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The Rise of Al PCs
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Resource-Efficient Fine-Tuning

Previous methods: Retrain all model parameters.
Low-Rank Adaptation (LoRA)

* Freeze the pre-trained model and update a
small number of (additional) parameters
h=W+ AW)x = Wx + BAx
where W € R¥*, B € RY", 4 € R"™¥, and the
rank r < (d, k).

 Reduce memory usage during fine-tuning by
60 - 70%.

« Reduce memory usage during inference by
100 - 10000x for each new fine-tuned model.
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Resource-Efficient Inference

Previous methods: Newly arrived requests have to wait for the current batch

to complete.

Continuous Batching
* Newly arrived requests only need to wait for the current token to complete.

« Enable 10 — 20x throughout since the decode stage is memory-bound
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Heterogeneous Fine-Tuning and Inference

Example

A student wants to fine-tune an LLM to help
improve her thesis for a herbology class.
She would choose the biggest LLM that fits
in her Al PC for better results.

Challenge

All other local LLM-based applications will
not work until the completion of fine-tuning.
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Prior Solutions

Spatial GPU sharing
« Execute fine-tuning and inference in parallel on smaller pre-trained LLMs
 Reduce model’s capabilities

Temporal GPU sharing

« Switch from fine-tuning to inference when new requests arrive
« Leave little time for fine-tuning tasks

 Incur high context switch overhead
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Deferred Continuous Batching

A new task scheduling mechanism
* Schedule at the granularity of a single fine-tuning or inference iteration

« Slightly defer inference requests without violating service level agreements
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Finelnfer at a Glance

Designed for concurrent parameter-efficient Fine-tuning and Inference

* Deferred Continuous Batching
* Hybrid system architecture

Finelnfer
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Hybrid System Architecture

Minimize context switch overhead
* Base model multiplexing
* |teration-level switching

Stage DeepSpeed Colossal-AI  Finelnfer
Task initialization 1.153/0.015s 0.28/0.045s 0/0s
Task cleanup 2.330/1.252s 3.456/1376s 0/0s
Data movement 5.882 s 5918 s 0-0.052s

The breakdown of switching overhead with Llama2-7B workloads on an Nvidia 4090 GPU.
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Hybrid System Architecture

Amortize data movement overhead for larger-than-GPU LLMs

* Heterogenous batching
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GPU-Resident Performance
Llama2-7B on a 24GB Nvidia 4090 GPU
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Larger-than-GPU Performance
Llama2-13B on a 24GB Nvidia 4090 GPU
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Summary

We need to evolve systems for LLMs for the new era of the Al PC.

Finelnfer = Fine-tuning + Infernece

« Deferred continuous batching improves fine-tuning throughput by slightly
deferring inference requests without violating SLAs

» Hybrid system architecture minimizes context switch and data movement
overhead.

Source code: https://github.com/lim-db/Finelnfer

Thank you!
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