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“More than 90% of data center compute for ML
workload, is used by inference services”




Inference Serving Requirements

Highly Responsive! Cost-Efficient!
(end-to-end latency guarantee) (least resource consumption)
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Resource Scaling
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In-place Vertical Scaling Horizontal Scaling
(more responsive) (more cost efficient)




Dynamic User -> Dynamic Network Bandwidths

L Users move

L Fluctuations in the network
bandwidths

L Reduced time-budget for
processing requests
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Inference Serving Requirements

Highly Responsive! Cost-Efficient!

(end-to-end latency guarantee) (least resource consumption)
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Resource Scaling

Horizontal Scaling
(more cost efficient)




Vertical Scaling DL Model Profiling

. How much resource should be allocated to a DL model?
. Latency/batch size = linear relationship
. Latency/CPU allocation = inverse relationship
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System Design

3 design choices:

1. In-place vertical scaling Sponge
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Evaluation

SLO guarantees (99t percentile) with
up to 20% resource save up compared — Sponge  —— FA2 cPUS CPUTS
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https://github.com/saeid93/sponge

Future Directions

Resource Scaling

Horizontal Scaling
(more cost efficient)

How can both scaling mechanisms be used jointly under a
dynamic workload to be responsive and cost efficient
while guaranteeing SLOs?
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