

Hierarchical Real-Time Systems for Imprecise Computation Model

Guy Martin Tchamgoue

Department of Informatics,

Gyeongsang National University, South Korea

Agenda

- Problem
- An Application
- Proposed Solution
- Preliminary Results
- Ongoing Work

Problem

- Statement
 - To build large complex real-time systems from simpler ones
 - Flexibility and Reliability
 - To handle both hard and soft real-time systems
 - To enhance the resource utilization on system overload
 - To facilitate the development and deployment process

An Application

Compositional Scheduling Framework

- Hierarchical resource sharing among components under different scheduling policies
- Higher-level schedulers:
 - Consider each component as a scheduling unit
 - Do not need to know about the internal complexity of its components

- Lower-level schedulers:
 - Focus on local scheduling for a given resource supply

Preliminary Results

Publications

- Tchamgoue et al., "Compositional Scheduling Framework for Imprecise Computation Model", Work-in-Progress Session, RTAS'10, April 2010
- Tchamgoue et al., "Hierarchical Real-Time Scheduling Framework for Imprecise Computations", 8th IEEE/IFIP EUC, December 2010

System Model

- Imprecise Computation Tasks: $T = \{\tau_i(p_i, m_i, o_i, f_i)\}$
 - p_i : period
 - m_i : execution time of the mandatory part
 - o_i : execution time of the optional part
 - f_i : reward function for optional execution

• The Imprecise Resource Model: $\Gamma(\Pi, \Theta, \Omega)$

- П: resource period
- Θ: resource allocation for mandatory part
- Ω : resource allocation for optional part
- $\Gamma(\Pi, \Theta, \Omega)$ periodically supplies at least Θ time units and at most $\Theta + \Omega$ time units.
- Example:

• The resource supply of $\Gamma(\Pi, \Theta, \Omega)$

$$\Theta \leq \text{supply}_{\Gamma}(k\Pi, (k+1)\Pi) \leq \Theta + \Omega,$$

where
$$k = 0,1,2,...$$

The Interface Model

Specifying the real-time requirement of a component

Interface Model I(P, M, O, F)

• P : period

M : mandatory part requirement

O : optional part requirement

F: reward function of optional execution

Other Results

- Schedulability Analysis
 - To guarantee the minimum requirements of a component
- Utilization Bound
 - To determine the largest possible utilization bound that makes a component schedulable
- Scheduling Algorithm with Guarantee of Reward
 - To provide a minimum reward guarantee to an upper layer that provides resources to lower layers

Ongoing Work

Component Interface Generation

How to optimally compute the resource and interface parameters

Component Reward function

To derive the reward function for the component's interface

Optimal scheduling of optional parts

 To schedule optional parts in order to maximize the total reward of a component

EuroDW 2011

Thank you for your attention.

Imprecise Computation* (IC) Model

- Proposed for flexible scheduling of hard deadline tasks
- An IC task consists of:
 - A mandatory subtask for an acceptable result, and
 - An optional subtask for
 - refining the mandatory task result ,and
 - improving the quality of the task according to the amount of execution time.

* J. W.-S. Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, C. Chung, J. Yao, and W. Zhao, "Algorithms for scheduling imprecise computations," *IEEE Computer*, vol. 24, no. 5, pp. 58–68, 1991.