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Our workload

3D Image Segmentation Workload.

○ The KiTS19 challenge dataset with 210 cases.
○ 3D-UNet model.

Why?
○ 8 data preprocessing techniques.
○ Manageable dataset size (29GB).
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Overview of ML data preprocessing pipeline 
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Offline preprocessing overhead
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Offline preprocessing overhead
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[1, 53, 512, 512]
[1, 734, 512, 512]

Average time in ms:
Intensity norm 115ms
3D Resampling 380ms
Min Padding 55ms



Online preprocessing overhead
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What are our key takeaways from this study?

The image processing time is influenced by two factors:

1. Image size.

2. The randomness in the online preprocessing transformations.
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Inefficient pipelining using PyTorch DataLoader
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Objective: Enhancing training time efficiency and GPU utilization while
preserving accuracy. 

How ?
1. Combines the offline and online preprocessing into one block.

2. Introduces a load balancer.

3. Introduces a pipelining of data loader worker threads and GPU 
threads via a shared producer-consumer queue.
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Experimental Environment
System:

● NVIDIA DGX-1 machine, with a 2.20GHz 80-core Intel Xeon processor 
● 512GB of memory
● 8 NVIDIA V100 32GB GPUs
● CUDA 12.3 and PyTorch 2.1.2.

Metrics:
● Total training time using time function from Python.
● GPU usage using nvidia-smi, CPU usage using top.

Experiment: 
● 4 Batch size , 20 queue max size, 30 workers.
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Results: Total training time of 3D-UNet model.



SpeedyLoader provides up to 30% better training time.
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Results: Total training time of 3D-UNet model.



28

Results: CPU and GPU usage 3D-UNet training for 5 epochs, 8 GPUs

Pytorch Dataloader
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Results: CPU and GPU usage 3D-UNet training for 5 epochs, 8 GPUs

Pytorch Dataloader

SpeedyLoader

CPU and GPU usage improves by 2x and 4.3x while maintaing 91% accuracy.
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Summary
➢ Case study of data preprocessing in image segmentation workload.

➢ Bottleneck: Inefficient pipelining of preprocessing and training.

➢ Solution: SpeedyLoader

○ Relies on shared queue between loading threads and GPU threads.
○ Implements a Load Balancer to mitigate head-of-line blocking.

➢ 30% decrease in training time and a 4.3x increase in GPU usage with 91% 
accuracy.
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Find out more in our paper!!
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Future Work

➢ Achieve 100% GPU usage.
➢ Study other workloads.
➢ Compare to other data loaders.
➢ Support collocation of different

workloads.
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Check out our website:
https://discslab.cs.mcgill.ca

Contact me:
rahma.nouaji@mail.mcgill.ca


