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How does compiler work?

.c.c.c
.c.c.exe

Can you predict 
optimal pass list for 
given input code?

2Compiler

https://www.istockphoto.com/vector/machine-funnel-lightbulb-gift-box-drawing-gm529273077-54363300


What Is A Good Representation?
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.c.c.c

Text

Traditional representations 
lose information LLMs can do it!



Large Language Model Task

4
Large Language Models for Compiler Optimization, Cummins et al.

https://arxiv.org/pdf/2309.07062.pdf


Comparing LLMs with Alternatives
Test Set of 100,000 functions
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Compilations

Auto-tuner 2,522,253,069

Autophase (MLSys '20) 4,500,000

Coreset NVP (ICML '23) 442,747

Our Approach 0

Performance

Autophas
e

Coreset NVP

Large Language Models for Compiler Optimization, Cummins et al.

https://arxiv.org/pdf/2309.07062.pdf


Can we do better?



Next token generation
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LLM

input tokens

next token

next token 
probability

Argmax



Temperature Sampling
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LLM

input tokens

next token

next token 
probability
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Temperature Sampling
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LLM

next token

next token 
probability

T > 1 make distribution flatter

Softmax function with temperature

T < 1 make distribution sharper

input tokens



Results



Temperature Sampling of Original Model
Original model on 50k test examples

autotuner
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Number of samples:



Problems with Temperature Sampling
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23 -Oz
2 -simplifycfg -gvn -instcombine -sroa
2 -Os -newgvn
2 -early-cse-memssa -reg2mem -memcpyopt -gvn -instcombine -simplifycfg
1 -mem2reg -simplifycfg -instcombine -newgvn
1 -simplifycfg -gvn-hoist -sroa
1 -gvn -instcombine -simplifycfg
1 -sroa -simplifycfg -gvn -instcombine
1 -loop-rotate -newgvn -reg2mem -ipsccp -memcpyopt -gvn -O3
1 -mem2reg -simplifycfg -gvn-hoist -instcombine
1 -simplifycfg -instcombine -sroa -newgvn
1 -reg2mem -jump-threading -licm -newgvn -mem2reg -jump-threading -loop-deletion
1 -simplifycfg -gvn-hoist -O2
1 -simplifycfg -gvn-hoist -instcombine -sroa
1 -instcombine -newgvn -simplifycfg -sroa -gvn
1 -loop-rotate -Os
1 -instcombine -mem2reg -newgvn -simplifycfg
1 -instcombine -O2
1 -instsimplify -simplifycfg -sroa -instcombine
1 -simplifycfg -newgvn -gvn-hoist -instcombine
1 -simplifycfg -O1
1 -instcombine -newgvn -simplifycfg -sroa -early-cse
1 -gvn -instcombine -simplifycfg -newgvn
1 -speculative-execution -O1 -Os
...

63 legal sequences, 37 illegal sequences

Frequency of 100 samples generated with the original model on T=1.4

duplicates



Problems with Temperature Sampling

13Number of unique samples for Greedy Decoding, Nucleus Sampling and Priority Sampling



Priority Sampling Algorithm
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Priority Sampling Algorithm
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Run passes -
Start
R

Priority queue for next branch

P(x) Next sample starts with text

“” 

next token probabilities

token 
node

token prefix



Priority Sampling Algorithm
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Run passes -
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Priority Sampling Algorithm
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Run passes -
Start
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Priority Sampling Algorithm
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Run passes -
Start
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Priority Sampling Algorithm

19

Run passes -
Start
R

“” 

next token probabilities

0.08

0.70

0.12

Priority queue for next branch

Run passes -const

Run passes -loop-un

Run passes -loop-merge

0.61 Run passes -O

P(x) Next sample starts with text

0.4 Run passes -loop-simplifycfg

0.01 Run passes -loop-simulate

Start0.02

loop
O
const

Run passes - Run passes -loop 

plify
plifycfg
ulate

Run passes -loop-sim 

-sim
-un
-merge

New Sample!

token 
node

token prefix



Priority Sampling Algorithm
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Priority Sampling Algorithm
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Results



Priority Sampling Dominates
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Priority Sampling:

5 samples -> 91%

30 samples -> 100%

100 samples -> 102% 

Nucleus Sampling

Priority Sampling

Greedy Decoding
Random Sampling



Abalations
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Ablation on regular expression, branching factor, and geometric mean metrics



Takeaways



Takeaways
● LLMs could predict LLVM flags 

○ 3% improvement over -Oz with 0 compilations

26

● Priority Sampling
○ no duplicates or illegal sequences
○ 5 samples -> 91% of autotuner performance 
○ >30 samples -> outperforms autotuner

● Temperature Sampling
○ 98% of autotuner performance given 100 samples
○ duplicates and illegal sequences



Backup slides



Model

● 7 Billion Parameter LLaMa2 Model

● Training set: 1M examples 
○ IR text -> passes + instruction counts + optimized IR

● 30k training steps from scratch (15.7B tokens)

● 620 GPU days training time

Credit: craiyon.com
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Large Language Models for Compiler Optimization, Cummins et al.

https://arxiv.org/pdf/2309.07062.pdf


LLMs for Compilers Data
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Data for training and validation of Large Language Models



Test Set of 100,000 functions
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Autophas
e

Coreset NVP

Compilations (-Oz backup)

Auto-tuner 2,522,253,069

Autophase (MLSys '20) 4,600,000

Coreset NVP (ICML '23) 542,747

Our Approach 5721

Comparing LLMs with Alternatives

Performance

Large Language Models for Compiler Optimization, Cummins et al.

https://arxiv.org/pdf/2309.07062.pdf
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