
 Marek Zawirski, INRIA & UPMC, France
 marek.zawirski@lip6.fr

Advisor: Marc Shapiro, INRIA & LIP6, France
In collaboration with: Nuno Preguiça, UNL, Portugal

EuroSys Doctoral Workshop 2011, Salzburg

Cloud apps need a scalable replicated data layer

CAP theorem

Eventual Consistency:
transient inconsistencies

eventually converge

 Available, scalable

 Fault-tolerant

 In production!

M. Zawirski Shared data types for cloud computing: 2/6
 Commutative Replicated Data Types

partition
tolerance

availability

strong
consistency

Ad-hoc, error-prone

No sound theory

Only simple data models

A principled approach to eventual consistency

High-level data types

Simple theory:
every pair of concurrent operations commute

Local replica: accept operations,
 always responsive, never blocking

Remote: propagate operations by cbcast,
 replay them

M. Zawirski Shared data types for cloud computing: 3/6
 Commutative Replicated Data Types

Integer counter: inc(), dec()

M. Zawirski Shared data types for cloud computing: 4/6
 Commutative Replicated Data Types

inc()

1

inc()

1

inc()

1

inc()

2

dec()

0

dec()

1

inc()

2

dec()

1

inc()

1

replica i

replica j

replica k

0

0

0

1

1

1

More than that: registers, ~sets, graphs, seqs…

1. Building systems with CRDTs

M. Zawirski Shared data types for cloud computing: 5/6
 Commutative Replicated Data Types

Goal: proof of concept app using CRDTs

Challenges:
Drawbacks (ease of use, completeness etc.)?

Are CRDTs composable in practice?

Can data be partitioned easily?

Performance

2. Meta-data overhead

M. Zawirski Shared data types for cloud computing: 6/6
 Commutative Replicated Data Types

Problem: meta-data accumulates
 (e.g. VVs, tombstones)
Challenges:

How to garbage collect in poor network conditions?
Avoid the problem beforehand?

3. A dose of synchronization
Gen. problem: infrequent non-commutative
 operation, maintaining invariants
 …

