
SpeedyLoader: Efficient Pipelining of Data Preprocessing
and Machine Learning Training

Rahma Nouaji, Stella Bitchebe, Oana Balmau

EuroMLSys’24, Athens, Greece, April 22, 2024

https://discslab.cs.mcgill.ca

1



3

Why do we care about data preprocessing?



Why do we care about data preprocessing?

● Data sample quality is crucial for prediction accuracy.

4



Why do we care about data preprocessing?

● Data sample quality is crucial for prediction accuracy.

● Data preprocessing is often overlooked comparing to training algorithms.

5



Why do we care about data preprocessing?

● Data sample quality is crucial for prediction accuracy.

● Data preprocessing is often overlooked comparing to training algorithms.

● Dynamic datasets need online data preprocessing.

6



Why do we care about data preprocessing?

● Data sample quality is crucial for prediction accuracy.

● Data preprocessing is often overlooked comparing to training algorithms.

● Dynamic datasets need online data preprocessing.

● A straightforward pipelining between online data preprocessing and training 

with PyTorch DataLoader results in average GPU idleness of 85%.

7



Why do we care about data preprocessing?

● Data sample quality is crucial for prediction accuracy.

● Data preprocessing is often overlooked comparing to training algorithms.

● Dynamic datasets need online data preprocessing.

● A straightforward pipelining between online data preprocessing and training 

with PyTorch DataLoader results in average GPU idleness of 85%.

SpeedyLoader

8



Our workload

3D Image Segmentation Workload.

○ The KiTS19 challenge dataset with 210 cases.
○ 3D-UNet model.

10



Our workload

3D Image Segmentation Workload.

○ The KiTS19 challenge dataset with 210 cases.
○ 3D-UNet model.

Why?
○ 8 data preprocessing techniques.
○ Manageable dataset size (29GB).

11



Overview of ML data preprocessing pipeline 

12



Offline preprocessing overhead

13



Offline preprocessing overhead

14

[1, 53, 512, 512]
[1, 734, 512, 512]

Average time in ms:
Intensity norm 115ms
3D Resampling 380ms
Min Padding 55ms



Online preprocessing overhead

15



What are our key takeaways from this study?

The image processing time is influenced by two factors:

1. Image size.

2. The randomness in the online preprocessing transformations.

16



Inefficient pipelining using PyTorch DataLoader

17



SpeedyLoader

18



SpeedyLoader

19

Objective: Enhancing training time efficiency and GPU utilization while
preserving accuracy. 



SpeedyLoader

20

Objective: Enhancing training time efficiency and GPU utilization while
preserving accuracy. 

How ?



SpeedyLoader

21

Objective: Enhancing training time efficiency and GPU utilization while
preserving accuracy. 

How ?
1. Combines the offline and online preprocessing into one block.



SpeedyLoader

22

Objective: Enhancing training time efficiency and GPU utilization while
preserving accuracy. 

How ?
1. Combines the offline and online preprocessing into one block.

2. Introduces a load balancer.



SpeedyLoader

23

Objective: Enhancing training time efficiency and GPU utilization while
preserving accuracy. 

How ?
1. Combines the offline and online preprocessing into one block.

2. Introduces a load balancer.

3. Introduces a pipelining of data loader worker threads and GPU 
threads via a shared producer-consumer queue.



24

DataLoader CPU Load balancer GPU
Processed batch
enqueueing thread

Batch transfer

Queue for low 
processing time images

Queue for high 
processing time imagesSpeedyLoader

Pulling 
without 
waiting

1

2 2Uniform batch
 queue



Experimental Environment
System:

● NVIDIA DGX-1 machine, with a 2.20GHz 80-core Intel Xeon processor 
● 512GB of memory
● 8 NVIDIA V100 32GB GPUs
● CUDA 12.3 and PyTorch 2.1.2.

Metrics:
● Total training time using time function from Python.
● GPU usage using nvidia-smi, CPU usage using top.

Experiment: 
● 4 Batch size , 20 queue max size, 30 workers.

25



26

Results: Total training time of 3D-UNet model.



SpeedyLoader provides up to 30% better training time.

27

Results: Total training time of 3D-UNet model.



28

Results: CPU and GPU usage 3D-UNet training for 5 epochs, 8 GPUs

Pytorch Dataloader

SpeedyLoader



29

Results: CPU and GPU usage 3D-UNet training for 5 epochs, 8 GPUs

Pytorch Dataloader

SpeedyLoader

CPU and GPU usage improves by 2x and 4.3x while maintaing 91% accuracy.



Summary

30



Summary
➢ Case study of data preprocessing in image segmentation workload.

31



Summary
➢ Case study of data preprocessing in image segmentation workload.

➢ Bottleneck: Inefficient pipelining of preprocessing and training.

32



Summary
➢ Case study of data preprocessing in image segmentation workload.

➢ Bottleneck: Inefficient pipelining of preprocessing and training.

➢ Solution: SpeedyLoader

○ Relies on shared queue between loading threads and GPU threads.
○ Implements a Load Balancer to mitigate head-of-line blocking.

33



Summary
➢ Case study of data preprocessing in image segmentation workload.

➢ Bottleneck: Inefficient pipelining of preprocessing and training.

➢ Solution: SpeedyLoader

○ Relies on shared queue between loading threads and GPU threads.
○ Implements a Load Balancer to mitigate head-of-line blocking.

➢ 30% decrease in training time and a 4.3x increase in GPU usage with 91% 
accuracy.

34



Find out more in our paper!!

35



Future Work

➢ Achieve 100% GPU usage.
➢ Study other workloads.
➢ Compare to other data loaders.
➢ Support collocation of different

workloads.

36

Check out our website:
https://discslab.cs.mcgill.ca

Contact me:
rahma.nouaji@mail.mcgill.ca


