
ALTO: An Efficient Network
Orchestrator for Compound

AI Systems
Keshav Santhanam*1, Deepti Raghavan*1, Muhammad Shahir Rahman1, Thejas

Venkatesh1, Neha Kunjal1, Pratiksha Thaker2, Philip Levis1, Matei Zaharia3

*Equal contribution
1Stanford University 2CMU 3UC Berkeley

Compound AI Systems

Compound AI systems combine AI models with external tools to
solve challenging tasks

2

Retrieval-augmented generation (RAG)

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W., Rocktäschel, T., & others. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in
Neural Information Processing Systems, 33, 9459–9474.

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

Compound AI Systems

Compound AI systems combine AI models with external tools to
solve challenging tasks

3
Writing Wikipedia articles from scratch (STORM)

Shao, Y., Jiang, Y., Kanell, T. A., Xu, P., Khattab, O., & Lam, M. S. (2024). Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models.

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

Compound AI Systems

Compound AI systems combine AI models with external tools to
solve challenging tasks

4
Proving mathematical theorems (AlphaGeometry)

T. H. Trinh, Y. Wu, Q. V. Le, H. He, and T. Luong. Solving olympiad geometry without human demonstrations. Nature, 625(7995):476–482, 2024.

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

Compound AI Systems

Compound AI systems combine AI models with external tools to
solve challenging tasks

5
Many frameworks and DSLs exist to build compound AI systems

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

Compound AI Systems

Compound AI systems combine AI models with external tools to
solve challenging tasks

How do we serve compound AI systems
efficiently at scale?

6

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

Streaming partial outputs
• Key optimization: Streaming partial

outputs between pipeline stages

• Partial outputs are segments of text such
as words, sentences, or paragraphs

• Generative LMs output text incrementally
so we can emit these partial outputs as
soon as they are generated

• FacTool1 as a representative pipeline:

 1) Chat-bot answers question
 2) Extract factual claims
 3) Generate search queries for each claim

 4-6) Search for corroborating evidence

Generative LM stages

Retrieval / reranking stages

Streaming partial outputs

No streaming

(4) BM25 Retrieval

(2) Claim Extraction

(1) Question Answering

(3) Search Query Generation

(5) ColBERT Query Encoding

(6) ColBERT Reranking

Open-ended generation

Stream of claims

Stream of
search queries

Stream of
search queries

(token-by-token)

Candidate
documents

Embedding
tensors

Reranked documents

Knowledge-based question

Claims with evidence1I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian He, Graham Neubig, Pengfei Liu, et al. 2023. FacTool:
Factuality Detection in Generative AI–A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios.

7

Streaming partial outputs

Question Answering

Claim Extraction

Query Generation

BM25 Retrieval

ColBERT Query Encoding

ColBERT Reranking

Compound AI Systems Today

Request 1 Request 2 Request 3

Partial Output Streaming

Question Answering

Claim Extraction

Query Generation

BM25 Retrieval

ColBERT Query Encoding

ColBERT Reranking

• We can pipeline across requests
by treating each stage as a
microservice

• Streaming partial outputs enables
pipelining within a single request

• This reduces per-request latency
and enables higher serving
throughput

• Our prototype system ALTO
enables partial output streaming

8

Empirical evaluation using FacTool

9

• We vary the input load (requests /
second) and measure the resulting
per-request latency

• We compare streaming partial
outputs (orange) vs fully
materializing LM outputs (blue)

• Streaming partial outputs enables up
to 3x higher serving throughput*
while reducing tail latency by 1.8x

*For a fixed latency target of 4 seconds / request

ALTO: Automatic Language Token Orchestrator

• ALTO: a serving system for automatically distributing and parallelizing
compound, streaming AI pipelines

• Key challenges when streaming partial outputs:

• Correctness: How do we segment partial outputs automatically and
route them through the correct pipeline stage instances?

• Efficient load balancing: Given a pipeline with heterogeneous prompts,
how should we dynamically schedule prompts across instances?

• We discuss the need for aggregation constraints and distributed prompt-
aware scheduling to address these challenges

10

Stateful pipeline stages

• Some pipeline stages are stateful, which means all par3al outputs
routed through this stage must follow a consistent path

11

Search Query
Generation

BM25 Retrieval BM25 Retrieval BM25 Retrieval

Streaming query
“Who is Tom Cruise?”

token-by-token

Stateful pipeline stages

• Some pipeline stages are stateful, which means all par3al outputs
routed through this stage must follow a consistent path

12

Search Query
Generation

BM25 Retrieval BM25 Retrieval BM25 Retrieval

Who

Timestamp: 1
Streaming query

“Who is Tom Cruise?”
token-by-token

BM25 stage is stateful, so every token in this query’s
stream must be routed through the same instance We call this an aggregation constraint

Stateful pipeline stages

• Some pipeline stages are stateful, which means all partial outputs
routed through this stage must follow a consistent path

13

Search Query
Generation

BM25 Retrieval BM25 Retrieval BM25 Retrieval

is

Timestamp: 2
Streaming query

“Who is Tom Cruise?”
token-by-token

BM25 stage is stateful, so every token in this query’s
stream must be routed through the same instance We call this an aggregation constraint

Stateful pipeline stages

• Some pipeline stages are stateful, which means all par3al outputs
routed through this stage must follow a consistent path

14

Search Query
Generation

BM25 Retrieval BM25 Retrieval BM25 Retrieval

Tom

Timestamp: 3
Streaming query

“Who is Tom Cruise?”
token-by-token

BM25 stage is stateful, so every token in this query’s
stream must be routed through the same instance We call this an aggregation constraint

Stateful pipeline stages

• Some pipeline stages are stateful, which means all partial outputs
routed through this stage must follow a consistent path

15

Search Query
Generation

BM25 Retrieval BM25 Retrieval BM25 Retrieval

Cruise?

Timestamp: 4
Streaming query

“Who is Tom Cruise?”
token-by-token

BM25 stage is stateful, so every token in this query’s
stream must be routed through the same instance We call this an aggregation constraint

Aggregation constraints
Stage 1

Instance 1

Stage 1
Instance 2

Stage 2
Instance 1

Stage 2
Instance 2

5 4 3 2 1

1 2 3

1 2 3 4

5 1 2 3

Stage 1
Instance 1

Stage 1
Instance 2

Stage 2
Instance 1

Stage 2
Instance 2

5 4 3 2 1

1 2 3

2 3 4 5

1 2 3

1

Request 1

Request 2

16

Load balancing without an aggregation constraint

Load balancing with an aggregation constraint

Enforcing aggregation constraints can limit load balancing efficiency

Interface for aggregation-aware routing

• Currently in ALTO we provide this interface to specify
aggregation constraints:

• We can enforce a consistent path by taking
hash(constraints) % N (# of downstream stage instances)

• This requires explicitly encoding hierarchical ids in the object
definitions, but we are working on a design for automating this

17

write(
 queue="bm25", obj=Token(...), id=obj_id,
 constraints=[obj_id, claim_id, query_id]
)

Prompt heterogeneity

18

• Prompts can vary significantly in
their output type, frequency, and
output volume

• We can observe this empirically
within the FacTool pipeline

Distributed Prompt-aware Scheduling

• Many LM serving engines (e.g. vLLM, SGLang Runtime,
Hydragen) benefit from serving the same prompts repeatedly on
a single GPU by re-using prompt prefixes in the KV cache

• In a distributed setting we want to balance (1) dynamically load
balancing prompts across stage instances with (2) maximizing
prefix locality – these goals may be in conflict!

• This requires distributed prompt-aware scheduling

• ALTO does not currently implement distributed prompt-aware
scheduling, but see our paper for some initial design ideas

19

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient memory management for large
language model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles. 611–626.
Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. 2023. Efficiently
Programming Large Language Models using SGLang. arXiv preprint arXiv:2312.07104 (2023).
Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y. Fu, Christo- pher Ré, and Azalia Mirhoseini. 2024. Hydragen: High-Throughput LLM Inference with Shared Prefixes.
arXiv:2402.05099 [cs.LG]

ALTO Implementation

• ALTO is implemented using an
asynchronous queue interface
over UNIX domain sockets

• Applications (written in Python)
send Protobuf messages to a
centralized runtime (written in
Rust) which routes messages to
downstream stage instances

• We are also working on a Ray-
based implementation

20

Conclusion

• We can optimize compound AI system serving by streaming
partial outputs between pipeline stages

• Our prototype system ALTO demonstrates this on the FacTool
pipeline by improving throughput by up to 3x while reducing tail
latency by 1.8x

• Streaming partial outputs introduces the new challenges of
correctness and efficient load balancing, which require
aggregation constraints and distributed prompt-aware
scheduling to solve

21
keshav2@stanford.edu h=ps://cs.stanford.edu/~keshav2

mailto:keshav2@stanford.edu
https://cs.stanford.edu/~keshav2

