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Cloud apps need a scalable replicated data layer

CAP theorem 
 

Eventual Consistency: 
transient inconsistencies 

eventually converge 

  
 Available, scalable 

 Fault-tolerant 

 In production! 
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partition 
tolerance 

availability 

strong 
consistency 

Ad-hoc, error-prone 

No sound theory 

Only simple data models 



A principled approach to eventual consistency 

High-level data types 

Simple theory: 
every pair of concurrent operations commute 

Local replica:  accept operations, 
   always responsive, never blocking 

Remote:  propagate operations by cbcast, 
   replay them 
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Integer counter: inc(), dec()
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More than that: registers, ~sets, graphs, seqs… 



 
1. Building systems with CRDTs
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Goal: proof of concept app using CRDTs 

Challenges: 
Drawbacks (ease of use, completeness etc.)? 

Are CRDTs composable in practice? 

Can data be partitioned easily? 

Performance 



2. Meta-data overhead
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Problem:  meta-data accumulates 
   (e.g. VVs, tombstones) 
Challenges: 

How to garbage collect in poor network conditions? 
Avoid the problem beforehand? 
 

3. A dose of synchronization   
Gen. problem:  infrequent non-commutative   
   operation, maintaining invariants 
     … 
 


