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Why people move 7
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AID Act|V|ty deteotlon and predlctlon module

Solution: driver mobility model

1)  Which are the places where the
user goes?

2)  Which kind of activities he/she
likes?

3) In which sequence he/she does
some activities?

G. Di Lorenzo, S. Phithakkitnukoon, C. Ratti, Human Context-Aware Navigation: Improving urban living experience with predictive navigation system, Proceedings of UBI
Challenge Workshop - Real World Urban Computing, Ubicomp, 2010 A
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Activity based modeling of human mobility

In activity-based models, travel demand is derived from the activities that
individuals need/wish to perform

Goal: Understand urban mobility from individual telecommunication usage in space
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Mobile phone data set description

Sample:
— 130 million anonymous location estimations from approx. 1 million devices during 2
months
— 20% market share
— Location estimations when:
* making or receiving a call
« exchanging SMS messages
* accessing internet
— Average localization error of 320 meters (median 220)

F. Calabrese, G. Di Lorenzo, and C. Ratti, Human Mobility Prediction based on Individual and Collective Geographical Preferences, Proceedings of |3th International
IEEE Annual Conference on Intelligent Transportation Systems, ITCS,2010.
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Individual mobility model

- Routine/non-routine
- Routine: home, work, market, ...

Historical data can model the sequence of stops

- Non-routine: concert, restaurant, a new city, ...

Historical data is not useful, but user preferences

— Individual/collective behavior

PN

User preferences of the individual or of a group of people (e.g. people going to a
concert)

=XT — (1-CX)P| + aPC
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— For each user

1. we extract the sequence of locations
that he/she has visited during a day with
a sampling rate of 1hour.

2. we connect each location to a
geography of human activity

3. we then employ a process to identify
and classify recurring patterns of users

4. we define an individual mobility
model

F. Calabrese, G. Di Lorenzo, and C. Ratti, Human Mobility Prediction based on Individual and Collective Geographical Preferences, Proceedings of 13th International
IEEE Annual Conference on Intelligent Transportation Systems, ITCS,2010.
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Individual molly mOI - I\/Iethodology

— For each user

1. we extract the sequence of

locations that he/she has visited 1. Stops .
during a day with a sampling rate of 2. Sequence of trips
1hour.

we connect each location to a
geography of human activity

we then employ a process to identify
and classify recurring patterns of users

4. we define an individual mobility
model
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Individual mobility model - -Methodology

— For each user

we extract the sequence of locations
that he/she has visited during a day with
a sampling rate of 1hour.

2. we connect each location to a

geography of human activity i 1. Land use dataset

2.  Point of interest dataset
we then employ a process to identify

and classify recurring patterns of users N Cormerio

“ Urban Public/Institutional
® Industrial

Recreation & Relaxation
= Multi-Family
= High Density
= Medium Density

Low Density

Very Low Density

#== Limited Access
: Highway

4. we define an individual mobility
model
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Ind|V|duaI moblllty model - Methodology

— For each user

we extract the sequence of locations
that he/she has visited during a day with
a sampling rate of 1hour.

we connect each location to a
geography of human activity

3. we then employ a process to
identify and classify recurring patterns 1. Land use and Point of interest visit
of users — percentage distribution
2.  Trip length distribution
4. we define an individual mobility
model
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Land use and points of interest visit percentage distribution

Ranked Land Use Classification (Normalized)

Are geographical preferences useful?

[ Global Frequency
[N 8 p.m. Frequency
I 10 a.m. Frequency
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Residential
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Distribution of visited land use categories

Ranked POI Classification (Normalized)
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Professional, Financial, Medical & Real Estate

[ Global Frequency
[ 8 p.m. Frequency
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Hotel & Transport

Education

Active, Fitness & Parks
Religious, Media & Local Flavor
Arts, Nightlife & Events

Local & Public Service

Beauty, Auto & Pets
Food, Shopping & Home

Restaurant
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Distribution of nearby point of interest categories
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— For each user

we extract the sequence of locations
that he/she has visited during a day with
a sampling rate of 1hour.

we connect each location to a
geography of human activity

we then employ a process to identify
and classify recurring patterns of users

4. we define an individual mobility
model

Ind|V|duaI moblllty model - Methodology

— Individual and Collective behavior
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C'omnson of pred|et|ons & actual behavior of a
randomly- selected user
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The Smarter Cities Technology Centre merges
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Collaborative Research & Smarter Cities opportunities

-

Developing Intelligent Solutions Across a System of Systems

Optimization

Predictive Modelling

Forecasting

Simulation

Driving New Economic Models

Significant Collaborative R&D

Skills Development & Growth
\@' Competitive Advantage
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Collaboration and Access to Local, Regional & Worldwide Network
SME’s | MNC'’s | Universities | Public Sector | VC Community
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City Fabric

Seed Projects
Real World Insight | Data Sets | Devices
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Integrated Cross Domain Solutions
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