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Abstract: Training DLRMs is increasingly dominated by all-to-all and many-to-
many communication patterns. The dynamic Opera network optimizes bulk
data flows using direct forwarding through time-varying circuits and has been
shown to be particularly useful for all-to-all traffic patterns while remaining
cost-equivalent with static network topologies. We propose co-designing

DLRM models with the Opera network to improve training time while matching
network infrastructure cost with a traditional fat-tree topology.
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Model-A (L) and Model-I (R) DLRM traffic proportions using a fat-tree network with ring all-
reduce. All-to-all/many-to-many communication from embedding tables dominates at
smaller scales, but all-reduce traffic increases as MLPs are replicated at larger scales.
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Model-A (L) and Model-lI (R) training iteration times on fat-tree, Opera, and TopoOpt
networks at 16, 128 and 1024 node scales.
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Model-A (L) and Model-I (R) communication and computation task completion event

breakdown for fat-tree and Opera networks at 16 (Top) and 1024 (Bottom) node scales.

Note that each mark is the time at which a task completed, i.e., does not denote an entire
task runtime.
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Conclusion: Our initial results are promising, demonstrating up to 1.79x improvement over
a fat-tree network and better performance than the TopoOpt dynamically reconfigurable
network.



