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Introduction and Objectives

Social Network Analysis and Mining (SNAM) includes different techniques
from sociology, social sciences, mathematics, statistics and
computer science.

Objectives

Analysis of the structure of a social network

Analysis of large sub-networks and connected components
Discovering nodes of particular interest

Identifying communities within the network

Advantages

Large scale studies, impossible before, are feasible
Data can be automatically acquired

A huge amount of information is accessible online
Data could be acquired at different granularity level

Limits

Problems related to large scale data mining issues
Computational and algorithmic challenges
Bias of data should be investigated
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Web Data Extraction

WDE Systems Software platform for the extraction, in an automatic and
intelligent fashion, of data from Web pages, under the form of
static and/or dynamic contents, in order to store them in a
database (or other structured data sources) and make them
available for other applications.

Wrapper An algorithmic procedure which aims to the extraction of
unstructured information from a data source (such as a Web
page) and transform it in a structured format.

Automatic Wrapper Adaptation A novel smart approach to make wrappers
adaptive to structural changes has been proposed.
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Clustered Tree Matching
HTML Web pages are represented as trees, whose nodes contains elements
displayed in the page.

XPath A standard language defined to identify elements within a Web
page. Wrappers implements the XPath logic.

Algorithm 1 ClusteredTreeMalching(T', 7"

Cif 77 has thelsame label of 7" then
o om«d(T)

1
2:
@ Inspired by Simple Tree Matching (STM) 8 3 n«d(1")
4:
s

Key aspects (Ferrara, 2011)

for i =0tomdo

@ Assigns weights to evaluate importance MIi)[0] « 0;

of matches 6 for j=0tondo
7: MI0][/] +0:
@ Different behavior considering leaves or 8: forf all il:uch tf}llathl <i<m dod
i 9: or all j such that 1 < j <ndo
middle-level nodes o T e i i

MIi=1][j = 1]+ W[[jD where Wi][]]

@ Introduces a degree of accurac
9 y ClusteredTreeMatchmO(T (i—1), T’ (_/—

@ Identify clusters of similar sub-trees ; 1)()) D 0th
11 ifm>0A n > 0 then

“Tree to tree editing problem, Selkow, 1977 |3 0™ MImifn] * 1/ Max(e(T). #(T"))
14: return M[m][n] + 1 /Max(r(T’). r(T"))
15: else

16: return O

Emilio Ferrara (University of Messina)  Mining and Analyzing Online Social Networks 6/46



Tree Matching Algorithm: Example (1)
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Figure: A and B are two similar trees. CTM assigns weights to matching
nodes. Node f in A has weight % because in B it appears in a sub-tree with

two children. Node hin B has weight % for the same reason.

7146

Mining and Analyzing Online Social Networks:

Emilio Ferrara (University of Messina)



Tree Matching Algorithm: Example (Il)
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Figure: Couples of matrices W and M, step-by-step. CTM solves the similarity
problem in 6 steps. Final result of similarity: g. Grey cells identify similar
clusters between the two trees.
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Auto-adaptive Web Wrappers: Requirements

For the implementation we identified

@ Requirements:
» The representation of the structure of the Web page '
» If the original wrapper fails, it analyzes the tree structure of the
page, identifying modifications
» Once identified differences, the wrappers automatically adapts itself
to the new structure

@ Comparable elements:

» Nodes: represent HTML elements, identified by HTML tags
» Attributes: also attributes of nodes can be additionally compared

using the syntax of tree-grams (tree-grammar) to simplify the representation
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Auto-adaptive Web Wrappers: Example

news.google.co.uk

Pearson raises full-year eamings forecast The Guardian
Wall Street Joumal - The Press Association - Bloomberg
all 58 news articles » L0 ' 2 Email this story

s-en_ukt!

ApplyX

Tiny-brained bees beat computers to so\ve math problem TG Daily
Tophews United Kingdom - ms: - Zee News - The Age
all 30 news articles » 2 Email i st

H‘
Google admits Street View cars DID take emails All | want for Christmas is an iPad
and passwords from computers Z;C"Wa“‘: 'fa' hen ki '“'d"“‘“”:?o"‘ ke Scalext
Daily Mail - - Aler 3 hours ago one are the days when kids used to ask for toys like Scalextric or st brothers:
Google was accused of spying on houssholds yesterday afterit ~ The f Barbie as Christmas presents. According to an aticle in the Metro, 7oic;.o, ity
dmitted i rds and privat e i a Duracell survey has determined that the presents topping Santa's
admitted secretly copying passwords and private emails from most-wanted list this year for ..
ome COMPUtErs. bed omails and gassuaids Reut ids want iPhones and iPads rather than toys for Christmas CNET UK
Google says its cars qrabbed emails and passwords. Reuters \Apple iPods top of Christmas lists Mirror
Googis imesiigied o househod ala vy reaches. The Guardian Pople Pods top of hisimas s Miorco vk
Independent - BAC Hevs - Utal o lall 127 news articles » £ Email this story
all 129 news articles » & Email this s

. Video G : s betters Fallot
Mortgage lending lowest for ten years ;’K ideo Game Chart: New Vegas betters Fallout Root HTML B
Independent - Nicky Buridge - 13 minutes ago s . - Node Name: HTML
Local Name: htm!
news.google.co.uk [[]Tag []Attr.1D [[]Name [V]Class[_ GO ] < * | Weighted Matching v | [ Start Adaptation NodeValue: null
1 Healtn - - T - Namespace URL http://www.w3.0rg/1999/xhtml
Health All | want for Christmas is an iPad Type: ELEMENT NODE
| Spotiight Techwatch - Darren Allan - 30 minutes ago | Child0 (HEAD)
| Most Popular Gone are the days when kids used to ask for toys like Scalextric or = Child1 (BODY) =
Barbie as Christmas presents. According to an article in the Metro, a Node Name: BODY

Duracell sunvey has determined that the presents topping Santa's

All news mostwanted it this yoar fo Wild dolphins 'Tail Walking' just for fun e e
Headlines Kids want iPh d iPads rather than toys for Christs TN NEWS pae e
s want iPhones and iPads rather than toys for Christmas ws
Images ‘Apple iPods top of Christmas lists Miror.co.uk all 42 news articles » e P /v org 1999/
Melro - IAB UK - Times of India - The Sun e E““:;‘” st
all 127 news articles » ) Emallthis story ributel (onbeforeunioa M
Images Attribute 2 (class)
UK Video Game Chart: New Vegas betters Fallout 3 A o oo
Videogamer.com - James Orry - 30 minutes ago S| Chidorea)
¥ Bethesda's Fallout: New Vegas has entered the All Formats All Prices UK ﬁ“ Ch'l 41 (NOSCRIP
video game chart at No.1, G Chart Track reports. The follow-up to ild1 m
 Fallout 3 comfortably outsold the first game, with first week unit ... Child 2 (#ted) -
MNew Vegas beats Fallout 3 first weekend sales. Bk il B

Figure: An example of automatic adaptation of modifications. In the upper
part of the screenshot the original page structure is shown. In the lower part,
the new version. Modifications have been brought both to page structure and
its contents. Elements matched by the original wrapper are even identified in
the modified page, by applying the automatic adaptation policy.
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Agent of Web data extraction

Intelligent Agent It's a platform (software + architecture) which could
autonomously take smart decisions to achieve a goal.

Visual Developer

N -8
@ Each Web wrapper is implemented

as an Agent

Mozila Eclipse IDE Designer

@ Several Agents populate the same
environment

Lixto Hydra (Thread
Pool of VD runtimes)

@ If a Wrapper fails, it adapts itself to
changes

@ Results are collected in a transparent

way w.r.t. users
Figure: Web Data Mining platform

architecture
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Social Networks: Taxonomy

Social Networks (SN) A social network is a social structure made up of
individuals (or organizations) connected each other, by
(possibly) different social ties, such as friendship, kinship,
shared interest, knowledge etc.

Social Network Analysis Analysis of social networks, (i.e., studying, modeling
and measuring), could be conducted by using the formalism of
graph theory.

Theory and models adopted for the study of SNs are part of the
so called Social Network Analysis.

Several types of network exist: collaborations, communication,
friendship, etc. Our study focuses on Online Social Networks:

@ Social communities: Facebook, MySpace, etc.

@ Sharing contents: YouTube, Flickr, etc.
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Social Networks: Examples of OSN

Figure: An example of Online Social Network
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Analysis of Online Social Networks: Motivations

Q: Is it possible to model social networks?
A: Analysis of characteristics and properties of OSNs graphs

Open problems

e Improving algorithms:
@ For visiting large graphs (e.g., BFS, Uniform, etc.)
@ To efficiently store and represent data (matrix
decomposition, etc.)
@ Efficient and meaningful visualization of large graphs
@ Optimization of metrics calculation (e.g.,
All-Pairs-Shortest-Path, Betweenness Centrality, etc.)

e Investigation of the scalability

e Considering similitudes between OSNs and real social
networks
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Background and Related Work

Milgram The Small World problem (1970)
Zachary The first model of a real SN (1980)
Kleinberg Algorithmic perspective of SNs (2000)
Barabasi, Newman, et al. 2000+ focus on OSNs

@ Large scale data mining from OSNs
@ Visualization of large graphs

@ Dynamics and evolution of OSNs

@ SNA Metrics calculation

@ Clustering, community structure, etc.

Remarks SNA is a “young” branch, born from the context of social
sciences and moved towards mathematics and computer
sciences in the last years.
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Mining the Facebook graph: Breadth-first search

BFS (breadth-first search): starting from a seed, a graph is visited exploring
all the neighbors in order of discovering.

Pros 1)
@ Optimal solution for
unweighted and/or ONORO.
undirected graphs (such () (6 (7) 18)
as Facebook and other
OSNs) (9) 10 iy 12

@ |Intuitive implementation

Fi : BF -level
Cons Resulting samples are 'gure S (3rd sub-level)

biased towards high degree
nodes in incomplete visits. 1 seed

Challenge Obtaining a sub-graph of 2-4 friends
the Facebook network
which preserves properties

of the complete graph. 9-12 friends of friends of
friends

5-8 friends of friends

Emilio Ferrara (University of Messina)  Mining and Analyzing Online Social Networks 19/ 46



Mining the Facebook graph: Uniform sampling

Uniform (rejection sampling): a list of random nodes to be visited is
generated.

Pros
@ Independent w.r.t. the o
structural distribution of o
friendship ties O ) o
@ Produces unbiased results i
@ Simple and efficient L%* I 1y :F*
implementation ;{4. o ©

Cons Resulting graph has
disconnected components. ”%?1 ”ftI
Challenge Acquiring a uniform sub-graph

with a huge connected
component.

Figure: Uniform sampling
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Mining the Facebook graph: How the Agent works

Initialization:

@ Authentication on FB

@ Selection of an example friendlist

@ Generation of the wrapper for the automatic extraction
Execution:

@ Generation of a FIFO queue of profiles to be visited

@ For each profile in queue:

» Visit the friendlist page:
* Extract friends (nodes) and relationships (edges)
* (eventually) Put new friends in the FIFO queue

» Cycle the process

~ _ Friend-List X
Automaton d Data Storage
prepare for > start/ resume B 2 nodes/ edges

| execution | extraction \ Gaulepexecition | compact storage

Figure: Diagram of the process of data extraction from Facebook

Raw Data
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Mining the Facebook graph: Data cleaning

Data cleaning O(n) (optimal time) Structuring data
Final data are stored as GraphML. It is
a standard XML format for representing

@ Remove duplicates using graph. It contains a description nodes

hash tabl o :
ash tables within the graph and edges connecting
@ Delete parallel edges them.
O Anonymize orapias skinahevo:erapha.graphdzaving.oxa/sine®
Nodes Unisue

nique Nodes
——
1

<graph edgedefault="undirected">

p==

32T S ANTEA DT ES

o ||z |Nfo || [w]ew|p]=
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Mining the Facebook graph: Agent execution

http://uwwwfacebook.com/friends/Poffset=0#/friends/ Hilter=afp /htenl[@id="facebook )/ body/div[ @ic='global Container'/div[1]/di a:  AdrianMonk
[#Tag  [JAttnID [IName [[JClass < = v [Weighted Matching uid 1L init automa | [ Extract! | [ LosdData
1 -
facebook (S ricerc Home Profilc  Account v

Cerca amici Crea una nuova lista Pagine consigliate

\}'\‘: [z PASSAPAROLA di

Marco Travaglio

S8 Tutte le connessioni Adrian. Monk H A Sara Cusato e altri 9 amid piace
rian. Mon Aggiungi a una lista questn elemento.
[E§* Trova amid Y Mipiace
B 1nvita amia Al N
q o Aggiungi a una lista Foto ricordo
sfoglia
DSC_0329
Rubrica telefonica - Aggiunto circa un mese fa
Alessandra Lussetti Aggiungia una lista ~ Vanessa Scamporiin &

51, Aggiunti di recente Vilafranca Tirrena, Ital: taggato/a in questa foto

& Aggiornati di recente

Ordile Aggiungi a una lista =
Liste
Aggiungi a una lista =
= Pagine
Invits amici ad iscriversi a Alessandro Minutoli ) 3
E Facebool Itz Aggiungi a una lista ~

TARATG]

Figure: Agent i) visits the page containing the friendlist, ii) generates a

Wrapper to extract Name and ID of each friend, iii) insert into the graph these
data, and iv) proceeds with the next profile in the list.
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Network Analysis Metrics: Characteristics of the Facebook graph

@ Ego-centric network: the term ego denotes a user connected to others
(alter)

@ Unweighted, undirected network:

» Degree 1.0 (=) (o) @'@
» Degree 1.5 @ @‘
» Degree 2.0 e () @@

Remarks The graph shows a natural clustering effect over principal areas
of the life of a user: friends, colleagues, family, etc.
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Network Analysis Metrics: Measures

Perer and Shneiderman 2 provided a summary of useful metrics:
Overall metrics no. of nodes, edges, density, diameter, etc.
Centrality measures degree, betweenness and closeness centrality
Nodes in pairs plotting degree vs. betweenness

Cohesive sub-groups discovering communities, community structure

] | N. Visited users | N. Discovered users | N. edges |

BFS 63.4K 8.21M 12.58M
Uni 48.1K 7.69M 7.84M
| Avg. deg. | Eigenvectors | Diameter | Clustering [ Coverage | Density |
396.8 68.93 8.75 0.0789 98.98% | 0.626%
326.0 23.63 16.32 0.0471 94.96% | 0.678 %

Table: Dataset: BFS and Uniform (acquired during August 2010)

2Balancing systematic and flexible exploration of social networks, 2006
Emilio Ferrara (University of Messina)

Mining and Analyzing Online Social Networks: 26/ 46



Social Network Analysis Aspects: Visualization of data

Remarks Our data contains the same information as if we would acquire
all the friendship relations among all the inhabitants of a
middle-size town (e.g., 100k people).

Visualization of Social Networks Providing a meaningful graphical
representation of a large network in order to have greater
insights on the structure, is a big challenge, both algorithmic
and computational.

Problems
@ The more the complexity of the network increases, the
greater its illegibility is.
@ Operations such as interaction on nodes and edges,
filtering and manual positioning are required.

A: Our group 2 developed LogAnalysis, a powerful visual tool to
analyze social network structures.

3A visual tool for forensic analysis of mobile phone traffic, Catanese & Fiumara,
2010
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Facebook Network Graph: Visual results
NodeXL: Unfiltered graph (Dataset: 25K nodes sub-graph)

Cluster | vertex | ¢ ) 3 F G H ! ) ‘acioni documenti
4740/c0 1812

ol a5 sz Refresh Graph >
a722/c0 7 R R A R[R] @ Zoom [ Scale:
4743/c0 2651 1
4744/C0 7670

a7s|co 19106

4746/C0 2801

4747/c0 11667

a748/C0 2620

a739/c0 16479

4750/C0 14727

a751/c0 5529

4752/C0) 5087

a753/C0 1643

47540 25654

47550 ‘a168

4756/C0. 5365

4757/c0 2723

4758/C0 22862

4759 c0 10888

4760/C0. 15129

47610 6609

4762/C0 1281

47630 20181

4764/C0) 22163

47650 ‘9646

4766/CO 5314

47670 212

4768/C0 70760

47690 it

4770/C0 1127

arnlco 14895

W4 ¥ W[ Vertices . Custers | Cluster Vertices . T o

Ferrara (Univer:

ruchterman-Reingo « ] Lay Out Again « 7 Dynamic iters 5 Options |

28 /46



Facebook Network Graph: Visual results
NodeXL: Filtered graph (Dataset: 25K nodes sub-graph)
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Facebook Network Graph: Visual results
NodeXL: Filtered results (Dataset: 25K nodes sub-graph)
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Facebook Network Graph: Visual results
LogAnalysis: Force Directed graph (Dataset: 25K nodes sub-graph)

LogAnalysis

FileHelp
-Radialview‘ ‘ clusm| ‘,,&a ShnrleslPalh‘ ‘Bsave‘
Info | Details  Nodes = Edges | N Force directed
8 Graph
- diameter: 6
 density: 0,02
» [ Nodes
» [ Edges
[ settings. )
Filters

Connectivity Filter

Distance () 10
degree revealing factor

degree scaling (e 1
Choose a label

Label: | nodi

Restriction

(] Women

¥ Sub tree control

¥ Arrested

Search
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Facebook Network Graph: Visual results
LogAnalysis: Clustering (Dataset: 25K nodes sub-graph)
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Facebook Network Graph: Visual results
LogAnalysis: Radial view (2.0 degree)
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Betweenness Centrality results
Top 25 Nodes ordered w.r.t. BC (Dataset: 25K nodes sub-graph)
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Facebook Network Graph: Distributions in Facebook

Degree distribution of node degree in the network
@ Social Networks usually follow power-law distributions,
such as P(k) ~ k—7, with k node degree and v < 3.
@ This means the existence of a relatively small number of
users highly connected each other.
@ This distribution could be represented by a
Complementary Cumulative Distribution Function (CCDF).

100000

10000 g T I i I <~ BFS Sample

I UNI Sample

T
BFS Sample
UNI Sample

3
8

Count (log)

Count (log)

10000
10

I L 1 1
50 100 150 200 250 300 350 100 1000

Degree Degree (log)

Figure: Tail of the power-law Figure: CCDF
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Facebook Network Graph: Graph clustering

Clustering coefficient Is the measure representing how much nodes of a
graph tend to “group” each other.

Results The mean value detected in FB lies in the interval [0.05, 0.2],
the same w.r.t. other well-known real Social Networks.

Diameter of the network The mean diameter is smaller than 10, such as in
the Milgram Small World theory.
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Facebook Network Graph: Betweenness centrality
Betweenness centrality b; of a node i is defined as b; = Z dj e ,(I)

j#k !
number of times the nodes lies in the shortest path connecting
two other nodes.

,i.e., the

Remarks It is well-known that the BC follows a power-law p(g) ~ g~" in
scale-free networks.

Results We proved that it holds also for the Facebook network.

1x10°
i Btw2sK
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1107 [ T - e S,
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1104

1x10°
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1 10 1x102 1x10% 1x10%
Degree (Iog)
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Facebook Community Structure

Community Structure A sub-structure of the overall graph, in which the
density of relationships within the community is much greater
than the density of connections among communities.

Model A common formulation of this problem is to find a partitioning
V=(ViuWU---UV,) of disjoint subsets of vertices of the
graph G = (V, E) representing the network, in a meaningful
manner.

Algorithms The most popular quantitative technique is the Q — modularity
(or network modularity), proposed by Newman 4.

Q-modularity
2 2
Q= Z {/ - d] (1)

Is: number of edges between vertices belonging to the s-th
community; ds: sum of the degrees of these vertices.

High values of Q [0,1] implies a evident community strucure.

“Finding and evaluating community structure in networks, Newman, 2004
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Facebook Network Graph: Algorithms and Results

LPA (Label Propagation Algorithm) °
FNCA (Fast Network Community Algorithm) &

| Algorithm | N. of Communities | Q | Time(s) |
BFS (8.21 M vertices, 12.58 M edges)
FNCA 50,156 0.6867 | 5.97e+004
LPA 48,750 0.6963 | 2.27e+004
Uniform (7.69 M vertices, 7.84 M edges)
FNCA 40,700 0.9650 | 3.77e+004
LPA 48,022 0.9749 | 2.32e+004

Table: Results on Facebook Network Samples

SNear linear algorithm to detect community structures, Raghavan et al., 2007
®Fast Complex Network Clustering Algorithm Using Agents, Jin et al., 2009
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Facebook Community Structure: Uniform Sample

Uniform Sample The power law distribution is evident.

FNCA Algorithm P(k)gnca ~ k=7, with k node degree and v = 0.53.
LPA Algorithm P(K)pa ~ k=7, v = 0.49.

FNCA Power Law Distribution (UNI) LPA Power Law Distribution (UNI)
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Facebook Community Structure: BFS Sample

FNCA Power Law Distribution (BFS) LPA Power Law Disfribution (BFS)
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@ The differences in the behavior between the BFS and “Uniform” samples
distributions reflect accordingly with the adopted sampling techniques.

@ Gjoka et al. 7 and Kurant et al. 8, put into evidence the possible bias
introduced by using the BFS algorithm, towards high degree nodes.

"Walking in facebook: A case study of unbiased sampling, Gjoka et al., 2010
80n the bias of BFS (Breadth First Search), Kurant et al., 2010
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Facebook Community Structure: overlapping Distributions

Observation These two distributions, regardless the sampling and
community detecting adopted algorithms, appears to be
strongly overlapping.

Q: We would qualitatively investigate the similarity among
producted results, w.r.t. LPA and FNCA techniques.

A: We could compare obtained sets using similarity metrics, e.g.,
Jaccard and/or Cosine Similarity.

FNCA vs. LPA Distributions (UNI) FNCAvs. LPA Distributions (BFS)
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Facebook Community Structure: Similarity Measures

. .. ~ M11
@ Binary Jaccard Coefficient: J(v,w) =
y (v w) Mot + Mio + My
where M, represents the total number of shared elements between
vectors v and w, My represents the total number of elements belonging

to w and not belonging to v, and, finally My the vice-versa.
Intuitively, the result lies in [0, 1].

AB Y1 A x B
IAITTBIL S (A < (/S (B2

where A; and B; represent the binary frequency vectors computed on the
list members over i.

@ Cosine Similarity:  cos(©) =

] Degree of Similarity FNCA vs. LPA |
[ Metric [ Dataset [ In Common [ Mean | Median | Std. D. |

J BFS 2.45% 73.28% | 74.24% | 18.76%
Uniform 35.57% 91.53% | 98.63% | 15.98%

Table: Similarity degree of community structures
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Facebook Community Structure: Similarity Results

Similarity: FNCA vs LPA (UNI) - Jaccard C
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