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Scaling Up & Scaling Down

Large Workloads Require Scaling 
Up: Distributed Training

Distributing one job across many 
GPUs, pooling resources

GPT-2 pre-training requires 
minimum 8 A100s

GPT-3 training in 11 minutes with 
3584 H100s

Can we Scale Down Smaller 
Workloads?

Older models
Smaller parameter counts

Image classifiers
Fine-tuning

Inference
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Background on Multi-Instance GPUs

Full A100
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Goal: Understand how multiplexing concurrent 
workloads on MIG change performance and 

energy with various workloads
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Experimental Design
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Experimental Design
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Experimental Design
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Methodology & Design of Experiments

1. Run identical copies of given workload on each slice

2. Train using maximum batch size permitted by a slice’s 

memory

3. Query nvidia-smi power every 250ms & record time to 

complete iterations

4. Divide by number of samples, normalize to full GPU, 

full power
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Profiling Metrics

GPU Provider Training Time (ns / example)
Rate examples are processed across all slices in a given 

configuration

GPU Provider Energy (nJ / example)
Average energy per example while all slices running

Client Training Time (ns / example)
Rate examples are processed for an individual client’s workload 

in a given configuration
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Power Capping Has Trade-Offs
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Power Capping Has Trade-Offs
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Power Capping Has Trade-Offs

Power capping acts as a dial between speed 

& energy
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MIG Enables More Jobs in Less Time at Lower Energy

Energy vertical, training time horizontal per example

Down & Left inside box: faster speeds, less energy

Power capping: dial between speed & energy

At every power cap, every multiplexed MIG 

configuration trains at less time, less energy
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MIG Enables More Jobs in Less Time at Lower Energy

Energy vertical, training time horizontal per example

Down & Left inside box: faster speeds, less energy

Power capping: dial between speed & energy

At every power cap, every multiplexed MIG 

configuration trains at less time, less energy

Throttled MIG at 200W Beats Unthrottled 

Full GPU by 5% Performance, 20% Energy

MIG makes power capping more effective
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MIG Effectiveness Consistent Across Image Classifiers

Down & Left inside box: faster speeds, less energy

Every MIG trains at less time, less energy

Results hold across image classifiers of 

similar parameter counts regardless of other 

model differences
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MIG Effectiveness Consistent Across Image Classifiers

Down & Left inside box: faster speeds, less energy

Every MIG trains at less time, less energy

Results hold across image classifiers of 

similar parameter counts regardless of other 

model differences

Results consistent between models within 

±1.5% energy, ±0.7% training time on 250W

Results widen with power capping: ±8% 

energy, ±10% training time on 150W



23 | Characterizing Performance, Energy Consumption of MIGs

MIG Effectiveness Drops with BERT 

Worse effectiveness on BERT transformer: 

7% faster at 4% less energy

Down & Left inside box: faster speeds, less energy

Every MIG trains at less time, less energy

Results hold across image classifiers of 

similar parameter counts
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MIG Effectiveness Drops with BERT 

25.6M 23.9M

14M 110M

Worse effectiveness on BERT transformer: 

7% faster at 4% less energy

Down & Left inside box: faster speeds, less energy

Every MIG trains at less time, less energy

Results hold across image classifiers of 

similar parameter counts
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MIG Effectiveness Continues to Decline on GPT-2 Pre-Training

14M 110M 1.54B

GPT-2 Pre-Training Not Suitable Use-case for MIG

Higher parameter count leads to worse MIG effectiveness
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MIG on GPT-2 Fine-Tuning with Largest Batch Possible 

GPT-2 Pre-Training Not 

Suitable Use-case for MIG

Initially, fine-tuning GPT-2 

Medium (350M) unpromising

Fine-tuning needs smaller 

batch sizes: less samples lead 

to overfitting and longer train 

times
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Challenging the Batch Size Assumption on Fine-Tuning

GPT-2 Pre-Training, 

Fine-Tuning Large Batch Poor

Constant, small batches result 
in strongest MIG gains
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Optimal MIG Effectiveness Unlocked on Fine-Tuning

GPT-2 Pre-Training, Fine-Tuning Large Batch 

Poor

Constant, small batches result in strongest MIG 
gains

250W: 59.4% faster at 26.2% less energy

150W: 54.6% faster at 42% less energy
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Optimal MIG Effectiveness Unlocked on Fine-Tuning

GPT-2 Pre-Training, Fine-Tuning Large Batch 

Poor

Constant, small batches result in 

unprecedented MIG gains

Theory: Fine-tuning requires memory more than 

compute resources

Scaling down GPU most effective with 

fine-tuning
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Latency on Individual Job Impacts Roughly 1:1 with Partition Size

Provider throughput gains do cause client 

jobs slowdown

Slowdown roughly proportional to size of 

resource: 1/7th GPU has 1/7th performance

On dashed line: performance to portion of GPU is 1:1
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Latency Improves for Fine-Tuning, Decreases for Larger Models

GPT-2 Pre-Train experiences 

worse-than-linear slowdowns

GPT-2 Fine-Tuning experiences 

better-than-linear slowdowns

Slowdown roughly proportional to 

size of resource: 1/7th GPU has 1/7th 

performance

Smaller parameter models & fine-tuning provide optimal MIG performance for both provider & client
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Conclusions

MIG’s competitive benefits provide increased throughput at decreased 
power for nearly all models

Partitioning (MIG) benefit decreases as model parameter size increases

Clients may experience delays for provider gains, yet also experience 
better-than-linear slowdowns

Greatest success on LLM fine-tuning, worst performance on LLM 
pre-training



Thank you! Questions?
connor.espenshade@columbia.edu
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