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Abstract. Several research efforts have recently focused on the bursti-
ness of Internet traffic in short, typically sub-second, time scales. Some
traces reveal a rich correlation structure in those scales, while others in-
dicate uncorrelated and almost exponential interarrivals [1]. What makes
the Internet traffic bursty in some links and much smoother in others?
The answer is probably long and complicated, as burstiness in short
scales can be caused by a number of different application, transport, and
network mechanisms. In this note, we contribute to the answer of the
previous question by identifying one generating factor for traffic bursti-
ness in short scales: high-capacity flows. Such flows are able to inject large
amounts of data to the network at a high rate. To identify high-capacity
flows in a network trace, we have designed a passive capacity estimation
methodology based on packet pairs sent by TCP flows. The methodol-
ogy has been validated with active capacity measurements, and it can
estimate the pre-trace capacity of a flow for about 80% of the TCP bytes
in the traces we analyzed. Applying this methodology to Internet traces
reveals that, if a trace includes a significant amount of traffic from high-
capacity flows, then the trace exhibits strong correlations and burstiness
in short time scales.

1 Introduction

The (layer-3) capacity of a network link is defined as the maximum IP-layer
throughput that that link can deliver [2]. The capacity of a network path, C, is
defined as the minimum capacity of the links that constitute that path. Consider
a packet trace T collected at a network link LT (“vantage point”). Suppose that
f is a TCP flow in T , and that Sf is the flow’s source. The capacity of the path
between Sf and LT is referred to as the pre-trace capacity Cp of flow f . Notice
that Cp≥C, and so the pre-trace capacity can be viewed as an upper-bound,
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potentially tight, of the path capacity. This is important, especially when the
latter cannot be estimated accurately from passive measurements at the vantage
point.

Our primary objective in this paper is to examine the effect of flow capacities
on the burstiness of aggregated Internet traffic. To do so, however, we first need
to estimate C, or at least Cp, for the flows that constitute T . There are several
path capacity estimation techniques and tools, such as [3–5], but they are based
on active measurements. With passive measurements, on the other hand, we
are only given a packet trace from a network link. Two passive approaches to
estimate the capacity of TCP flows from end-host traces are Paxson’s PBM
methodology [6] and Lai’s nettimer [7]. The problem that we consider is different,
however, because we estimate the capacity of a TCP flow from a uni-directional
trace collected at a vantage point in the network, rather than at the sender or
receiver of the flow.

The dispersion of two successive packets of the same flow at a network link is
the time spacing (interarrival) between the last bit of those packets. Our passive
capacity estimation technique is based on packet pair dispersion analysis [4].
However, it differs significantly from the technique presented in [4] in two major
ways. First, active capacity probing always sends back-to-back packet pairs, with
the two packets of each pair having equal size. In passive capacity estimation, we
do not know whether two successive packets were sent back-to-back, and they
may not have the same size. Second, in passive capacity estimation we need to
differentiate between the end-to-end capacity and the pre-trace capacity. As will
be explained in the next section, both capacities may be visible in the distribution
of packet pair dispersions of a TCP flow.

The paper structure is as follows. The pre-trace capacity estimation method-
ology is given in Section II. That methodology has been validated with active
measurements, as summarized in Section III. Section IV presents measurements
of pre-trace capacity distributions from various traces. The connection between
flow capacities and traffic burstiness is shown in Section V.

2 Pre-trace capacity estimation

Our pre-trace capacity estimation methodology is applicable only to TCP data
flows. We expect that a TCP data flow will include several packet pairs, meaning
two successive packets sent back-to-back, due to the delayed-ACK algorithm.
Based on that algorithm, a TCP receiver should typically acknowledge every
second packet, and so the sender responds to every ACK with at least two back-
to-back packets (as long as it has data to send).

Consider a TCP flow with pre-trace capacity Cp and path capacity C. In
the following, we illustrate that both capacities would be measurable from the
dispersion of successive TCP packets, when there is no cross traffic. In the pres-
ence of cross traffic, however, it may not be possible to estimate C. To simplify
the following example, we assume that the dispersion of ACKs is not affected by



queueing in the reverse path, and that the sender and receiver do not introduce
delays in the transmission of data packets and ACKs.

In Figure 1(a) and 1(b), we show the sequence of successive data packets (. . .,
Dk,D′k,Dk+1,D′k+1, . . .), as well as the corresponding ACKs (. . ., Ak, Ak+1, . . .),
assuming that the dispersion of the TCP flow’s packets is not affected by cross
traffic. In round i, the sender S sends a window of Wi packets of size L back-to-
back. These packets arrive at the receiver R with a dispersion L/C. The receiver
responds to every second packet, and so the ACK dispersion is 2L/C. Upon
receiving the first ACK of round i, the sender starts the next round i + 1. For
each new ACK received, the sender replies with two more back-to-back packets,
plus any additional packets due to window increases. If Cp=C, the dispersion
of successive packets at the vantage point is L/C, as shown in Figure 1(a). If
Cp>C, the dispersion between packets Dk and D′k is L/Cp, while the dispersion
between packets D′k and Dk+1 is 2L

C − L
Cp
>L/Cp. So, within a single round, and

if there is no queueing due to cross traffic, the dispersion of successive packets at
the vantage point is directly determined by either Cp, or by C and Cp. In that
case, it would be relatively simple to estimate both capacities from the location
of the two major modes in the distribution of dispersion measurements.

In practice, however, the dispersion of TCP data packets is often affected
by cross traffic queueing. Furthermore, increased dispersions in round i can also
affect the dispersions in round i+ 1. Figure 1(c) illustrates this scenario. Cross
traffic is introduced at the narrow link in round i, increasing the dispersion
between two successive packets to a value X that is unrelated to C and Cp. The
dispersion X can be propagated to round i + 1, even if there is no cross traffic
queueing in that round. On the other hand, even with cross traffic queueing,
every new ACK at the sender still triggers the transmission of a back-to-back
packet pair. So, we expect that about 50% of the data packets are sent back-
to-back, and so their dispersion at the vantage point is independent of previous
rounds. The dispersion of packets triggered by different ACKs, however, is more
susceptible to cross traffic queueing, because those dispersions are correlated
from round to round. Consequently, we expect that the analysis of a TCP trace
will provide a strong mode at the dispersion L/Cp, even in the presence of cross
traffic queueing, but it may not create a strong mode at the dispersion 2L

C − L
Cp

.

This explains why we focus on the estimation of the pre-trace capacity Cp, rather
than on the end-to-end capacity C. In the following, when we refer to “capacity
estimation” we mean pre-trace capacity estimation.

Figure 2 shows the distribution of packet interarrivals for two bulk TCP
flows. The interarrivals are normalized by L/100Mbps, where L is the size of
the second packet, and then rounded to the nearest integer. Figure 2 represents
the case Cp=C, with C≈100Mbps. Note that about 90% of the interarrivals are
concentrated in a single mode around the dispersion that corresponds to the
capacity. In Figure 2, on the other hand, there are two distinct modes. The first
represents about 50% of the interarrivals and it corresponds to Cp≈100Mbps.
The second mode represents about 40% of the interarrivals, and it probably
corresponds to the capacity C≈1.3Mbps. In practice, it is often the case that
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Fig. 1. TCP data and ACK dispersion sequences in three typical scenarios.
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Fig. 2. Cumulative distribution of normalized packet interarrivals

even though a single mode with about 50% of the interarrivals is clearly visible,
a second strong mode cannot be detected.

The capacity estimation technique is as follows. For a TCP flow f , let Pf (i)
be the size of the i’th data packet, and ∆f (i) be the dispersion between packets i
and i+1. If packets i and i+1 have the same size, we compute a capacity sample
bi = Pf (i)/∆f (i). Note that packets with different sizes traverse the network with
different per-hop transmission latencies, and so they should not be used by the
packet pair technique [4]. As explained in the previous paragraph, we can assume
that about 50% of the data packets are sent back-to-back due to the delayed-
ACK algorithm, and so they can be used in capacity estimation. The rest of the
packets may have been sent with a larger dispersion than L/Cp, and so they can
underestimate Cp. Based on this insight, we sort the capacity samples of flow f
and drop the lower 50% of them. To estimate Cp, we employ a histogram-based
technique to identify the strongest mode among the remaining capacity samples.
The center of the strongest mode gives the final capacity estimate C̃f . The bin

width that we use is ω = 2(IRQ)
K1/3 (known as “Freedman-Diaconis rule”), where

IRQ and K is the interquartile range and number, respectively, of the capacity
samples.

The algorithm does not produce estimates for interactive flows, ACK flows,
and flows with just a few data packets. For such flows, the number of packet pairs
can be small and the detection of a capacity mode is quite prone to statistical
errors.

3 Validation

We have validated the previous passive estimation technique with active mea-
surements. Specifically, we send a file of size Y with scp from various sources
around the Internet to a destination at Georgia Tech. At the same time, we
collect a trace of TCP data packets using tcpdump at the destination host. The
trace is then used to estimate passively the capacity of the corresponding path.
We also measure the capacity of the same path using pathrate [4]. Since the trace



is collected at the end host, the pre-trace capacity is equal to the end-to-end ca-
pacity in these experiments. To show the effect of the flow size on the accuracy
of the estimation technique, we repeat each experiment for three values of Y :
40KB, 110KB, and 750KB.

Table 1 shows the results of some validation experiments. The passive and
capacity estimates are reasonably close, and they correspond to common capacity
values such as 256Kbps (upstream DSL), 1.5Mbps (T1), 10Mbps (Ethernet), and
100Mbps (Fast Ethernet). Passive estimation with larger flows obviously helps,
even though the results with the 40KB flows are not too inaccurate either.

Name Location Passive estimate (Mbps) Pathrate
750KB 110KB 40KB (Mbps)

lulea.ron.lcs.mit.edu Sweden 97 96-97 94-96 99-101

mazu1.ron.lcs.mit.edu MIT 1.4-1.5 1.4-1.5 1.5-1.7 1.5

magrathea.caida.org UCSD 97-98 96-99 93-95 94-96

diple.acad.ece.udel.edu U-Delaware 98 97-98 97-99 94-97

aros.ron.lcs.mit.edu U-Utah 9.5-9.7 9.2-9.7 11.1-11.2 11.9-12.3

thalis.cs.unipi.gr Greece 9.1-9.2 8.3-8.5 6.4 9.7-9.8

dsl-64-192-141-41.telocty.com Atlanta 0.225-0.226 0.226 0.225 0.226

Table 1.

4 Capacity distributions

We performed capacity estimation on several packet traces from edge and back-
bone network links with a wide range of average rates. The three traces that
we use in this paper are publicly available at the NLANR-MOAT site [8], and
they are described in Table 2. Note that the capacity estimation technique can
provide an estimate for a small fraction of flows (about 4-13%, depending on the
trace), but for a large fraction of bytes (about 80%).

Trace Link type Date Local Time Rate TCP Estimate Cp
(Mbps) flows % flows %bytes

MRA-if-1 OC-12 2002/08/07 20:12:00-20:13:30 180.4 71357 3.8 82.7
MRA-if-2 OC-12 2002/08/07 20:12:00-20:13:30 157.3 118786 8.2 83.4

Auck-1-if-0 OC-3 2001/04/02 14:27:00-14:30:00 2.8 9657 7.8 85.5
Auck-2-if-0 OC-3 2001/06/11 08:56:00-08:59:00 4.8 14017 12.1 81.5

Table 2.

Figure 4 shows the distribution of TCP flow capacity estimates for the two
interfaces of the MRA-1028765523 OC-12 trace. The cumulative distribution is
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Fig. 3. Capacity distribution in terms of bytes

plotted in terms of TCP bytes, rather than TCP flows. Note that most bytes are
generated from flows with capacities 1.5Mbps, 10Mbps, 45Mbps, and 100Mbps.
These values correspond to some commonly used links (T1, Ethernet, T3, and
Fast Ethernet, respectively). Figure 4 shows the distribution of TCP flow capac-
ity estimates for two segments of the Auckland OC-3 trace [8]. Note that the two
distributions are quite different. A major difference is that the 2001/06/11 trace
carried traffic from TCP flows with significantly higher capacities. Specifically,
about 80% of the bytes in that trace were generated from TCP flows with a
capacity of more than 10Mbps. On the other hand, more than 80% of the bytes
in the 2001/04/02 trace were carried by TCP flows with a capacity of less than
3Mbps.

We have also investigated the correlation between the capacity of a flow
and the flow’s average throughput and maximum window size. Due to space
constraints we do not report the details of that analysis here. The main result,
however, is that both correlation coefficients are close to zero, implying that the
previous two flow characteristics are independent of the pre-trace capacity, and
probably independent of the end-to-end capacity as well. The reason may be
that the throughput and window size of bulk TCP transfer are often limited by
the receiver’s advertised window. The correlation coefficient between Cp and the
flow size is also close to zero.

5 Capacity and traffic burstiness

We employ wavelet-based energy plots to analyze the correlation structure and
burstiness of traffic in a range of short time scales [9, 10]. Since the Poisson
stream (i.e., independent exponential interarrivals) is traditionally viewed as
benign while traffic with stronger variability is viewed as bursty, we use the
Poisson process as a reference point in the following analysis. The energy plot of
a Poisson process with rate λ is a horizontal line at log2(λT0), where T0 is the
minimum time scale of the energy plot. If the energy of a traffic process Xj at
scale Tj=2jT0 is higher than the energy of a Poisson process that has the same
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Fig. 4. Energy plots of three traces

average rate with Xj , then we say that Xj is bursty at scale Tj . Otherwise, we
say that Xj is smooth at scale Tj .

Figure 5 shows the energy plot of a highly aggregated backbone trace, which
carries thousands of flows at any point in time. We focus in time scales up to
100msec (j≤10). The correlation structure and burstiness of the trace in longer
scales is determined by Long-Range Dependency effects that have been studied
in depth in earlier work [11]. The trace is clearly bursty, compared to Poisson
traffic, in all time scales between 1-100 msec. This may be surprising from the
perspective of the theory of point processes, because that theory predicts that the
superposition of many independent flows tends to a Poisson process [12]. There
is no actual contradiction however. The previous superposition result applies
to flows with rate R/N , where N is the number of aggregated flows, i.e., it
assumes that the flow interarrivals become “sparser” as the degree of aggregation
increases. That is not the case, however, in typical packet multiplexers; flows are
aggregated in higher capacity links without artificially increasing the interarrivals
of each flow.

Figure 3 shows that a major part of the previous trace (about 40% of the
bytes) are generated from 100Mbps flows, i.e., flows with comparable capacity to
the 622Mbps capacity of the monitored OC-12 link. These high-capacity flows are
not small relative to the aggregate, neither in terms of size (not shown here), nor
in terms of rate. Consequently, we should expect that their correlation structure
and burstiness can significantly affect the burstiness of the aggregate traffic.

To elaborate on the previous point, we examine the energy plot of the two
Auckland traces from Figure 4. As previously shown, the 2001/06/11 trace car-
ries traffic from significantly higher capacity TCP flows than the 2001/04/02
trace. Figure 5 shows the corresponding energy plots. The 2001/06/11 trace is
clearly bursty, while the 2001/04/02 trace remains below the Poisson energy
level. We note that the two traces are similar in other aspects, including flow
RTTs, number of active flows, flow size distribution, and average utilization.
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Fig. 5. Energy plots of SH+ and SH−

To further examine the link between short scale burstiness and flow capac-
ities, we separate the TCP flows of the trace MRA-if-1 for which we have a
capacity estimate in two subsets: SH+ and SH−. SH+ consists of all flows with
capacity larger that a threshold H (in Mbps), while SH− includes the remaining
flows that have a lower capacity. The average rate of SH+ and SH− are 119Mbps
and 30Mbps, respectively. The energy plots of SH+ and SH− are shown in Fig-
ure 5. If the threshold H is between 1-10Mbps, the resulting energy plots are
not so sensitive to the exact value of H, and so we set H=5Mbps. Notice that
the energy plot of SH− is about at the same level with that of the corresponding
Poisson process, meaning that the lower capacity flows do not generate signifi-
cant burstiness. On the other hand, SH+ has much higher energy than the corre-
sponding Poisson process, as shown in Figure 5, confirming our earlier conjecture
that high capacity flows cause significant burstiness in short scales. Note that
if we set H>10Mbps, then both SH+ and SH− will be characterized as bursty.
Finally, it should be mentioned that the file size distributions of SH+ and SH−
are similar. SH+ includes 1937 flows, with 86% of them being larger than 10KB.
SH− includes 773 flows with 90% of them being larger than 10KB. Consequently,
the difference in the burstiness of the two subsets cannot be attributed to their
flow size distribution.

6 More recent results

In more recent work [13], we have further investigated the connection between
flow capacities and short time scale burstiness. The main result of that work is
to explain the origin of such burstiness based on TCP self-clocking. Specifically,
we have shown that, under a certain condition on the flow’s window size and
bandwidth-delay product (that is proportional to the flow capacity), TCP self-
clocking can generate a two-level ON/OFF interarrival structure. That structure
results in considerable traffic burstiness and strong correlations in sub-RTT time
scales.
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