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On-device Machine Learning

Benefits

No user data sent to cloud | o
Private personalisation

Latency improvements

@

Build features that can process and Process and make sense of text in
analyze images and video using different ways, like embedding or
computer vision. classifying words.

@ @
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Take advantage of speech recognition Analyze audio and recognize it as
and saliency features for a variety of a particular type, such as laughter
languages. or applause.




On-device Machine Learning

Benefits

No user data sent to cloud | o
Private personalisation

Latency improvements

Model providers want:

- Model privacy
- Model verifiability and attestability

©®

Build features that can process and
analyze images and video using
computer vision.

9

Take advantage of speech recognition
and saliency features for a variety of
languages.

atural Language

Process and make sense of text in
different ways, like embedding or
classifying words.

:]f @
sound

Analyze audio and recognize it as
a particular type, such as laughter
or applause.




Protecting ML models

Existing solutions

Hardware-assisted
Watermarking

- Detection rather than prevention
- Evasion attacks

Cryptography-based

- Computational and communication overheads




Protecting ML models

Existing solutions

Hardware-assisted

Applications run within Trusted
Execution Environments (TEE)




Protecting ML models

Existing solutions

y /
Hardware-assisted

- Mainly tailored to the cloud

\, - Memory limitations on edge ,
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Protecting ML models

Existing solutions

Arm’s TEE solutions

Arm’s TrustZone is widely deployed on edge devices.

We consider Arm’s next generation of TEE solutions
(deployment expected in 2028):

Confidential Computing Architecture (CCA)

/ Hardware-assisted

- Mainly tailored to the cloud
\ - Memory limitations on edge




Arm TrustZone
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Arm CCA

Realm world Normal World Secure World
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Arm CCA

Realm world Normal World Secure World

ELO

Realm Realm Realm Realm
VM VM VM VM
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Root world

10



CCA and ML deployment

Why is CCA a promising choice
for ML deployment?

Flexible memory allocation | - | |
Protection against compromised hypervisor

General-purpose development
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CCA and ML deployment

Why is CCA a promising choice
for ML deployment?

Flexible memory allocation | - | |
Protection against compromised hypervisor

General-purpose development

GuaranTEE

Framework for ML models to be run on end devices In a private and verifiable manner
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System overview

i

Model provider

Realm world Normal world

Client (Device)

Trusted verifier
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System overview
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Implementation

TensorFlow Lite image
recognition model (16 MB)

CCA integration with Secure

Shared folder for model
iInputs and outputs

Applications in normal

monitor, RMM, and hypervisor

Fixed Virtual Platform (FVP)
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Preliminary evaluation

What we measure: Overhead of inference and realm VM creation over a normal world VM.
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Preliminary evaluation

What we measure: Overhead of inference and realm VM creation over a normal world VM.

How we measure: Number of instructions as FVP is not cycle-accurate

* Approximate counting of instructions.
* In progress: implementing Module Trace Interface for exact instructions.
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Preliminary evaluation

What we measure: Overhead of inference and realm VM creation over a normal world VM.

How we measure: Number of instructions as FVP is not cycle-accurate

* Approximate counting of instructions.
* In progress: implementing Module Trace Interface for exact instructions.

Main findings
* On average, realm inference takes 1.6x the instructions normal world.

e Larger number of context switches
* Realm creation depends on the size of the image.
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Preliminary evaluation

What we measure: Overhead of inference and realm VM creation over a normal world VM.

How we measure: Number of instructions as FVP is not cycle-accurate

* Approximate counting of instructions.
* In progress: implementing Module Trace Interface for exact instructions.

Main findings
* On average, realm inference takes 1.6x the instructions normal world.

* Larger number of context switches
* Realm creation depends on the size of the image.

Note: Full attestation report could not be implemented due to FVP limitations

24



Considerations for ML deployment with CCA

Attacks to data pipeline

Multiple providers on the same device

Policy enforcement — @

Availability guarantees
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Summary

* We propose GuaranTEE — a framework using CCA to deploy ML models on end
devices in a private and trusted manner.

* We implement GuaranTEE using FVP, and perform a preliminary evaluation.

* We provide future directions and recommendations on ML deployment with CCA.

Code (with a setup guide): https://github.com/comet-cc/GuaranTEE

Get in touch: s.siby@imperial.ac.uk P<
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