
Priority Sampling of Large 
Language Models for Compilers
Dejan Grubišić Volker Seeker

Gabriel Synnaeve

Hugh Leather John Mellor-Crummey

Chris Cummins
Athens, April 2024.



How does compiler work?

.c.c.c
.c.c.exe

Can you predict 
optimal pass list for 
given input code?

2Compiler

https://www.istockphoto.com/vector/machine-funnel-lightbulb-gift-box-drawing-gm529273077-54363300


What Is A Good Representation?

3

.c.c.c

Text

Traditional representations 
lose information LLMs can do it!



Large Language Model Task

4
Large Language Models for Compiler Optimization, Cummins et al.

https://arxiv.org/pdf/2309.07062.pdf


Comparing LLMs with Alternatives
Test Set of 100,000 functions

5.03%

3.03%

-3.85% -1.88%

Im
pr

ov
em

en
t o

ve
r -

O
z

5

Compilations

Auto-tuner 2,522,253,069

Autophase (MLSys '20) 4,500,000

Coreset NVP (ICML '23) 442,747

Our Approach 0

Performance

Autophas
e

Coreset NVP

Large Language Models for Compiler Optimization, Cummins et al.

https://arxiv.org/pdf/2309.07062.pdf


Can we do better?



Next token generation

7

LLM

input tokens

next token

next token 
probability

Argmax



Temperature Sampling

8

LLM

input tokens

next token

next token 
probability

Softmax function



Temperature Sampling

9

LLM

next token

next token 
probability

T > 1 make distribution flatter

Softmax function with temperature

T < 1 make distribution sharper

input tokens



Results



Temperature Sampling of Original Model
Original model on 50k test examples

autotuner

11

Number of samples:



Problems with Temperature Sampling

12

23 -Oz
2 -simplifycfg -gvn -instcombine -sroa
2 -Os -newgvn
2 -early-cse-memssa -reg2mem -memcpyopt -gvn -instcombine -simplifycfg
1 -mem2reg -simplifycfg -instcombine -newgvn
1 -simplifycfg -gvn-hoist -sroa
1 -gvn -instcombine -simplifycfg
1 -sroa -simplifycfg -gvn -instcombine
1 -loop-rotate -newgvn -reg2mem -ipsccp -memcpyopt -gvn -O3
1 -mem2reg -simplifycfg -gvn-hoist -instcombine
1 -simplifycfg -instcombine -sroa -newgvn
1 -reg2mem -jump-threading -licm -newgvn -mem2reg -jump-threading -loop-deletion
1 -simplifycfg -gvn-hoist -O2
1 -simplifycfg -gvn-hoist -instcombine -sroa
1 -instcombine -newgvn -simplifycfg -sroa -gvn
1 -loop-rotate -Os
1 -instcombine -mem2reg -newgvn -simplifycfg
1 -instcombine -O2
1 -instsimplify -simplifycfg -sroa -instcombine
1 -simplifycfg -newgvn -gvn-hoist -instcombine
1 -simplifycfg -O1
1 -instcombine -newgvn -simplifycfg -sroa -early-cse
1 -gvn -instcombine -simplifycfg -newgvn
1 -speculative-execution -O1 -Os
...

63 legal sequences, 37 illegal sequences

Frequency of 100 samples generated with the original model on T=1.4

duplicates



Problems with Temperature Sampling

13Number of unique samples for Greedy Decoding, Nucleus Sampling and Priority Sampling



Priority Sampling Algorithm

14



Priority Sampling Algorithm

15

Run passes -
Start
R

Priority queue for next branch

P(x) Next sample starts with text

“” 

next token probabilities

token 
node

token prefix



Priority Sampling Algorithm

16

Run passes -
Start
R

“” 

next token probabilities 0.01

Priority queue for next branch

R

0.02 Start

P(x) Next sample starts with text

Run passes -

token 
node

token prefix



Priority Sampling Algorithm

17

Run passes -
Start
R

“” 

next token probabilities

0.01

0.61

0.08

Priority queue for next branch

R

0.02

Run passes -O

Run passes -const

Start

P(x) Next sample starts with text

loop
O
const

Run passes - Run passes -loop 

token 
node

token prefix



Priority Sampling Algorithm

18

Run passes -
Start
R

“” 

next token probabilities

0.08

0.70

0.12

Priority queue for next branch

Run passes -const

Run passes -loop-un

Run passes -loop-merge

0.61 Run passes -O

P(x) Next sample starts with text

0.4 Run passes -loop-simplifycfg

0.01 Run passes -loop-simulate

Start0.02

loop
O
const

Run passes - Run passes -loop 

plify
plifycfg
ulate

Run passes -loop-sim 

-sim
-un
-merge

STOP!

token 
node

token prefix

Run passes -loop-simplify

new 
sample



Priority Sampling Algorithm

19

Run passes -
Start
R

“” 

next token probabilities

0.08

0.70

0.12

Priority queue for next branch

Run passes -const

Run passes -loop-un

Run passes -loop-merge

0.61 Run passes -O

P(x) Next sample starts with text

0.4 Run passes -loop-simplifycfg

0.01 Run passes -loop-simulate

Start0.02

loop
O
const

Run passes - Run passes -loop 

plify
plifycfg
ulate

Run passes -loop-sim 

-sim
-un
-merge

New Sample!

token 
node

token prefix



Priority Sampling Algorithm

20

Run passes -
Start
R

“” 

next token probabilities

0.08

0.37

0.12

Priority queue for next branch

Run passes -const

Run passes loop-unroll-and-jam

Run passes -loop-merge

0.61 Run passes -O

P(x) Next sample starts with text

0.4 Run passes -loop-simplifycfg

0.01 Run passes -loop-simulate

Run passes loop-under0.03

loop
O
const

Run passes - Run passes -loop 

plify
plifycfg
ulate

Run passes -loop-sim 

-sim
-un
-merge

STOP!
Run passes -loop-un 

roll
roll-and-jam
der

token 
node

token prefix

Run passes -loop-unroll

new 
sample



Priority Sampling Algorithm

21

Run passes -
Start
R

“” 

next token probabilities

0.08

0.37

0.12

Priority queue for next branch

Run passes -const

Run passes loop-unroll-and-jam

Run passes -loop-merge

0.86 Run passes -O2

P(x) Next sample starts with text

0.4 Run passes -loop-simplifycfg

0.01 Run passes -loop-simulate

Run passes loop-under0.03

loop
O
const

Run passes - Run passes -loop 

plify
plifycfg
ulate

Run passes -loop-sim 

-sim
-un
-merge

STOP!

Run passes -loop-un 

roll
roll-and-jam
der

z
2
s

-sccp
-Oz?
-Ozz

Run passes -O Run passes -Oz

token 
node

token prefix

Run passes -Oz -sccp

new 
sample



Results



Priority Sampling Dominates

23

Priority Sampling:

5 samples -> 91%

30 samples -> 100%

100 samples -> 102% 

Nucleus Sampling

Priority Sampling

Greedy Decoding
Random Sampling



Abalations

24

Ablation on regular expression, branching factor, and geometric mean metrics



Takeaways



Takeaways
● LLMs could predict LLVM flags 

○ 3% improvement over -Oz with 0 compilations

26

● Priority Sampling
○ no duplicates or illegal sequences
○ 5 samples -> 91% of autotuner performance 
○ >30 samples -> outperforms autotuner

● Temperature Sampling
○ 98% of autotuner performance given 100 samples
○ duplicates and illegal sequences



Backup slides



Model

● 7 Billion Parameter LLaMa2 Model

● Training set: 1M examples 
○ IR text -> passes + instruction counts + optimized IR

● 30k training steps from scratch (15.7B tokens)

● 620 GPU days training time

Credit: craiyon.com

28
Large Language Models for Compiler Optimization, Cummins et al.

https://arxiv.org/pdf/2309.07062.pdf


LLMs for Compilers Data

29
Data for training and validation of Large Language Models



Test Set of 100,000 functions

5.03%

3.52%

1.02%

2.55%

Im
pr

ov
em

en
t o

ve
r -

O
z

30

Autophas
e

Coreset NVP

Compilations (-Oz backup)

Auto-tuner 2,522,253,069

Autophase (MLSys '20) 4,600,000

Coreset NVP (ICML '23) 542,747

Our Approach 5721

Comparing LLMs with Alternatives

Performance

Large Language Models for Compiler Optimization, Cummins et al.

https://arxiv.org/pdf/2309.07062.pdf

	Priority Sampling of Large Language Models for Compilers
	How does compiler work?
	What Is A Good Representation?
	Large Language Model Task
	Comparing LLMs with Alternatives
	Can we do better?
	Next token generation
	Temperature Sampling
	Temperature Sampling
	Results
	Temperature Sampling of Original Model
Original model on 50k test examples
	Problems with Temperature Sampling
	Problems with Temperature Sampling
	Priority Sampling Algorithm
	Priority Sampling Algorithm
	Priority Sampling Algorithm
	Priority Sampling Algorithm
	Priority Sampling Algorithm
	Priority Sampling Algorithm
	Priority Sampling Algorithm
	Priority Sampling Algorithm
	Results
	Priority Sampling Dominates
	Abalations
	Takeaways
	Takeaways
	Backup slides
	Model


	LLMs for Compilers Data
	Comparing LLMs with Alternatives

