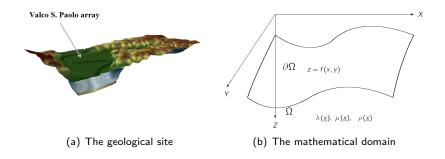
EUROSYS11 April 10 - 13, 2011 - Salzburg, Austria

EuroSys Doctoral Workshop – EuroDW 2011

A NOVEL PARALLEL APPROACH FOR 3D SEISMOLOGICAL PROBLEMS


Angela Ricciardello

aricciardello@unime.it Advisor: Prof. Luigia Puccio

PhD in Mathematics Dept. of Mathematics University of Messina

MATHEMATICAL DESCRIPTION OF THE GEOLOGICAL SITE

EUROSYS DOCTORAL WORKSHOP - EURODW 2011 - A NOVEL PARALLEL APPROACH FOR 3D SEISMOLOGICAL PROBLEMS- A. RICCIARDELLO 2 / 13

IBVP

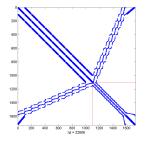
INITIAL BOUNDARY VALUE PROBLEM

$$\begin{cases} \rho(\mathbf{x}) \frac{\partial^2 \mathbf{u}}{\partial t^2} = \nabla \cdot \sigma + \mathbf{F}(\mathbf{x}, t), & \forall (\mathbf{x}, t) \in \Omega \times (0, +\infty), \\ \sigma = (\lambda(\mathbf{x}) + \mu(\mathbf{x})) \nabla \mathbf{u}, \\ \mathbf{u}(\mathbf{x}, 0) = 0, & \forall \mathbf{x} \in \Omega, \\ \frac{\partial}{\partial t} \mathbf{u}(\mathbf{x}, 0) = 0, & \forall \mathbf{x} \in \Omega, \\ \frac{\partial}{\partial n} \sigma(\mathbf{x}, t) = 0, & \forall (\mathbf{x}, t) \in \partial\Omega \times (0, +\infty), \end{cases}$$

IBVP

NUMERICAL APPROACH

- Non structured mesh on the integration domain
 - Numerical reconstruction of the energy shearing processes;
 - Full agreement between interfaces and elements;
- o Numerical Discretization
 - FEM: Finite Element Method;
 - Newmark Method


$$A\underline{\ddot{U}}^{n+1} = \underline{b}^{n+1} \tag{1}$$

BLOCK MATRIX PROPERTIES

• Sparse

⇒ optimized C.S.R. Format;

- Symmetric Pattern;
- Diagonally Dominant a.e.
 ⇒ Gauss-Seidel Method.

THE REASON OF PARALLEL APPROACH

Modelling Seismological IBVP more and more realistic

- Wider Domains
- High Frequencies
- Dissipation

- More Elements
- Higher Computational Cost

PARALLEL APPROACH

- Distributed Memory ⇒ M.P.I. on CASPUR Cluster MATRIX (320 nodes);
- Obmain Decomposition:

MeTiS

http://glaros.dtc.umn.edu/gkhome/node/105

Let us consider an homogeneous cube with side L = 700 m, $v_{min} = 1600$ Km/s and $f_{max} = 15$ Hz, discretizated by 3375 nodes connected by 16464 tetraedra, distributed on 10 subdomains.

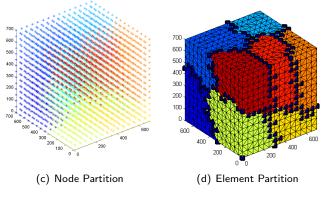
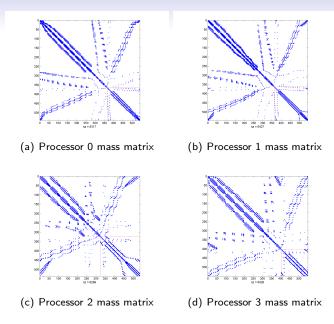
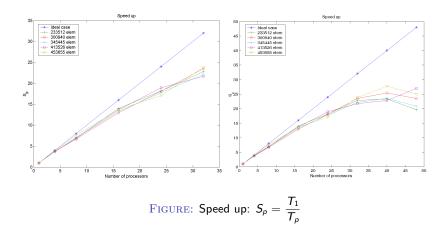
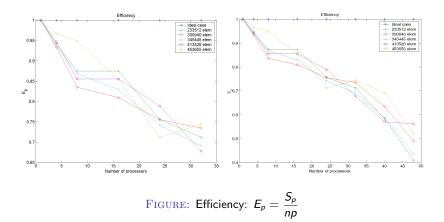




FIGURE: METIS distribution


FIGURE: Local Mass Matrices by 4 processors

Speed up

EUROSYS DOCTORAL WORKSHOP - EURODW 2011 - A NOVEL PARALLEL APPROACH FOR 3D SEISMOLOGICAL PROBLEMS- A. RICCIARDELLO 10 / 13

Efficiency

EUROSYS DOCTORAL WORKSHOP - EURODW 2011 - A NOVEL PARALLEL APPROACH FOR 3D SEISMOLOGICAL PROBLEMS- A. RICCIARDELLO 11 / 13

The parallel algorithm can be split in 3 phases.

- I data distribution and node reordering;
- II assemblage of matrices using the optimized CSR format;
- III time integration and linear system solver.

PART	1 PROC	4 PROC	8 PROC	16 PROC	24 PROC	32 PROC
I	177.7665	23.9192	15.01584	13.03564	12.77283	13.12143
II	51.2128	5.82255	2.51800	1.03282	0.62755	0.47853
III	2140.091	627.961	389.342	205.041	152.33111	114.364

TABLE: Parallel performance on 453.655 elements.

The table reports the time (in seconds) spent by a processor to execute a part of the algorithm.

Remarks.

Most of the time is spent on node reordering and reconstruction of the global solution.

Speed up and Efficiency

FUTURE WORK

- Assemblage of global solution in the overlapping nodes
- Scalability
- Simulations with real topography