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Introduction.

 Context, task, and state-of-the-art
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 1. Introduction

Temporal Graphs

A graph is defined as G = (A, X) where: 
● A is a N by N adjacency matrix
● X is a N by D feature matrix.

A temporal graph is defined as a sequence of 
graphs  GT = {Gi| i ∈ [0, T]} where:

● T is the length of the considered time 
period

Graph generation

A graph is defined as G = (A, X) where: 
● A is a N by N adjacency matrix
● X is a N by D feature matrix.

A temporal graph is defined as a sequence of 
graphs  GT = {Gi| i ∈ [0, T]} where:

● T is the length of the considered time 
period
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 Use cases:
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 1. Introduction

Predictions

Predictions

SGG
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02.
Evaluation

 Comparison of models made possible
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 Current experiments:
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Metrics for Topological quality

Scalability study not guaranteed

● What about temporal metrics?
● Downstream utility?
● Privacy leakage?

 2. Evaluation

(1)

(2)

(3)
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 Our benchmark:
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TIGGER

NvDiff

AGE

DAMNETS

Dymond

D2G2

Scalability

Privacy

Quality

● Topology
● Utility
● Temporality

 2. Evaluation
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 2. Evaluation

Utility

Run a Link Prediction 
Model, or Node 
Classification

Topology

● Compute topological 
property

● Compare distribution of 
properties

Time metrics

Compare the temporal 
correlations 
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 Quality
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Privacy

● Nearest Neighbour Distance Ratio, 
NNDR

d1 = Closest Nodes Distance
d2 = Second Closest Nodes Distance

NNDR = d1/d2 

● Distances computed from the 
embedders of the utility downstream 
tasks
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 2. Evaluation
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Scalability

Threshold-based

● Memory consumption can be 
estimated per model

● Training time can be measured per 
epoch, to estimate a full training 
time
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 2. Evaluation
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03.
Limitations

 The lacking points & the future
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 3. Limitations
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 Privacy

● Similarity-based metrics are not reliable:

● Difficult enough problem for tabular data
○ Room for improvement!

(5)
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 4. Conclusion
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 What’s the best model?

● Choice of Dataset is more important than choice of model
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