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LLM inference

The autoregressive generation of decoder-only Transformer models can be decomposed in two phases.

1. - Prefill phase: the model generates the intermediate keys and values (KV) of the prompt tokens.

2. - Autoregressive phase: the model generates one token per iteration.

The space in the GPU HBM where we store the intermediate results is named KV cache.
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Motivation

Serving Large Language Models (LLMs) is memory intensive.

- - OPT-175B requires 350GB just to host the model weights.

The incremental decoding of autoregressive models limits the serving performance.

- Matrix-vector operations in single-batch inference.

+

- Large cost of loading model weights from GPU HBM to on-chip SRAM.

= 

- Low arithmetic intensity (ratio OPS:BYTE). 
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Batching

Batching increments the arithmetic intensity.

- - Computing more sequences for the same transfer of weights.

-In continuous batching [1] the scheduler decides at each iteration which requests join or leave batch.

Batching techniques are employed to increase the system’s throughput.

- - Number of requests processed per second by the engine.

- - Good serving performance should maximize the throughput while providing low latency to users.
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https://www.anyscale.com/blog/continuous-batching-llm-inference

[1] Yu, Gyeong-In, et al. "Orca: A distributed serving system for {Transformer-Based} 
generative models." 16th USENIX Symposium on Operating Systems Design and 
Implementation (OSDI 22). 2022.
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Performance limiters

Performance of an inference step on a given processor can be: 

- - Memory-IO bound: limited by the time spent accessing memory.

- - Compute bound: limited by the time spent computing operations.

-

Increasing the number of concurrent requests (batch size) increases the computational cost.

❖ - If the compute time is larger than the memory-IO time we reach a performance upper-bound.
- Throughput plateau.

LLM serving is memory-IO bound.

- - The high memory demands of the model weights and the KV cache limits the batch size.
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Small Language Models

Small Language Models (SLMs, ≈ 2.7B) are increasingly important.

- Can be deployed by resource-constrained users at their local machines.
- Offer a good performance in specific tasks.

Emerging techniques for reducing memory requirements in language model serving include:

- Quantization.
- Sparsity.
- Offloading

The reduced memory footprint of SLMs allows for large batch sizes.

- Are we still in the memory-IO bound regime?
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Experimentation

Serving OPT Small Language Models from 125M to 6.7B parameter range.

Requests generated from ShareGPT dataset (768 tokens/request).

vLLM serving engine [2].

40GB A100 GPUs.
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[2] Kwon, Woosuk, et al. "Efficient memory 
management for large language model serving with 
pagedattention." Proceedings of the 29th Symposium 
on Operating Systems Principles. 2023.



Experimentation
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Experimentation – model replication

We observe a throughput plateau in SLMs within a single GPU.

- - Overprovisioning memory to the model does not correlate to a performance improvement.

- - We can limit the memory allocated to each model and run multiple instances simultaneously.
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Discussion

High memory transfer, low compute

- - Large amount of memory transfer with minimal computational workload in single-batch inference.

- - Resulting in a memory-IO bound regime.
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Discussion

High memory transfer, low compute

- - Large amount of memory transfer with minimal computational workload in single-batch inference.

- - Resulting in a memory-IO bound regime.

Increasing interest in reducing memory demands on serving.

- - Approaches: SLMs, quantization, offloading, sparsity.

- - Implicit increase of the potential batch size.
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Discussion

High memory transfer, low compute

- - Large amount of memory transfer with minimal computational workload in single-batch inference.

- - Resulting in a memory-IO bound regime.

Increasing interest in reducing memory demands on serving.

- - Approaches: SLMs, quantization, offloading, sparsity.

- - Implicit increase of the potential batch size.

Reaching throughput plateau with SLMs within a single accelerator.

- - Limit the memory assigned to each small model depending on its size and replicate?

- - This approach can be complemented with other optimizations to further reduce the memory demand.
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