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Background and Motivation

e Recommender systems using matrix factorisation to update
factors P and Q.
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(Source - https://www.linkedin.com/pulse/fundamental-matrix-factorization-recommender-system-saurav-kumar)

e Distributed approaches promise increased privacy.
o Update locally, only share Q (item factors), and then
aggregate on a server or with neighbours.

e However, sharing Q can leak information about the user
profile.
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https://www.linkedin.com/pulse/fundamental-matrix-factorization-recommender-system-saurav-kumar

Distributed Learning Topologies

(a) Federated Learning (b) FL-ARW (c) GL-ARW

ﬁ' compute model updates
——send local updates L
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e Federated Learning (FL)
o Clients communicate only with a central server.
e Anonymous Random Walks (FL-ARW)
o Clients communicate in sequential walks before communicating with
server.
o Small (Beta) probability of not updating the model weights.
e Gossip-learning ARW (GL-ARW)
o ARW, but with no central server.
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Privacy Attacks
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e Profile reconstruction.
o PCA on updates can easily 1= /
reconstruct profiles from updates. | =, <

e Membership inference.
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Figure 2: (A) PCA vectors and plotted items in a 2d matrix

O Llnear Reg reSSIOn methOd + prlor factorisation update. (B) Plotted representations of items in
knowledge can find who
contributed to an update.

an update to which multiple users have contributed




Results

ARW converges faster when measured in
communication cost (fig. 3).
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ARW leaks less information when

measured via distance correlation (fig. 4).

ARW variants are more robust to profile

reconstruction attack (fig. 6).

ARW becomes more robust to

membership inference as walk length

increased (fig. 8)
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Figure 3: Convergence for the various topologies on three,
measuring HitRatio@ 10 against communication cost. The
number after ARW indicates the ratio of random walks to
clients.
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Figure 4: Average distance correlation under different topolo-
gies (lower value is better).
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Figure 6: Profile Reconstruction Attack success rate

Figure 8: Membership inference varying the walk length.
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