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Our workload

3D Image Segmentation Workload.

o The KiTS19 challenge dataset with 210 cases.
o 3D-UNet model.
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Our workload

3D Image Segmentation Workload.

o The KiTS19 challenge dataset with 210 cases.
o 3D-UNet model.

Why?
o 8 data preprocessing techniques.
o Manageable dataset size (29GB).
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Overview of ML data preprocessing pipeline
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(NIFTI, 27GB) (Numpy, 29GB)
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A. Offline data preprocessing
Done once, before the training starts

T McGill

IVERSI”

o )

CPUs eBatch transfer GPUs
9 Preprocess eModeI

training
Main Memory
0 Read Batch

Local Storage

B. Training for one epoch,
with online data preprocessing
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Offline preprocessing overhead
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Offline preprocessing overhead
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[1, 53, 512, 512]
[1,734, 512, 512]

Average time in ms:
Intensity norm 115ms
3D Resampling 380ms
Min Padding 55ms
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Online preprocessing overhead

Table 1. Execution time (in ms) for Online Preprocessing
Techniques on case_00039 for two training runs.

Technique Time run 1 Time run 2
(ms) (ms)

Random flip 2.762 x 1073 32

Cast S 3

Random Brightness Aug 6 1.054 X 1073

Gaussian Noise 2.005 x 1073 149

Random Balance Crop 965 0.172
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What are our key takeaways from this study?

The image processing time is influenced by two factors:

1. Image size.

2. The randomness in the online preprocessing transformations.
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Inefficient pipelining using PyTorch DatalLoader
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Objective: Enhancing training time efficiency and GPU utilization while
preserving accuracy.
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OO~ SpeedylLoader

Objective: Enhancing training time efficiency and GPU utilization while
preserving accuracy.
How ?

1. Combines the offline and online preprocessing into one block.
2. Introduces a load balancer.

3. Introduces a pipelining of data loader worker threads and GPU
threads via a shared producer-consumer queue.
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Experimental Environment

System:

NVIDIA DGX-1 machine, with a 2.20GHz 80-core Intel Xeon processor
512GB of memory

8 NVIDIA V100 32GB GPUs

CUDA 12.3 and PyTorch 2.1.2.

Metrics:
e Total training time using time function from Python.
e GPU usage using nvidia-smi, CPU usage using top.

Experiment:
e 4 Batch size , 20 queue max size, 30 workers.
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Results: Total training time of 3D-UNet model.
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Results: Total training time of 3D-UNet model.
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[ ‘ SpeedyLoader provides up to 30% better training time. }
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Results: CPU and GPU usage 3D-UNet training for 5 epochs, 8 GPUs
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Results: CPU and GPU usage 3D-UNet training for 5 epochs, 8 GPUs
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[ m) CPU and GPU usage improves by 2x and 4.3x while maintaing 91% accuracy. 1
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Summary
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Summary

> (Case study of data preprocessing in image segmentation workload.

644 McGil

JINIVERSITY

31



X8

Summary

> (Case study of data preprocessing in image segmentation workload.

> Bottleneck: Inefficient pipelining of preprocessing and training.
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Summary

> (Case study of data preprocessing in image segmentation workload.
> Bottleneck: Inefficient pipelining of preprocessing and training.
> Solution: SpeedylLoader

o Relies on shared queue between loading threads and GPU threads.
o Implements a Load Balancer to mitigate head-of-line blocking.
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Summary

> (Case study of data preprocessing in image segmentation workload.
> Bottleneck: Inefficient pipelining of preprocessing and training.
> Solution: SpeedylLoader

o Relies on shared queue between loading threads and GPU threads.
o Implements a Load Balancer to mitigate head-of-line blocking.

> 30% decrease in training time and a 4.3x increase in GPU usage with 91%
accuracy.
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SpeedyLoader: Efficient Pipelim'ng of Data
Preprocessing and Machine Learm'ng Traim‘ng
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Future Work

Contact me:
rahma.nouaji@mail.mcgqill.ca

> Achieve 100% GPU usage.

> Study other workloads.

> Compare to other data loaders.
>

Support collocation of different
workloads.

Check out our website:
https://discslab.cs.mcgill.ca
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