Sponge: Inference Serving with Dynamic SLOs Using In-Place Vertical Scaling

Kamran Razavi†, Saeid Ghafouri^, Max Mühlhäuser†, Pooyan Jamshidi*, Lin Wang‡

†University of Darmstadt, ^Queen Mary University of London,
*University of South Carolina, ‡Paderborn University
“More than 90% of data center compute for ML workload, is used by inference services”
Inference Serving Requirements

Highly Responsive!
(end-to-end latency guarantee)

Cost-Efficient!
(least resource consumption)
Inference Serving Requirements

Highly Responsive!
(end-to-end latency guarantee)

Cost-Efficient!
(least resource consumption)

Resource Scaling

In-place Vertical Scaling
(more responsive)

Horizontal Scaling
(more cost efficient)
Dynamic User -> Dynamic Network Bandwidths

- Users move
 - Fluctuations in the network bandwidths
 - Reduced time-budget for processing requests

SLO

network latency processing latency
Dynamic User -> Dynamic Network Bandwidths

- Users move
 - Fluctuations in the network bandwidths
 - Reduced time-budget for processing requests

SLO

network latency processing latency

Graphs showing throughput and remaining SLO over time.
Inference Serving Requirements

Highly Responsive!
(end-to-end latency guarantee)

Cost-Efficient!
(least resource consumption)

Resource Scaling

Sponge!

In-place Vertical Scaling
(more responsive)

Horizontal Scaling
(more cost efficient)
Vertical Scaling DL Model Profiling

- How much resource should be allocated to a DL model?
 - Latency/batch size \rightarrow linear relationship
 - Latency/CPU allocation \rightarrow inverse relationship

![ResNet18 graph showing the relationship between CPU cores and model latency for different batch sizes.](image-url)
3 design choices:

1. In-place vertical scaling
 • Fast response time

2. Request reordering
 • High priority requests

3. Dynamic batching
 • Increase system utilization
Evaluation

SLO guarantees (99th percentile) with up to 20% resource save up compared to static resource allocation.

Sponge source code: https://github.com/saeid93/sponge
Future Directions

Resource Scaling

Sponge!

In-place Vertical Scaling
(more responsive)

Horizontal Scaling
(more cost efficient)

How can both scaling mechanisms be used jointly under a dynamic workload to be responsive and cost efficient while guaranteeing SLOs?