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More and more GPUs are needed to train these models



GPU scarcity in the public cloud

This increased GPU demand has led to a GPU scarcity in the public cloud
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GPU scarcity in the public cloud

This increased GPU demand has led to a GPU scarcity in the public cloud
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A natural way to acquire more GPUs would be to spread across cloud regions
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Implications of geo-distributed training

However, when crossing the cloud zone boundaries there are two main implications:
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Implications of geo-distributed training

However, when crossing the cloud zone boundaries there are two main implications:

1. Reduced Network bandwidth and increased latency
2. Charges for data exchange

Same AZ (US) 1.45 <1 0

Diff. AZ, same region (US) 142 0.9 0.01
Diff. regions (US) 0.63 31 0.02
Diff. continents (US/EU) 0.18 102 0.05

az2-highgpu-1g, GCP



Implications of geo-distributed training

The impact on training throughput and cost depends on the model and cluster configuration
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Our work

We study when and how it makes sense to use GPUs across zones and regions for
large-scale, distributed training
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Methodology

2-step approach:

1. Profiling (model + cloud-specific info)

2. Throughput and cost estimation for data and pipeline parallelism
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Evaluation and Key Insights



Data Parallelism

If only A*N GPUs are available in one zone (e.g. A=0.5), when to use GPUs from multiple zones?
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Data Parallelism

If only A"N GPUs are available in one zone (A=0.5 or A=0.75), when to use GPUs from multiple zones?
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Data Parallelism

If only A"N GPUs are available in one zone (A=0.5 or A=0.75), when to use GPUs from multiple zones?
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e Using zones from the same region is always beneficial

e Multiple regions in the same continent (e.g. US) has varying effects depending on the model (ratio of

compute to communication)

18



Data Parallelism

If only A"N GPUs are available in one zone (A=0.5 or A=0.75), when to use GPUs from multiple zones?
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e Using zones from the same region is always beneficial
e Multiple regions in the same continent (e.g. US) has varying effects depending on the model (ratio of
compute to communication)

¢ Inter-continental training is detrimental to both throughput and cost



Pipeline Parallelism
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e Using multiple regions for pipeline parallelism has marginal effects on throughput:

o Pipelining of computation with activation/gradient exchange

o Small-sized per-layer activations even for big models

e However, the cost for multi-region or inter-continental setups is significant
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Data + Pipeline Parallelism
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Data + Pipeline Parallelism
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Key Insights

e Spreading training across zones in the same region has minimal effects in training
throughput

e Pipeline parallelism is much more tolerant to crossing zone boundaries compared
to data parallelism

e Across-continental training is detrimental to data parallelism

e With 2D parallelism, maintain data parallel traffic within one region
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Advances in ML have led to GPU shortage in
the public cloud
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Using GPUs from multiple cloud regions can help the training of
large models, but has 2 implications:
reduced network bandwidth and data exchange charges
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We study when and how does it make sense to use GPUs
across zones and regions for large-scale, distributed training
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Key Insights:

Spreading training across zones in the same region has
minimal effects in training throughput

Pipeline parallelism is much more tolerant to crossing
zone boundaries compared to data parallelism

Across-continental training is detrimental to data
parallelism

With 2D parallelism, maintain data parallel traffic within
one region 24
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lteration time estimation

e Data parallelism

Ii=(tr+tp) - (ga—1)

M
+ma.X((tf+tb),2 . (N— 1) s N_b) +tu
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lteration time estimation

e Data parallelism

We consider:
e Computation (with gradient accumulation)
e All-reduce based synchronization

e Computation-Communication overlap

T =|(tr +tp) - (ga—1)

+ max((tf +1p),2- (N—-1) -
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lteration time estimation

e Data parallelism

We consider:
e Computation (with gradient accumulation)
e All-reduce based synchronization

e Computation-Communication overlap

TIi=(tr+1tp) - (ga—1)

+ max((tf+1tp)f2- (N —1) - i)
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lteration time estimation

e Data parallelism

We consider:
e Computation (with gradient accumulation)
e All-reduce based synchronization

e Computation-Communication overlap
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lteration time estimation

e Pipeline parallelism

We adapt the formula followed by [1] for 1F1B [2] microbatch scheduling

[1] Li et al, AMP: Automatically Finding Model Parallel Strateqgies with Heterogeneity Awareness, NeurlPS'22

[2] Narayanan et al, PipeDream: Generalized Pipeline Parallelism for DNN Training, SOSP'19
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lteration time estimation

e Pipeline parallelism

We adapt the formula followed by [1] for 1F1B [2] microbatch scheduling

e Data + Pipeline parallelism

We assume a grid of D pipelines, each with P stages

tsynczz'(D_l)'%bmin

titer = tpp + Lsync

[1] Li et al, AMP: Automatically Finding Model Parallel Strateqgies with Heterogeneity Awareness, NeurlPS'22

[2] Narayanan et al, PipeDream: Generalized Pipeline Parallelism for DNN Training, SOSP'19
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Cost estimation

e Computation cost: Ccomp = liter * Z (num_om,; - cost;)

zone I
. . t Iteration time
e Communication cost: C..,, = 2. data;j - cjj ter
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U workers iandj
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