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Scaling Up & Scaling Down

Large Workloads Require Scaling
Up: Distributed Training

Distributing one job across many
GPUs, pooling resources
GPT-2 pre-training requires
minimum 8 A100s
GPT-3 training in 11 minutes with
3584 H100s
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Can we Scale Down Smaller
Workloads?

Older models
Smaller parameter counts
Image classifiers
Fine-tuning
Inference
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Background on Multi-Instance GPUs

Full A100

3 | Characterizing Performance, Energy Consumption of MIGs 2% COLUMBIA | ENGINEERING
TN TheF

‘u Foundation School of Engineering and Applied Science



Background on Multi-Instance GPUs

4 compute

Full A100

4 | Characterizing Performance, Energy Consumption of MIGs 2% COLUMBIA | ENGINEERING
TN TheF

u Foundation School of Engineering and Applied Science



Background on Multi-Instance GPUs

o
Full A100 »

5 | Characterizing Performance, Energy Consumption of MIGs 2% COLUMBIA | ENGINEERING
T

The Fu Foundation School of Engineering and Applied Science



Background on Multi-Instance GPUs
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Background on Multi—lnstance GPUs

N

Multiplexed jobs running in parallel, inaccessible from other slices, with resources self-contained

Memory
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Background on Multi-Instance GPUs
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Power capping throttles GPU by capping power available for all slices
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Goal: Understand how multiplexing concurrent
workloads on MIG change performance and
energy with various workloads
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Experimental Design
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Experimental Design 1 Epoch or 100x steady state

Baseline / BERT, Image Classifiers, GPT-2

Memory
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Memory
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Experimental Design 1 Epoch or 100x steady state

/ BERT, Image Classifiers, GPT-2
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Power Cap: 250, 200, 150W

Memory
Controller

Memory
Controller

Power Cap: 250, 200, 150W

Memory
Controller

&5 COLUMBIA | ENGINEERING
TN TheF

‘u Foundation School of Engineering and Applied Science



Methodology & Design of Experiments

1. Run identical copies of given workload on each slice

2. Train using maximum batch size permitted by a slice’s
memory

3. Query nvidia-smi power every 250ms & record time to
complete iterations

4. Divide by number of samples, normalize to full GPU,

full power
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Profiling Metrics

~
GPU Provider Training Time (ns / example)
Rate examples are processed across all slices in a given
configuration
/
~
GPU Provider Energy (nJ / example)
Average energy per example while all slices running

/

Client Training Time (ns / example)
Rate examples are processed for an individual client’s workload
in a given configuration
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Power Capping Has Trade-Offs

Resnet50
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Power Capping Has Trade-Offs
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MIG Enables More Jobs in Less Time at Lower Energy

Resnet50
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MIG Enables More Jobs in Less Time at Lower Energy

Resnet50
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Throttled MIG at 200W Beats Unthrottled
Full GPU by 5% Performance, 20% Energy

MIG makes power capping more effective
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MIG Effectiveness Consistent Across Image Classifiers

Resnet50 Densenet169
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MIG Effectiveness Consistent Across Image Classifiers
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MIG Effectiveness Drops with BERT

Results hold across image classifiers of

similar parameter counts

Worse effectiveness on BERT transformer:

7% faster at 4% less energy
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MIG Effectiveness Drops with BERT

Results hold across image classifiers of

similar parameter counts

Worse effectiveness on BERT transformer:

7% faster at 4% less energy
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MIG Effectiveness Continues to Decline on GPT-2 Pre-Training

InceptionV3 BERT
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GPT-2 Pre-Training Not Suitable Use-case for MIG

Higher parameter count leads to worse MIG effectiveness
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GPT-2 Pre-train
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MIG on GPT-2 Fine-Tuning with Largest Batch Possible

Initially, fine-tuning GPT-2
Medium (350M) unpromising

Fine-tuning needs smaller
batch sizes: less samples lead
to overfitting and longer train
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Challenging the Batch Size Assumption on Fine-Tuning
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Optimal MIG Effectiveness Unlocked on Fine-Tuning
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Optimal MIG Effectiveness Unlocked on Fine-Tuning

GPT-2 Fine-tune (Small Batches)
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Latency on Individual Job Impacts Roughly 1:1 with Partition Size

BERT Resnet50 Densenet169 InceptionV3
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Provider throughput gains do cause client Slowdown roughly proportional to size of

jobs slowdown resource: 1/7th GPU has 1/7th performance
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Latency Improves for Fine-Tuning, Decreases for Larger Models

GPT-2 Pre-train GPT-2 Fine-tune
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Smaller parameter models & fine-tuning provide optimal MIG performance for both provider & client
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Conclusions

MIG’s competitive benefits provide increased throughput at decreased
power for nearly all models

Partitioning (MIG) benefit decreases as model parameter size increases

Greatest success on LLM fine-tuning, worst performance on LLM
pre-training

Clients may experience delays for provider gains, yet also experience
better-than-linear slowdowns
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Thank you! Questions?
connor.espenshade@columbia.edu
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