

Sponge: Inference Serving with Dynamic SLOs Using In-Place Vertical Scaling

Kamran Razavi⁺, Saeid Ghafouri[^], Max Mühlhäuser⁺, Pooyan Jamshidi^{*}, Lin Wang[‡]

⁺University of Darmstadt, [^]Queen Mary University of London,

*University of South Carolina, ‡Paderborn University

"More than 90% of data center compute for ML workload, is used by inference services"

Inference Serving Requirements

Highly Responsive! (end-to-end latency guarantee)

Cost-Efficient! (least resource consumption)

Inference Serving Requirements

Dynamic User -> Dynamic Network Bandwidths

L Users move

- Fluctuations in the network bandwidths
 - Reduced time-budget for processing requests

network latency processing latency

Dynamic User -> Dynamic Network Bandwidths

L Users move

- Fluctuations in the network bandwidths
 - Reduced time-budget for processing requests

Inference Serving Requirements

Vertical Scaling DL Model Profiling

L How much resource should be allocated to a DL model?

- ${\scriptstyle \rm L}$ Latency/batch size $\rightarrow~$ linear relationship
- $_{\rm L}$ Latency/CPU allocation $\rightarrow~{\rm inverse}~{\rm relationship}$

System Design

3 design choices:

- 1. In-place vertical scaling
 - Fast response time
- 2. Request reordering
 - High priority requests
- 3. Dynamic batching
 - Increase system utilization

Evaluation

SLO guarantees (99th percentile) with up to 20% resource save up compared to static resource allocation.

Future Directions

while guaranteeing SLOs?

