The Environmental Cost of Engineering Machine Learning-Enabled Systems: A Mapping Study

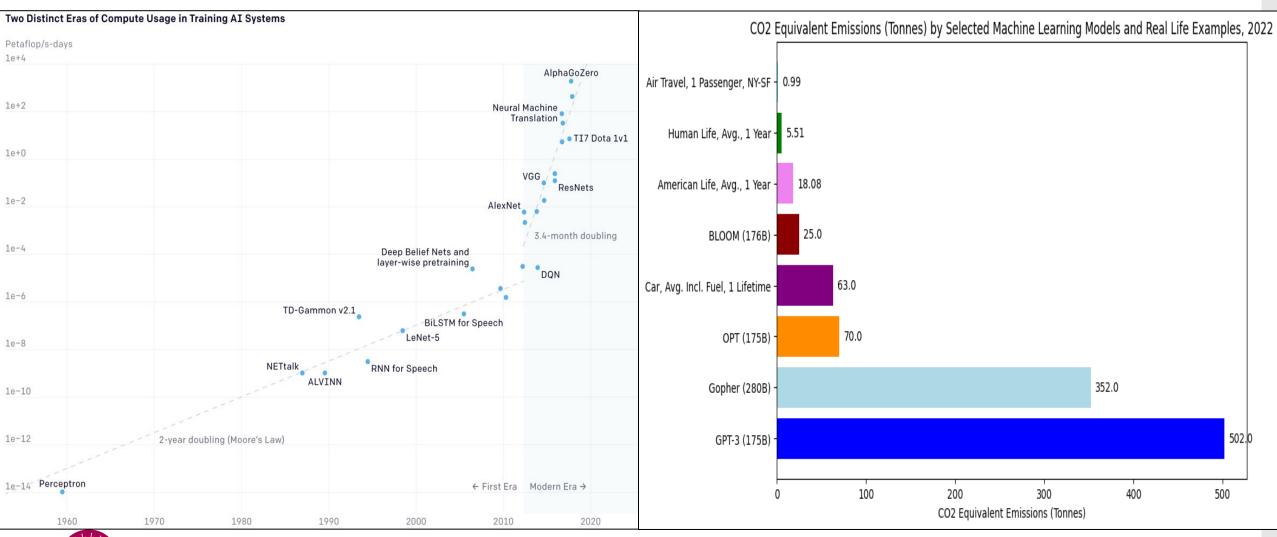
Presenter: Kouider Chadli

Co-Author(s):

1-Dr Takfarinas Saber, University of Galway

2-Prof. Goetz Botterweck, TCD

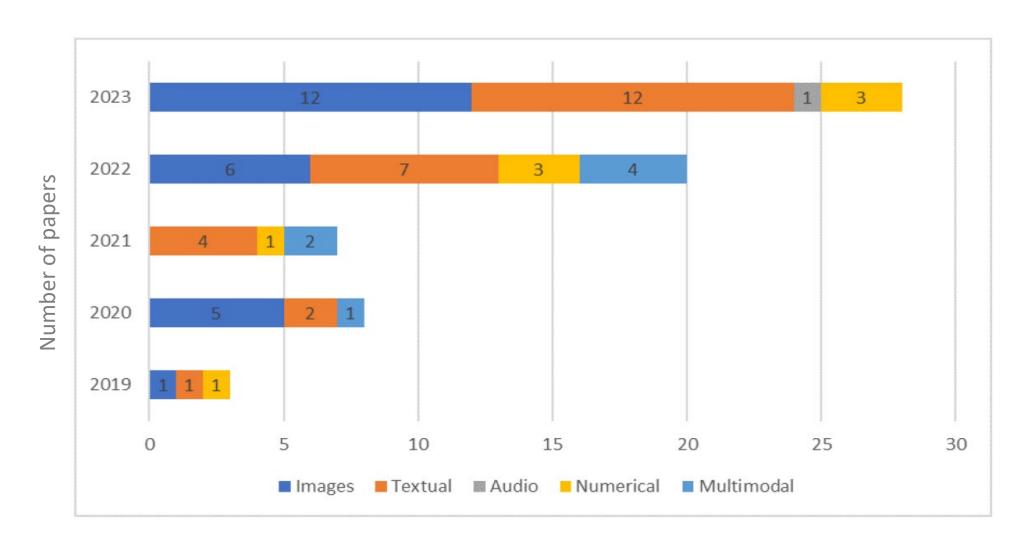
OLLSCOIL NA GAILLIMHE
UNIVERSITY OF GALWAY



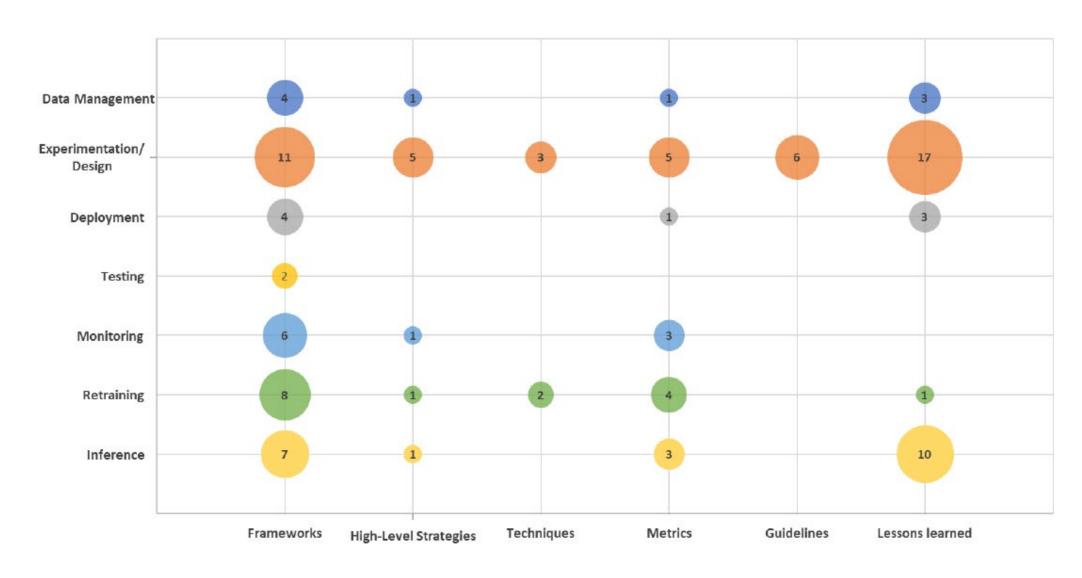
Research Questions

- RQ1: What MLES domains are typically considered when assessing the environmental impact?
- RQ2: In which MLOps phases have environmental costs been studied?
- RQ3:What strategies have been proposed to assess and reduce the environmental impact associated with MLES development and operations?
- RQ4:What metrics have been developed and utilized to monitor the environmental cost across MLOps?
- RQ5:What sustainability practices and lessons can be drawn from prior research?

RQ1: Chronological Distribution of Identified Papers: Insights by data modality



A Dual-Dimensional View: MLOps Phases vs. Contribution type



Metrics to Monitor the System

MLOps Phase		Metric Description	Ref
End-to-End		An extension of the metric defined in [22].	[17]
Elia-to-Elia		Introducing Software Carbon Intensity (SCI) for real-time cloud instance carbon	[16]
		emissions.	
Experimentation and Retraining		Total power consumption estimated by combining GPU, CPU, and DRAM usage,	[57]
		multiplied by Power Usage Effectiveness (PUE).	
Training and Inference		Deep Learning metrics gauge accuracy and energy usage.	[30]
Experimentation,	Retraining	Using CodeCarbon [53] to estimate energy consumption by CPU and GPU.	[44]
and Inference			

Guidelines and lessons learned

MLOps	Description of Lessons Learned and Guideline			
Phase				
D 1. 1	Hardware energy consumption meters reveal 20% error. We need more precise measurement tools.			
End-to-end	There is a disparity between efficient and sustainable ML, and nuances between sustainability metrics			
	and operational emissions. Proposed systems thinking.			
	Devised guidelines to help understand the environmental implications of AI computing and mitigate its			
	carbon footprint through optimizations in hardware, software, and operational practices.			
Data	Reducing data input size through methods like random sampling enhances ML energy efficiency.			
Data Management	Stratified sampling decreases input data features and yields energy savings.			
	Recommends using random optimization over Bayesian optimization for hyperparameters as accuracy			
Traininig	gains diminish with increased energy usage in neural network architectures.			
	During multilayer perceptron classifier hyperparameter optimization, there is a point where increased			
	energy consumption minimally improves accuracy.			
	Current deep learning models are unsustainable due to their high data and computational demands. We			
	need more efficient methods in ML to address sustainability challenges.			
	Selecting energy-efficient architectures for deep learning training lowers energy usage while maintaining			
	accuracy. The study highlights how training environments impact energy consumption and recommends			
	factoring this in when selecting models.			
	Only a minority of the 170,000 Hugging Face (HF) models report CO ₂ emissions from training. Factors			
	such as model and dataset size correlate with CO ₂ emissions. Fine-tuning shows similar emissions			
	compared to full pretraining.			
	Hyperparameters in transformer models affect power consumption and model quality. Lower hidden			
	dropout probabilities improve perplexity with minimal energy impact. While top-performing models			
	face a trade-off between perplexity reduction and energy minimization. And increasing hidden layers			
	increases energy usage and lowers perplexity.			
	There is a link between carbon emissions, CNN architecture, and uncontrollable factors like cloud			
	hosting location. Experimental design influences CNN training energy efficiency.			
	THETA guidelines to reduce carbon emissions in model development through hyperparameter opti-			
	mization, energy-efficient hardware, training logistics, and automatic mixed precision training.			
	97% of the overall CO ₂ emissions in Federated Learning (FL) come from client compute and client-server			
	communications. We need energy-efficient and high-performance production FL systems.			
Inference	Evaluate LLMs, examines inference performance and energy usage in distributed settings. It shows how			
	input complexity affects performance with specific settings and hardware.			
	Performance of ML models can be improved without increasing energy usage, but overall system			
	integration/adoption may raise energy consumption (akin to better roads yielding more cars).			
	GPT models have a significant environmental impact. We should prioritize sustainability in their			
	deployment; addressing embodied carbon, and seek sustainable solutions for large model inference			
	Examined energy consumption of LLMs. Identified significant variations in efficiency influenced by task,			
	modality, model size, and architecture. stressed the trade-off between the advantages of multi-purpose			
	systems, their energy expenditure, and resulting carbon emissions			
Training and	GPU energy use varies greatly. Inference with large models is energy intensive. Important to select			
Inference	CO ₂ -friendly cloud regions.			
interence	Hardware and datacenter optimization yield substantial reduction in energy consumption for training			
	and inference of natural language processing(NLP) apps. Vnowledge distillation consumes 50% more energy than pre-training. Energy usage scales primarily.			
	Knowledge distillation consumes 50% more energy than pre-training. Energy usage scales primarily with time and token count. In BERT-based models, inference energy costs vary with sequence lengths.			
	Energy use and run-time differ for PyTorch and TensorFlow; better documentation on energy costs is needed.			
Training	Guidelines for the ML community with established methods to estimate energy cost.			
Training and Retrain-	BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) training accounts for about 22% of emissions, with the rest coming from intermediate training and evaluation. Estimates			
	of future embodied emissions will become the dominant source of emissions in ML.			
ing	of future embodied emissions will become the dominant source of emissions in ML.			

Thank you

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY