GuaranTEE: Towards private and attestable ML with CCA

EuroMLSys, 22 April 2024

IMPERIAL

Sandra Siby, Sina Abdollahi, Mohammad Maheri, Marios Kogias, Hamed Haddadi

On-device Machine Learning

Private personalisation

Vision

Build features that can process and analyze images and video using computer vision.

Speech

Take advantage of speech recognition and saliency features for a variety of languages.

Natural Language

Process and make sense of text in different ways, like embedding or classifying words.

Sound

Analyze audio and recognize it as a particular type, such as laughter or applause.

On-device Machine Learning

Model providers want:

Model privacy
Model verifiability and attestability

Private personalisation

Vision

Build features that can process and analyze images and video using computer vision.

Speech

Take advantage of speech recognition and saliency features for a variety of languages.

Natural Language

Process and make sense of text in different ways, like embedding or classifying words.

Sound

Analyze audio and recognize it as a particular type, such as laughter or applause.

Watermarking

- Detection rather than prevention
- Evasion attacks

- Computational and communication overheads

Cryptography-based

Existing solutions

Watermarking

- Detection rather than prevention - Evasion attacks

- Computational and communication overheads

Watermarking

- Detection rather than prevention - Evasion attacks

- Computational and communication overheads

Arm's TEE solutions

- Arm's TrustZone is widely deployed on edge devices.
- We consider Arm's next generation of TEE solutions (deployment expected in 2028):
 - **Confidential Computing Architecture (CCA)**

Hardware-assisted

- Mainly tailored to the cloud - Memory limitations on edge

ion overheads

Arm TrustZone

EL3

Normal World

Secure World

Secure Monitor

Arm CCA

Arm CCA

Root world

CCA and ML deployment

General-purpose development

CCA and ML deployment

Realm world

Model provider

Client (Device)

Trusted verifier

Realm world

Model provider

Client (Device)

Trusted verifier

Realm world

Model provider

Shared folder

Client (Device)

Trusted verifier

Model provider

Shared folder

Client (Device)

Trusted verifier

Model provider

Shared folder

Client (Device)

Trusted verifier

Model provider

Shared folder

Client (Device)

Trusted verifier

Model provider

Client (Device)

Trusted verifier

Implementation

TensorFlow Lite image recognition model (16 MB)

> CCA integration with Secure monitor, RMM, and hypervisor

Fixed Virtual Platform (FVP)

What we measure: Overhead of inference and realm VM creation over a normal world VM.

How we measure: Number of instructions as FVP is not cycle-accurate

- Approximate counting of instructions.
- In progress: implementing Module Trace Interface for exact instructions.

- What we measure: Overhead of inference and realm VM creation over a normal world VM.

How we measure: Number of instructions as FVP is not cycle-accurate

- Approximate counting of instructions.
- In progress: implementing Module Trace Interface for exact instructions.

Main findings

- On average, realm inference takes 1.6x the instructions normal world.
 - Larger number of context switches
- Realm creation depends on the size of the image.

- What we measure: Overhead of inference and realm VM creation over a normal world VM.

How we measure: Number of instructions as FVP is not cycle-accurate

- Approximate counting of instructions.
- In progress: implementing Module Trace Interface for exact instructions.

Main findings

- On average, realm inference takes 1.6x the instructions normal world.
 - Larger number of context switches
- Realm creation depends on the size of the image.

Note: Full attestation report could not be implemented due to FVP limitations

- What we measure: Overhead of inference and realm VM creation over a normal world VM.

Considerations for ML deployment with CCA

Attacks to data pipeline

Multiple providers on the same device

Policy enforcement

Availability guarantees

Summary

- We propose GuaranTEE a framework using CCA to deploy ML models on end devices in a private and trusted manner.
- We implement GuaranTEE using FVP, and perform a preliminary evaluation.
- We provide future directions and recommendations on ML deployment with CCA.

Code (with a setup guide): <u>https://github.com/comet-cc/GuaranTEE</u>

Get in touch: <u>s.siby@imperial.ac.uk</u> 🖂

