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Two Distinct Eras of Compute Usage in Training AI Systems
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C02 Equivalent Emissions (Tonnes) by Selected Machine Learning Models and Real Life Examples, 2022
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Research Questions

* RQ1l: What MLES domains are typically considered when assessing the
environmental impact?

* RQ2: In which MLOps phases have environmental costs been studied?

* RQ3:What strategies have been proposed to assess and reduce the environmental
impact associated with MLES development and operations?

* RQ4:What metrics have been developed and utilized to monitor the environmental
cost across MLOps?

« RQ5:What sustainability practices and lessons can be drawn from prior research?
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RQ1: Chronological Distribution of Identified Papers:
Insights by data modality
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A Dual-Dimensional View:
MLOps Phases vs. Contribution type
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Metrics to Monitor the System

MLOps Phase Metric Description Ref

End-to-End An extension of the metric defined in [22]. [17]
Introducing Software Carbon Intensity (SCI) for real-time cloud instance carbon | [16]
emissions.

Experimentation and Retraining | Total power consumption estimated by combining GPU, CPU, and DRAM usage, | [57]
multiplied by Power Usage Effectiveness (PUE).

Training and Inference Deep Learning metrics gauge accuracy and energy usage. [30]

Experimentation, Retraining | Using CodeCarbon [53] to estimate energy consumption by CPU and GPU. [44]
and Inference




Guidelines and lessons learned

MLOps Description of Lessons Learned and Guideline

Phase

End-to-end Hardware energy consumption meters reveal 20% error. We need more precise measurement tools.
There is a disparity between efficient and sustainable ML, and nuances between sustainability metrics
and operational emissions. Proposed systems thinking.
Devised guidelines to help understand the environmental implications of Al computing and mitigate its
carbon footprint through optimizations in hardware, software, and operational practices.

ta Reducing data input size through methods like random sampling enhances ML energy efficiency.
Baanagement Stratified sampling decreases input data features and yields energy savings.
L Recommends using random optimization over Bayesian optimization for hy perparameters as accuracy

Traininig . P I . ) .
gains diminish with increased energy usage in neural network architectures.
During multilayer perceptron classifier hyperparameter optimization, there is a point where increased
energy consumption minimally improves accuracy.
Current deep learning models are unsustainable due to their high data and computational demands. We
need more efficient methods in ML to address sustainability challenges.
Selecting energy-efficient architectures for deep learning training lowers energy usage while maintaining
accuracy. The study highlights how training environments impact energy consumption and recommends
factoring this in when selecting models.
Only a minority of the 170,000 Hugging Face (HF) models report COs emissions from training. Factors
such as model and dataset size correlate with COs emissions. Fine-tuning shows similar emissions
compared to full pretraining.
Hyperparameters in transformer models affect power consumption and model quality. Lower hidden
dropout probabilities improve perplexity with minimal energy impact. While top-performing models
face a trade-off between perplexity reduction and energy minimization. And increasing hidden layers
increases energy usage and lowers perplexity.
There is a link between carbon emissions, CNN architecture, and uncontrollable factors like cloud
hosting location. Experimental design influences CININ training energy efficiency.
THETA guidelines to reduce carbon emissions in model development through hyperparameter opti-
mization, energy-efficient hardware, training logistics, and automatic mixed precision training.
97% of the overall COs emissions in Federated Learning (FL) come from client compute and client-server
communications. We need energy-etficient and high-performance production FL systems.

Inference Ewvaluate LLMs, examines inference performance and energy usage in distributed settings. It shows how

input complexity affects performance with specific settings and hardware.

Performance of ML models can be improved without increasing energy usage, but overall system
integration/adoption may raise energy consumption {akin to better roads yielding more cars).

GFPFT models have a significant environmental impact. We should prioritize sustainability in their
deployment: addressing embodied carbon, and seek sustainable solutions for large model inference

Examined energy consumption of LLMs. Identified significant variations in efficiency influenced by task,
modality, model size, and architecture. stressed the trade-off between the advantages of multi-purpose
systems, their energy expenditure, and resulting carbon emissions

Training and

Inference

GPU energy use varies greatly. Inference with large models is energy intensive. Important to select
COy-friendly cloud regions.

Hardware and datacenter optimization yield substantial reduction in energy consumption for training
and inference of natural language processing{INLP) apps.

Knowledge distillation consumes 50% more energy than pre-training. Energy usage scales primarily
with time and token count. In BERT-based models, inference energy costs vary with sequence lengths.

Energy use and run-time differ for PyTorch and TensorFlow; better documentation on energy costs is
needed.

Guidelines for the ML community with established methods to estimate energy cost.

Training
and Retrain-
ing

BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) training accounts
for about 22% of emissions, with the rest coming from intermediate training and evaluation. Estimates
of future embodied emissions will become the dominant source of emissions in ML.
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