
• Guoliang He, Eiko Yoneki

• University of Cambridge, UK

SIP: Autotuning GPU Native Schedules via
Stochastic Instruction Perturbation

1

SIP

BACKGROUND: LLMS

• LLMs are remarked by their substantial
computational demands

• To fully utilize the hardware resources, ML
practitioner designs customized CUDA
kernels, such as Flash Attention [1]

• In this work, we explore the optimization at
GPU assembly level

[1] Tri Dao, et. al. 2022.

2

BACKGROUND: CUDA COMPILATION

CUDA kernels compilation pipeline:

C++/CUDA → PTX → SASS → Cubin

• C++/CUDA: the common programming interface; CUDA kernels as a C++ function

• PTX: the lowest officially supported programming interface, usually embedded in CUDA/C++

• SASS: GPU native instructions. GPU architectures-dependent. (SIP optimizes at this level)

• Cubin: executable binary 3

BACKGROUND: GPU ASSEMBLY OPTIMIZATION

• Latency Hiding: overlap memory I/O and computation units

• GPU executes static instruction schedule

• Manually reordering the instruction schedules is performed by prior works [2]. Trial-and-
error is proposed to find the optimal sequences [3]

• Observation: large amount of time and effort are needed to optimize one CUDA kernel

[2] D. Yan, et. al. 2020. [3] X. Zhang, el. al. 2017

4

MOTIVATIONS

Limitations:
• Manual scheduling is error-prone and requires in-depth

CUDA expertise

• Cannot keep up with the development of new operators

Method:
• We aim to apply automatic optimization by defining a

search space of possible instruction schedules and perform
stochastic search

5

SIP

Search space:
• Original: full permutation of instructions; computationally

intractable

• Pruning: consider only global read and write memory
instructions, e.g. LDG, STG etc

Mutation:
• Randomly select an instruction and reorder an instruction

above or below

Feedback signal:
• Assemble the mutated SASS and run on GPUs

6

GPUs

search engine

mutants runtime

Putting together:
• Use simulated annealing to form the

control loop

• Simulated annealing is a metaheuristic
stochastic optimization method to explore
a discrete search space

SIP

7

IMPLEMENTATION

Integrate to OpenAI Triton:
• A MLIR-based compiler to write CUDA kernels

• Pytorch 2’s default backend

• 1 line of code change to use SIP

Workflow: search then look-up

Probabilistic Testing:
• The formal semantics of SASS is closed-source

• Probabilistic testing to evaluate end-to-end
equivalency

• The compiler hint ret_ptr allows SIP to generate
reference input/output

8

EVALUATIONS

• CUDA kernels: fused attention (flash-attention) and fused GEMM-leakyReLU

• GPU: NVIDIA A100 80GB

• Software: NVCC 12.2 and Triton v2.1.0

• Profiler: Nsight Compute

9

KERNEL THROUGHPUT

10

TRANSFORMATION CORRECTNESS

11

DISCOVERING BETTER SCHEDULES

12

SUMMARY

SIP:
• Automatically optimize GPUs-

native instruction schedules

TODOs:
• Apply static analysis to guarantee

end-to-end equivalency
• Investigate better search

algorithms

Questions? Email:
gh512@cam.ac.uk Thank you! 13

	Slide Number 1
	Background: LLMs
	Background: CUDA compilation
	Background: GPU assembly optimization
	Motivations
	SIP
	Slide Number 7
	Implementation
	Evaluations
	Kernel throughput
	Transformation correctness
	Discovering better schedules
	Summary

