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Phase 1: Query Analysis

Motivation
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3. Compare performances among candidates
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* Siddiqui, Tarique, and Wentao Wu. "ML-Powered Index Tuning: An Overview of Recent Progress and Open Challenges." ACM SIGMOD (2024)
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I Index Selection Problem is a Combinatorial Optimization (CO) Problem

Definition  Index Selection Problem (ISP): Gwen a workload W, a database D, a set

of constraints C, and a set of candidate indexres X, find an index configuration X such

that X* = argminxcxCost(W, X) subject to all constraints in C.

- How to find the best combinations for Multi-attributes Index?

None Index
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Deep Reinforcement
Learning (DRL) is a good CO
solver™®

Learning Ability: DRL can generalize across different
instances of a problem, providing robust solutions for
different states visited

Scalability: DRL methods can scale to handle complex and
large-scale problems by leveraging advanced neural
network architectures

Efficient Exploration: DRL agents continuously improve
their policies through interactions with the environment,
leading to increasingly effective solutions over time.

* Dai, Hanjun, et al. “Learning combinatorial optimization algorithms over graphs.” NeurlPS (2017)
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* |Index candidates will show an increase in the number of

. . combinations, which is a huge challenge for raining.
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Figure 1: Siddiqui, Tarique, and Wentao Wu. "ML-Powered Index Tuning: An Overview of Recent Progress and Open Challenges." ACM SIGMOD (2024)
Figure 2: Wang et al. ” Leveraging Instance-Aware Index Advising (IA2) with Reinforcement Learning for Diverse Workloads* EuroMLSys 2024




Existing Solutions dealing with Action Space

e Lan et al. CIKM’20 * Kossmann et al. “SWIRL” EDBT’22

=>» Rule-based candidates' generation = Rule-based candidates masking

Pros:
Pros:
Cons:
Cons: * Variable Pruning Efficiency: Pruning efficiency varies with workload

complexity, making it unreliable in some scenarios.

* Limited Exploration: Risks missing out on potential
candidates due to restrictive rules. * Reduced Efficiency Under Complexity: Training efficiency decreases

« Complex Rule Design: Creating comprehensive rules that i'as wquload complexity increases, potentially slowing down the
cover all scenarios is challenging and can be resource- €arning process.
intensive.
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* Wang et al. ” Leveraging Instance-Aware Index Advising (IA2) with Reinforcement Learning for Diverse Workloads” EuroMLSys 2024




Experimental Setup

INNNNN
INNNNN
Single PgSQL-DB, single Benchmark Workloads: TPCH virtual machine equipped
thread SF1 with a shared Nvidia Quadro

RTX8000 GPU and
8 CPU cores, 64GB Memory.

Wang et al. ” Leveraging Instance-Aware Index Advising (IA2) with Reinforcement Learning for Diverse Workloads“ EuroMLSys 2024
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Although the experiments and the RL
agent are not restricted to a specific
type of index, the upcoming
experiments will primarily use non-
covering B-trees, which are the default
index type in PostgreSQL.




Evaluated Workload (TPCH) Patterns

Complexity Increase
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e Craft with TPCH-22 queries Templates
* Queries with heavy filters, Order by, Range conditions (e.g., 99, g6, q19, g18) are involved
e W1-W?7: Increasing Complexity
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Experiment — Action Pruning Efficiency
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Experiment: Runtime Performance
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Summary: Comparisons with Existing Works (RL-based Index Advisor)

Takeaways from IA2:

1.Rapid Training Efficiency

2.Advanced Workload Modeling
3.Effective Action Space Exploration

DRLinda!™
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[1] Sadri, Zahra, Le Gruenwald, and Eleazar Lead. “DRLindex: deep reinforcement learning index advisor for a cluster database.” ICDE 2020.
[2] Lan, Hai, Zhifeng Bao, and Yuwei Peng. "An index advisor using deep reinforcement learning." CIKM 2020.
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