduce over-
head is operator merging (§4.3.2). We measure its impact
on workflow makespan using a simple micro-benchmark:
the top-shopper workflow. This benchmark finds the largest
spenders in a certain geographic region by first filtering a
set of purchases by region, then aggregating their values by
user ID and finally selecting all users above a threshold. The
workflow consists of three operators that can be merged into
a single job, and indeed a single scan of the data. Figure 12a
shows top-shopper’s makespan for varying data size with
operator merging turned off and on. In Figure 12b, we show
that cross-community PageRank sees the same benefit.

These results illustrate that the impact of operator merg-
ing can be significant: we observe a one-off reduction in
makespan of ≈25–50s due to avoiding per-job overheads,
along with an additional 5–10% linear benefit per 10M users
attributable to the use of shared scans.

6.6 DAG partitioning runtime

Next, we focus on the DAG partitioning algorithm (§5). We
measure the time it takes the exhaustive search and dynamic
heuristic algorithms to partition the operator DAG. Ideally,
they should not noticeably affect the total runtime of the
workflow.

Figure 13 compares the runtimes of the two algorithms
as the number of operators in a workflow increases. In the
experiment, we run subsets of an extended version of the
NetFlix workflow with a total of 18 operators. This workload

0 2 4 6 8 10 12 14 16 18
First x operators in NetFlix workflow

10−5

10−4

10−3

0.01

0.1

1

10

100

1000

A
lg

or
ith

m
ru

nt
im

e
[s

ec
;l

o
g

1
0
-s

ca
le

]

exhaustive (all systems)
heuristic (all systems)
exhaustive (Hadoop only)
heuristic (Hadoop only)

Figure 13: Runtime of Musketeer’s DAG partitioning algo-
rithms when considering the first x operators of an extended
version of the NetFlix workflow (N.B.: log10-scale y-axis).

0% 20% 40% 60% 80% 100%

Fraction of workflows

+ full history

+ partial history

First run

Decision tree

M
us

ke
te

er

Best option
within ≤ 10%

within ≤ 30%
> 30%

Figure 14: Makespan overhead of Musketeer’s automated
choice compared to the best option. Workflow history helps,
and our cost function outperforms a simple decision tree.

affords many operator merging opportunities, thus making a
good test case for the DAG partitioning algorithms. Up to 13
operators, the exhaustive search runs in under a second, but
its runtime grows exponentially beyond 13 operators. While
it guarantees that the optimal partitioning subject to the
cost function is found, the delay soon becomes impractical.
The dynamic programming heuristic, however, runs in under
10ms even at 18 operators and scales gracefully.

6.7 Automated mapping performance

Musketeer can be used to manually map jobs to back-end
execution engines, but we believe that the framework choice
should be automated. We first investigate the quality of
Musketeer’s automated mapping decisions (§5.2) using the
workflows discussed so far, and then test its performance on
two additional workflows.

We tested Musketeer’s automated choices using the six
workflows described before in 33 different configurations by
varying the input data size. For each decision, we compare
(i) Musketeer’s choice on the first run (with no workflow-
specific history), (ii) its choice with incrementally acquired
partial history, and (iii) the choice it makes when it has a full
history of the per-operator intermediate data sizes. We also

http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig12a.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig12b.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig13.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig14.html

0 600 12001800

Makespan [sec]

Hadoop

Spark

Naiad

PG

♣
10

0
no

de
s

16
n.

(a) SSSP.

0 1500 3000

Makespan [sec]

Hadoop

Spark

Naiad ♣

(Out of memory)

10
0

no
de

s

(b) k-means clustering.

Figure 15: Makespan of SSSP and k-means on the EC2 clus-
ter (5 iterations). A club (♣) indicates Musketeer’s choice.

compare the choices to those that emerge from a decision
tree that we developed. The decision tree considers different
back-ends’ features and known characteristics. We consider
a choice that achieves a makespan within 10% of the best
option to be “good”, and one within 30% as “reasonable”.
Figure 14 shows the results: without any knowledge, Mus-
keteer chooses good or optimal back-ends in about 50% of
the cases. When partial workflow history is available, over
80% of its choices are good ones. If each workflow is ini-
tially executed operator-by-operator for profiling, Musketeer
always makes good or optimal choices. By contrast, using
the decision tree yields many poor choices. This is due to its
inflexible decision thresholds and its inability to consider the
benefits of operator merging and shared scans.

We also test the automatic mapping on two new work-
flows: single-source shortest path (SSSP) and k-means clus-
tering. SSSP can be expressed in vertex-centric systems,
while k-means cannot. Figure 15 shows the workflows’
makespan for different back-ends and Musketeer’s auto-
mated choice. The input for SSSP was the Twitter graph
extended with costs, and we used 100M random points for
k-means (100 clusters, two dimensions).8 Even with our sim-
ple proof-of-concept cost function and a small training set,
Musketeer in both cases correctly identifies the appropriate
back-end (Naiad).

7. Practical experience with Musketeer
System integration complexity. We found the effort it take
to integrate a front-end framework or a back-end execution
engine with Musketeer to be reasonable. A graduate student
typically takes a few days to add full support for another
back-end execution engine. Our experiences with front-end
frameworks were similar, although the effort required varies
depending on their expressivity. Additional time and careful
profiling is required to fully optimize the performance of
generated code, but such improvements only need to be
made once in order to benefit all Musketeer users.

8 Our k-means uses the CROSS JOIN operator, which is inefficient. By
replacing it, we could reduce the makespan and address Spark’s OOM
condition. However, we are only interested in the automated mapping here.

3. JOIN

2. UNION

3. JOIN

2. UNION

Topological
sort

Heuristic Optimal

JOIN

JOIN

UNION PROJECT

1. JOIN

4. PROJECT

1. JOIN

4. PROJECT

Figure 16: The dynamic heuristic does not return the
minimum-cost partitioning for this workflow: it misses the
opportunity to merge JOIN with PROJECT.

Benefit over hand-coded jobs. To anecdotally compare the
performance of Musketeer’s generated code to a baseline
written by an average programmer, we asked eight CS un-
dergraduate students to implement and optimize the simple
JOIN workflow from §2.1 for a given input data set using
Hadoop. The best student implementation took 608s, com-
pared to the Musketeer-generated job at 223s. While not a
rigorous evaluation, we take this as an indication that using
Musketeer offers benefit for non-expert programmers.

8. Limitations and future work
In the following, we highlight some of the current limitations
in Musketeer and how they can be addressed in future work.

Front-ends (§4.1). In the future, we see Musketeer offer-
ing better support for user-defined functions in front-ends.
Many vertex-centric systems, for example, allow the user to
specify arbitrary per-vertex code in Java (Giraph) or C++
(GraphChi). This increases flexibility, but restricts the level
of optimization that Musketeer can offer. It either limits
its choice to back-ends that can directly execute the user-
provided code, or requires use of inefficient foreign-function
interfaces. In the future, techniques that perform query syn-
thesis on arbitrary user code [9, 20] might help here.

Idiom recognition (§4.3.1). As with many idiom recogni-
tion techniques, our approach is sound, but not complete.
Musketeer may occasionally fail to detect graph workloads,
consequently generating less efficient code. For example, a
triangle counting workflow may encounter this problem: the
user may represent it as a workflow that joins the edges twice
and then filters out the triangles. In the latter case, Musketeer
fails to detect the opportunity of running the computation
in a graph-oriented execution engine. A “reverse loop un-
rolling” heuristic that detects when multiple operators take
the same input and produce the same output (or a closure
thereof) can partly solve this.

Dynamic DAG partitioning heuristic (§5.1.2). The dy-
namic programming heuristic returns the optimal k-way
partitioning of a given linear order. However, it may miss
fruitful merging opportunities, since it only explores a sin-
gle linear ordering of operators. In Figure 16, we show an
example of a workflow for which the dynamic heuristic

http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig15a.html
http://www.cl.cam.ac.uk/netos/musketeer/eurosys2015/fig15b.html

Data processing system Paradigm Environment In-
mem

or
y

Dist
rib

ute
d I/O

Pre-
pro

ce
ssi

ng

Defa
ult

sh
ar

din
g

Wor
k un

it s
ize

Fau
lt t

ole
ra

nc
e

Lan
gu

ag
e

MapReduce [10], Hadoop MapReduce cluster – 3 – user-def. large 3 C++/Java
Spark [43] transformations cluster 3 3 – uniform med. 3 Scala
Dryad [19] static data-flow cluster – 3 – user-def. large 3 C#
Naiad [34] timely data-flow cluster 3 (3) (3) user-def. small (3) C#

Pregel [26], Giraph
PowerGraph [14] vertex-centric cluster

–,
3

3 –
uniform,

power-law med. (3) C++

CIEL [32] dynamic data-flow cluster (3) 3 – user-def. med. 3 various
Serial C code none/serial machine – – – – small – C

Phoenix [37], Metis [27] MapReduce machine 3 – – user-def. small – C++
GraphChi [24] vertex-centric machine 3 – 3 – short – C++

X-Stream [38] edge-centric machine 3 – – – med. – C++

Table 3: A selection of contemporary data processing systems with their features and properties. Systems supported by
Musketeer are highlighted in bold. (3) indicates that the system can be extended to support this feature.

does not achieve optimality. In the MapReduce paradigm,
it makes sense to run the top JOIN in the same job as
the PROJECT, but the linear ordering based on depth-first
exploration breaks this merge opportunity. This limitation
does not affect general-purpose back-ends (e.g., Naiad and
Spark), which are able to merge any sub-region of operators.
However, merging opportunities are occasionally be missed
for systems with restricted expressivity, such as Hadoop and
Metis. A simple solution generates multiple linear orderings
and runs the heuristic for each of them.

9. Related Work
Musketeer is, to our knowledge, the first “big data” work-
flow manager that decouples front-ends from back-ends and
supports multiple execution engines (Table 3). Nonetheless,
there is considerable related work:

Workflow managers. Pig [35] and Hive [40] are widely
used workflow managers on top of Hadoop that present a
SQL-like interface to the user. Shark [41] replaces Hive’s
physical plan generator to use Spark RDDs and supports fast
interactive in-memory queries. SCOPE [4] and Tenzing [7]
make the relationship to SQL more explicit, with Tenzing
providing an almost complete SQL implementation on top
of MapReduce. The semantics of these tools, however, are
heavily influenced by the execution engine to which they
compile (e.g., Pig relies on COGROUP clauses to delineate
MapReduce jobs).

Dynamic paradigm choice. FlumeJava [5] defers execu-
tion of operations on Java parallel collections until runtime.
The implementation of operations is abstracted away from
the user and can range from a local iterator to a MapReduce
job, depending on data size. QoX [39] combines databases
and data processing engines by separating logical operations
and physical implementation, but, unlike Musketeer, is lim-
ited to ETL workflows.

Automatic system tuning. A number of efforts have looked
at automatically tuning the configuration of data processing
systems. Starfish [17] automatically infers Hadoop configu-
ration variables, while Jockey [12] and Quasar [11] automat-
ically determine the resources to allocate to a workflow in
order to meet its deadline or QoS requirements. Musketeer
could be extended to perform these tasks as well [16, 29].

10. Conclusion
Musketeer decouples front-end frameworks from back-end
execution engines. As a result, users benefit from increased
flexibility: workflows can be written once and mapped to
many systems, different systems can be combined within a
workflow and existing workflows seamlessly ported to new
execution engines. Musketeer enables compelling perfor-
mance gains and its generated code performs almost as well
as unportable, hand-optimized baseline implementations.
Musketeer is open-source, and available from:

http://www.cl.cam.ac.uk/netos/musketeer/

Acknowledgments
We would like to thank Derek G. Murray, Frank McSh-
erry, John Wilkes, Kim Keeton, Robert N. M. Watson, Jon
Crowcroft, Tim Harris and our anonymous reviewers for
their valuable feedback. Thanks also go to Anne-Marie Ker-
marrec, our shepherd. Natacha Crooks and Ionel Gog were
partly supported by Google Europe Fellowships; parts of this
work were supported by the EPSRC INTERNET Project
EP/H040536/1, the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8750-11-C-0249. The views,
opinions, and/or findings contained in this paper are those
of the authors and should not be interpreted as representing
the official views or policies, either expressed or implied, of
the DARPA or the Department of Defense.

http://www.cl.cam.ac.uk/netos/musketeer/

References
[1] AGARWAL, S., KANDULA, S., BRUNO, N., WU, M.-C.,

STOICA, I., AND ZHOU, J. Re-optimizing data-parallel com-
puting. In Proceedings of NSDI (2012).

[2] BELL, R. M., KOREN, Y., AND VOLINSKY, C. The BellKor
solution to the Netflix prize. Tech. rep., AT&T Bell Labs,
2008.

[3] BU, Y., BORKAR, V., JIA, J., CAREY, M. J., AND TYSON,
C. Pregelix: Big(ger) Graph Analytics on A Dataflow Engine.
Proceedings of the VLDB Endowment 8, 2 (2015), 161–172.

[4] CHAIKEN, R., JENKINS, B., LARSON, P., RAMSEY, B.,
SHAKIB, D., WEAVER, S., AND ZHOU, J. SCOPE: easy and
efficient parallel processing of massive data sets. Proceedings
of the VLDB Endowment 1, 2 (2008), 1265–1276.

[5] CHAMBERS, C., RANIWALA, A., PERRY, F., ADAMS,
S., HENRY, R., BRADSHAW, R., AND WEIZENBAUM, N.
FlumeJava: easy, efficient data-parallel pipelines. In ACM
SIGPLAN Notices (2010), vol. 45, pp. 363–375.

[6] CHAMBERS, C., RANIWALA, A., PERRY, F., ADAMS, S.,
HENRY, R. R., BRADSHAW, R., AND WEIZENBAUM, N.
FlumeJava: Easy, Efficient Data-parallel Pipelines. In Pro-
ceedings of PLDI (2010), pp. 363–375.

[7] CHATTOPADHYAY, B., LIN, L., LIU, W., MITTAL, S.,
ARAGONDA, P., LYCHAGINA, V., KWON, Y., AND WONG,
M. Tenzing: a SQL implementation on the MapReduce
framework. Proceedings of the VLDB Endowment 4, 12
(2011), 1318–1327.

[8] CHEN, Y., ALSPAUGH, S., AND KATZ, R. Interactive ana-
lytical processing in big data systems: a cross-industry study
of MapReduce workloads. Proceedings of the VLDB Endow-
ment 5, 12 (2012), 1802–1813.

[9] CHEUNG, A., SOLAR-LEZAMA, A., AND MADDEN, S. Op-
timizing Database-backed Applications with Query Synthesis.
In Proceedings of PLDI (2013), pp. 3–14.

[10] DEAN, J., AND GHEMAWAT, S. MapReduce: a flexible data
processing tool. Communications of the ACM 53, 1 (2010),
72–77.

[11] DELIMITROU, C., AND KOZYRAKIS, C. Quasar: Resource-
efficient and QoS-aware Cluster Management. In Proceedings
of ASPLOS (2014), pp. 127–144.

[12] FERGUSON, A. D., BODIK, P., KANDULA, S., BOUTIN, E.,
AND FONSECA, R. Jockey: guaranteed job latency in data
parallel clusters. In Proceedings of EuroSys (2012), pp. 99–
112.

[13] GAREY, M. R., JOHNSON, D. S., AND STOCKMEYER, L.
Some simplified NP-complete graph problems. Theoretical
Computer Science 1, 3 (1976), 237–267.

[14] GONZALEZ, J., LOW, Y., GU, H., BICKSON, D., AND

GUESTRIN, C. PowerGraph: Distributed graph-parallel com-
putation on natural graphs. In Proceedings of OSDI (2012).

[15] GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,
FRANKLIN, M. J., AND STOICA, I. GraphX: Graph Process-
ing in a Distributed Dataflow Framework. In Proceedings of
OSDI (2014), pp. 599–613.

[16] HERODOTOU, H., AND BABU, S. Profiling, what-if analysis,
and cost-based optimization of MapReduce programs. Pro-
ceedings of the VLDB Endowment 4, 11 (2011), 1111–1122.

[17] HERODOTOU, H., LIM, H., LUO, G., BORISOV, N., DONG,
L., CETIN, F. B., AND BABU, S. Starfish: A Self-tuning
System for Big Data Analytics. In Proceedings of CIDR
(2011), pp. 261–272.

[18] HONG, S., CHAFI, H., SEDLAR, E., AND OLUKOTUN, K.
Green-Marl: a DSL for easy and efficient graph analysis. In
Proceedings of ASPLOS (2012), pp. 349–362.

[19] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: Distributed data-parallel programs from
sequential building blocks. In Proceedings of EuroSys (2007),
pp. 59–72.

[20] IU, M.-Y., AND ZWAENEPOEL, W. HadoopToSQL: A
MapReduce Query Optimizer. In Proceedings of EuroSys
(2010), pp. 251–264.

[21] KE, Q., ISARD, M., AND YU, Y. Optimus: a dynamic
rewriting framework for data-parallel execution plans. In
Proceedings of EuroSys (2013), pp. 15–28.

[22] KERNIGHAN, B. W., AND LIN, S. An efficient heuristic pro-
cedure for partitioning graphs. Bell System Technical Journal
49, 2 (1970), 291–307.

[23] KHAYYAT, Z., AWARA, K., ALONAZI, A., JAMJOOM, H.,
WILLIAMS, D., AND KALNIS, P. Mizan: a system for dy-
namic load balancing in large-scale graph processing. In Pro-
ceedings of EuroSys (2013), pp. 169–182.

[24] KYROLA, A., BLELLOCH, G., AND GUESTRIN, C.
GraphChi: Large-scale Graph Computation on Just a PC. In
Proceedings of OSDI (2012), pp. 31–46.

[25] LATTNER, C., AND ADVE, V. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In
Proceedings of CGO (Mar 2004).

[26] MALEWICZ, G., AUSTERN, M., BIK, A., DEHNERT, J.,
HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel: a
system for large-scale graph processing. In Proceedings of
SIGMOD (2010), pp. 135–146.

[27] MAO, Y., MORRIS, R., AND KAASHOEK, F. Optimizing
MapReduce for multicore architectures. Tech. Rep. MIT-
CSAIL-TR-2010-020, MIT Computer Science and Artificial
Intelligence Laboratory, May 2010.

[28] MCSHERRY, F. GraphLINQ: A graph library for Naiad, May
2014. Big Data at SVC blog, http://goo.gl/Q0F9gw;
accessed 03/10/2014.

[29] MORTON, K., BALAZINSKA, M., AND GROSSMAN, D.
ParaTimer: a progress indicator for MapReduce DAGs. In
Proceedings of SIGMOD (2010), pp. 507–518.

[30] MÜLLER, S. C., ALONSO, G., AMARA, A., AND CSIL-
LAGHY, A. Pydron: Semi-Automatic Parallelization for
Multi-Core and the Cloud. In Proceedings of OSDI (2014),
pp. 645–659.

[31] MURRAY, D. Building new frameworks on Naiad, Apr.
2014. Big Data at SVC blog, http://goo.gl/qqvAQv;
accessed 03/10/2014.

[32] MURRAY, D., SCHWARZKOPF, M., SMOWTON, C., SMITH,
S., MADHAVAPEDDY, A., AND HAND, S. CIEL: a universal

http://goo.gl/Q0F9gw
http://goo.gl/qqvAQv

execution engine for distributed data-flow computing. In
Proceedings of NSDI (2011), pp. 113–126.

[33] MURRAY, D. G. A distributed execution engine supporting
data-dependent control flow. PhD thesis, University of Cam-
bridge, 2011.

[34] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD, M.,
BARHAM, P., AND ABADI, M. Naiad: a timely dataflow
system. In Proceedings of SOSP (2013), pp. 439–455.

[35] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R.,
AND TOMKINS, A. Pig Latin: A Not-So-Foreign Language
for Data Processing. In Proceedings of SIGMOD (2008),
pp. 1099–1110.

[36] POTTENGER, B., AND EIGENMANN, R. Idiom Recognition
in the Polaris Parallelizing Compiler. In Proceedings of SC
(1995), pp. 444–448.

[37] RANGER, C., RAGHURAMAN, R., PENMETSA, A., BRAD-
SKI, G., AND KOZYRAKIS, C. Evaluating MapReduce for
multi-core and multiprocessor systems. In Procedings of
HPCA (2007), pp. 13–24.

[38] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL, W. X-
Stream: edge-centric graph processing using streaming par-
titions. In Proceedings of SOSP (2013), pp. 472–488.

[39] SIMITSIS, A., WILKINSON, K., CASTELLANOS, M., AND

DAYAL, U. Optimizing analytic data flows for multiple exe-
cution engines. In Proceedings of SIGMOD (2012), pp. 829–
840.

[40] THUSOO, A., SARMA, J., JAIN, N., SHAO, Z., CHAKKA, P.,
ANTHONY, S., LIU, H., WYCKOFF, P., AND MURTHY, R.
Hive – A Warehousing Solution over a Map-Reduce Frame-
work. Proceedings of the VLDB Endowment 2, 2 (2009),
1626–1629.

[41] XIN, R. S., ROSEN, J., ZAHARIA, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Shark: SQL and Rich Ana-
lytics at Scale. In Proceedings of SIGMOD (2013), pp. 13–24.

[42] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGS-
SON, Ú., GUNDA, P., AND CURREY, J. DryadLINQ: A Sys-
tem for General-Purpose Distributed Data-Parallel Comput-
ing Using a High-Level Language. In Proceedings of OSDI
(2008).

[43] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA,
J., MCCAULEY, M., FRANKLIN, M., SHENKER, S., AND

STOICA, I. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In Proceed-
ings of NSDI (2012), pp. 15–28.

	Introduction
	Motivation
	Query processing micro-benchmarks
	Iterative graph processing
	Summary

	All for one, one for all data processing
	Musketeer implementation
	Workflow expression
	SQL-like data analytics queries
	Graph computations
	Other workloads

	Intermediate representation
	Code generation
	Idiom recognition
	Merging operators
	Sharing data scans
	Look-ahead and type inference

	DAG partitioning and automatic mapping
	DAG partitioning
	Exhaustive search
	Dynamic heuristic

	Automatic system mapping

	Evaluation
	Setup
	Dynamic mapping to back-end execution engines
	Combining back-end execution engines
	Overhead over hand-tuned, non-portable jobs
	Impact of operator merging and shared scans
	DAG partitioning runtime
	Automated mapping performance

	Practical experience with Musketeer
	Limitations and future work
	Related Work
	Conclusion

