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ABSTRACT

Energy consumption is a growing issue in data centers, im-
pacting their economic viability and their public image. In
this work we empirically characterize the power and energy
consumed by different types of servers. In particular, in or-
der to understand the behavior of their energy and power
consumption, we perform measurements in different servers.
In each of them, we exhaustively measure the power con-
sumed by the CPU, the disk, and the network interface under
different configurations, identifying the optimal operational
levels. One interesting conclusion of our study is that the
curve that defines the minimal CPU power as a function of
the load is neither linear nor purely convexr as has been pre-
viously assumed. Moreover, we find that the efficiency of the
various server components can be mazximized by tuning the
CPU frequency and the number of active cores as a function
of the system and network load, while the block size of 1/0
operations should be always maximized by applications. We
also show how to estimate the energy consumed by an ap-
plication as a function of some simple parameters, like the
CPU load, and the disk and network activity. We validate
the proposed approach by accurately estimating the energy of
a map-reduce computation in a Hadoop platform.

Categories and Subject Descriptors

B.8.2 [Performance and reliability]: Performance Anal-
ysis and Design Aids ; C.4 [Performance of systems]:
Measurement techniques.

General Terms

Measurement, Performance, Experimentation.
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Measurements; Power and energy consumption; DVFS; CPU;
Network; Disk 1/0.
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1. INTRODUCTION

Massive data centers are becoming common nowadays.
Large companies such as Google, Yahoo!, Amazon or Mi-
crosoft have deployed large data centers, housing tens of
thousands of servers, and consuming a huge amount of en-
ergy every year. According to Van Heddeghem et al. [8],
data centers’ total energy consumption in 2012 was about
270 TWh, which corresponds to almost 2% of the global
electricity consumption, and has an approximated annual
growth rate of 4.3%. This trend has driven researchers all
over the world to focus on energy efficiency in data cen-
ters. Examples of energy saving techniques proposed during
the recent years are virtualization plus consolidation and
scheduling optimization [12, 17]. However, industry require-
ments keep increasing, and more research is necessary.

In this paper, out of all possible components of a data
center, e.g., servers, routers, switches, etc., we concentrate
on the characterization of servers and the energy they con-
sume. Indeed, in order to obtain full benefit of the afore-
mentioned energy-efficient techniques, it is crucial to have
a good characterization of servers in the data center, as a
function of the utilization of the server’s components. That
is, it is necessary to know and understand the energy and
power consumption of servers and how this changes under
the different configurations. There is a large body of lite-
rature on characterizing servers’ energy and power consum-
ption. However, the existing literature does not jointly con-
sider phenomena like the irruption of multicore servers and
dynamic voltage and frequency scaling (DVFS) [21], which
are key to achieve scalability and flexibility in the architec-
ture of a server. With these new parameters, more variables
come into play in a server configuration. Learning how to
deal with these new parameters and how they interact with
other variables is important since this may lead to larger
savings.

It has been traditionally considered that the CPU is re-
sponsible for most of the power being consumed in a server,
and that this power increases linearly with the load. Al-
though the power consumed by the CPU is significant, we
believe that the power incurred by other elements of the
server, like disks and NICs (Network Interface Cards) are
not negligible, and have to be taken into account. More-
over, we believe that the assumption that CPU power con-
sumption depends linearly from the load in a server may be
too simplistic, especially when the server has multiple cores
and may operate at multiple frequencies. In fact, even the
way load is expressed has to be carefully defined (e.g., it
cannot be defined as a proportion of the maximal computa-



tional capacity of the CPU, since this value changes with the
operational frequency). Therefore, more complex/complete
models for the power consumed by a server are necessary.
In order to be consistent, these models have to be based on
empirical values. However, we found that there is a lack of
empirical work studying servers energy behavior.

Our work tries to partially fill this void by proposing
a measurement-based characterization of the energy con-
sumption of a server components with DVFS and multiple
cores. We evaluate here different server machines and eval-
uate what is the contribution to their power consumption
of the CPU, hard drive disk, and network card (NIC). Our
results support, for instance, our belief that more complex
models than linear are required for CPU power consumption.
From the measurements obtained from the servers we eval-
uate, we propose a holistic energy consumption characte-
rization, that accounts for the power consumed by CPU,
disk, and NIC. Our approach captures the influence of the
processing frequency and the multiple cores, not only to
the CPU power consumption, but also to that of disk in-
put/output (I/O) and NIC activity.

Main results and contributions.

Our main contributions are of two kinds: (¢) we propose a
methodology for empirically characterizing the energy con-
sumption of a server, and (i) we provide novel insights on
the power and energy consumption behavior of the most
relevant server’s components.

As concerns the methodology, we observe that active CPU
cycles per second (ACPS) is a convenient metric of CPU
load in architectures using multiple frequencies and cores.
We show how to isolate the contribution to energy/power
consumption due to CPU, disk I/O operations, and network
activity by just measuring the total server power consum-
ption and a few activity indicators reported by the operating
system. We also show that the baseline power consumption
of a server—i.e., the power consumed just because the server
is on—has a strong weight on the total server consumption.

As concerns the components’ characterization, we show
that, besides the baseline component, the CPU has the largest
impact among all components, and its power consumption
is not linear with the load. Disk 1/O operations are the
second highest cause of consumption, and their efficiency
is strongly affected by the 1/O block size used by the ap-
plication. Eventually, network activity plays a minor yet
not negligible role in the energy/power consumption, and
the network impact scales almost linearly with the network
transmission rate. All other components can be accounted
for in the baseline power consumption, which is subject to
minor variations under different operational conditions.

The main results of our campaign of measurements and
analysis can be listed as follows:

e The CPU consumption depends on the number of active
cores, the CPU frequency, and the load (in ACPS units).
Our measurements confirm that the power consumption
with a single active core at constant frequency can be
closely approximated by a linear function of the load. Ho-
wever, given a CPU frequency, the power consumption is
a concave function of the load and can be approximated
by a low-order polynomial. The power consumption for a
fixed load is, in general, minimized by using the highest
number of cores and the lowest frequency at which the
load can be served. However, the minimum achievable
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power consumption is a piecewise concave function of the
load.

e The power consumed by hard disks for reading and writ-
ing depends on CPU frequency and I/O block sizes. Both
reading and writing costs increase slightly with the CPU
frequency. While the consumption due to reading is not
affected by block size, the power consumed when writ-
ing increases with the block size. The reading efficiency
(expressed in MB/J) is barely affected by the CPU fre-
quency, while writing efficiency is a concave function of
the block size since it boosts the throughput of writing
until a saturation value is reached.

e The power consumption and the efficiency of the NIC,
both in transmission and reception, depends on the CPU
frequency, the packet size, and the transmission rate. The
efficiency of data transmission increases almost linearly
with the transmission rate, with steeper slopes correspond-
ing to lower CPU frequencies. Although a linear relation
between transmission rate and efficiency holds for data re-
ception as well, small packet sizes yield higher efficiency
in reception.

e Overall, we provide a holistic energy consumption model
that only requires a few calibration parameters for ev-
ery different server that we want to evaluate (a universal
power model will be too simplistic and inaccurate). We
validate our model by means of a server computing the
pagerank metric of a graph in a Hadoop platform, with
bulky network activity, and we found that the error due
our energy estimates is below 7%.

The power due to memory is not considered separately, but
as part of the other components’ consumption.

The rest of the paper is organized as follows. Section 2
describes the methodology we used for our experiments. Sec-
tion 3 presents the measurements we collected for our tested
servers, for every single component that we evaluated. Sec-
tions 4 is devoted to modeling the power consumption of the
servers based on calibration parameters that we have found
with our measurements. Section 5 discusses our findings and
their implications. Section 6 provides information about re-
lated works and, finally, Section 7 concludes the paper.

2. METHODOLOGY

In this section we introduce the measurement techniques
we used to characterize the power consumption of CPU
activity, disk access (read and write operations), and net-
work activity. Our measurements start characterizing the
CPU power consumption, from where we obtain informa-
tion about the baseline power consumption of the system.
After CPU and baseline characterization, we follow with ex-
periments for the other two components, namely, disk and
network. Note that CPU and baseline measurements are
of capital importance in order to evaluate the other com-
ponents, because any operation run in a machine is like a
puzzle with multiple pieces and we must know what is the
contribution of each one of these pieces. Consider that, we
are paying a cost just for having a server switched on and
the operating system running on it. Similarly, every time
we run a task in the system, some CPU cycles are needed in
order to execute it as well as to use the component that has
to perform the task. Hence, in order to understand the con-
tribution of any component, we first need to identify the



contribution of the CPU and compute the difference with
respect to the aforementioned baseline.

To explore the possible parameters determining the power
consumption of a server and to gain statistic consistency we
run our experiments multiple times. Similarly, we run these
experiments in different servers and architectures in order to
validate our results and give consistency to our conclusions.

2.1 Collecting system data and fixing frequency

parameters

One prerequisite for our experiments was having Linux
machines due to the kind of commands and benchmarks
we wanted to use and, mainly, because of the possibility of
adding some kernel modules and utilities,! which allows us
to change CPU frequencies at will. In a Linux system, CPU
activity stats are constantly logged, so we can periodically
read the core frequency and the number of active and passive
CPU ticks at each core.? Once we have the number of ticks
and the core frequency, since a tick represents a hundredth
of second, cycles can be calculated as 100 ticks/frequency.

We use active cycles per second (ACPS) instead of CPU
load percentage to characterize CPU load because the lat-
ter depends on the CPU frequency used, as the higher the
frequency the more the work that can be processed. Hence,
a percentage of load is not comparable when different fre-
quencies are used, while the amount of ACPS that can be
processed can be considered as an absolute magnitude. In
order to get (set) information about the operative frequency
of the system we used the cpufrequtils package.®> With
those tools, we can monitor the CPU frequency at which the
system works and assign different frequencies to the cores.
However, to limit the number of possible combinations to
characterize, we fix the frequency to be the same for all
cores.

22 CPU

In order to evaluate the CPU power consumption we pre-
pared a script based on the benchmark application, namely
lookbusy.? Note that lookbusy allows us to load one or
more CPU cores with the same load.Our lookbusy-based
experiment follows the next steps: we first fix the CPU fre-
quency to the lowest possible frequency in the system; then
we run lookbusy with fixed amount of load for one core
during timeslots of 30 seconds, starting with the maximum
load and then decreasing the load gradually. After the last
lookbusy run we measure the power consumed during an ad-
ditional timeslot with no lookbusy load offered. We register
the active cycles and the power used during each timeslot.

After taking these different samples for one frequency we
move to the immediately higher frequency (we can list and
change frequencies thanks to cpufrequtils) and repeat the
previous steps. After going through all the available fre-
quencies, we restart the whole process but increasing by one

!For instance cpufrequtils, acpi-cpufreq.

2File /proc/stat reports the number of ticks since the com-
puter started devoted to user, niced and system processes,
waiting (iowait), processing interrupts (i.e., irq and softirq),
and idle. In our experiments we count both waiting and idle
ticks as passive ticks, while we denote the aggregated value
of the rest of ticks as active.
3https://wiki.archlinux.org/index.php/CPU_
Frequency_Scaling

‘http://www.devin.com/lookbusy.
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the number of active cores. We repeat this whole process
until all the cores of the server are active. Note that when
we change the frequency of the cores we change it in all of
them, active or not, for consistency. Similarly, when we have
more than one active core, the load for all the active cores
will be the same.

Once explained the scheme of our experiments, we must
clarify the meaning of running a timeslot with no load. Note
that zero-load is clearly not possible as there is always going
to be load in the system due to, e.g., the operating sys-
tem. However, during the timeslot in which we do not run
lookbusy, we measure the power corresponding to the ope-
rational conditions which are as close as possible to the ones
of an idle system. Moreover, the decision of using timeslots
of 30 seconds is to guarantee enough, yet not excessive, time
for the measurements. In fact, as we start and stop look-
busy at the beginning and end of the timeslots, we need to
ignore the first and the last few seconds of measurements
in each timeslot to avoid measurement noise due to power
ramps and operational transitions.

The measured values of load (in ACPS) and power in each
timeslot are used to obtain a least squares polynomial fit-
tings curve. These fittings characterize the CPU power con-
sumption for each combination of frequency and number of
active cores. We will use as baseline power consumption of
each one of these configurations the zero-order coefficient of
the polynomial of these fittings curves.

2.3 Disks

The power consumption of the hard drive was evaluated
using 2 different scripts (for reading and writing) based on
the dd linux command.® We chose dd as it allows us to read
files, write files from scratch, control the size of the blocks
we write (read), control the amount of blocks written (read)
and force the commit of writing operations after each block
in order to reduce the effect of operating system caches and
memory. We combine this tool with flushing the RAM and
caches after each reading experiment.

In both our scripts we perform write (read) operations
for a set of different I/O block sizes and for different data
volumes to be written (read). In each case we record the
CPU active cycles, the total power and time consumed in
each one of these operations for each combination of block
size and available frequency.

Finally, we identify the contribution of the hard drive to
the total power consumption by subtracting the contribution
of both the baseline and the CPU consumption from the
measured total power.

Disk I/O experiments shed light on the relevance of the
block sizes when reading or writing as well as whether there
is an influence of the frequency on these operations.

2.4 Network

In order to evaluate the contribution of the network to
the power consumption of a server, we devised a set of ex-
periments based on the iperf® tool as well as on our own
UPD-client-server C script.

There are several aspects that we consider relevant in or-
der to characterize the impact of the NIC on the total power
consumption of a server and that led us to choose these two
tools. The first is the ability of performing tests where the

Shttp://linux.die.net/man/1/dd.
Shttp://iperf.fr/



Table 1: Characteristics of the servers under study

Component Servers
Survivor Nemesis Erdos
CPU (# cores) | 4 4 64
# freqgs 8 11 5
1.2 GHz, | 1.596 GHz | 1.4 GHz,
1.333 GHz, | 1.729 GHz, | 1.6 GHz,
1.467 GHz, | 1.862 GHz, | 1.8 GHz,
1.6 GHz | 1.995 GHz, | 2.1 GHz,
1.733 GHz, | 2.128 GHz, | 2.3 GHz
Freqgs List 1.867 GHz, | 2.261 GHz,
2 GHz, | 2.394 GHz,
2.133 GHz | 2.527 GHz,
2.666 GHz,
2.793 GHz,
2.794 GHz
RAM 4 GB 4 GB 512 GB
Disk 2 TB 24+3TB 2 x 146GB
4x1TB
Network 1 Gbps 3x1 Gbps | 4 x 1 Gbps,
2 x 10 Gbps

computer under study acts as a server (sender) or as a client
(receiver) of the communication, in order to observe its be-
havior when sending data or receiving it. For the sake of
clarity, we will use, from now on, the terms sender, for the
server injecting traffic to the network, and receiver for the
server accepting traffic from the network. The second as-
pect consists in the ability to change several parameters that
we consider relevant for this characterization, namely, the
packet size and the offered load, jointly with the frequency
of the system.

Our experiments consist, then, on measuring the data rate
achieved, the CPU active cycles and the total power consum-
ption of the server under study acting as sender or receiver
when using different packet sizes and different rates. We run
each experiment multiple times for statistical consistency.

Finally, in order to isolate the consumption from the net-
work, we characterize with the CPU active cycles measured
in the experiment the consumption due to the CPU and the
baseline and subtract them from our measurements.

3. MEASUREMENTS
3.1 Devices and Setup

In order to monitor and store the instantaneous power
consumed by a server during the different experiments we
used a Voltech PM1000+ power analyzer,” which is able
to measure the total instantaneous power consumed by the
server under test on a per-second basis. In order to take our
measurements we connected the server being measured to
the power analyzer and the latter to the power supply. In
the experiments where the network was not involved (CPU
and disk), we unplugged the network cable from the server,
which has an impact on the power consumption as the port
goes idle. In the network based experiments we established
an Ethernet connection between the server under study and
a second machine in order to study the server behavior, both
as a receiver as well as as a sender.

We evaluated three different servers: Survivor, Nemesis,
and Erdos. We will now present these servers although their
main characteristics, including their sets of available CPU
frequencies, can be also found in Table 1. Survivor has an

"http://www.farnell.com/datasheets/320316.pdf
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Intel Xeon E5606 4-core processor, with 4 GB of RAM, a
2 TB Seagate Barracuda XT hard drive and a 1 Gigabit
Ethernet card integrated in the motherboard. Nemesis is
a Dell Precision T3500 with an Intel Xeon W3530 4-core
processor, 4 GB of RAM, 2 hard drives (a 2 TB Seagate
Barracuda XT and a 3 TB Seagate Barracuda), a 1 Gigabit
Ethernet card integrated in the motherboard, and a separate
Ethernet card with two 1 Gigabit ports. In this study we
only evaluate the Seagate Barracuda XT disk and the inte-
grated Ethernet card. Both Survivor and Nemesis use the
Ubuntu Server edition 10.4 LTS Linux distribution. Finally,
Erdos is a Dell PowerEdge R815 with 4 AMD Opteron 6276
16-core processors (i.e., 64 cores in total), 512 GB of RAM,
two 146 GB SAS hard drives configured as a single RAID1
system (which is the “disk” analyzed here) and four 1 TB
Near-line SAS hard drives. It also includes four 1 Gigabit
and two 10 Gigabit ports. Erdos is a high-end server and
uses Linux Debian 7 Wheezy.

3.2 Baseline and CPU

As mentioned in the previous section, for each server we
have measured the power it consumes without disk accesses
nor network traffic. We assume that the power consum-
ption observed is the sum of the baseline consumption plus
the power consumed by the CPU. We have obtained sam-
ples of the power consumed under different configurations
that vary in the number of active cores used, the frequency
at which the CPU operates (all cores operate at the same
frequency), and the load of the active cores (all active cores
are equally loaded). The list of available and tested CPU
frequencies and cores can be found in Table 1. We tune the
total load p by using lookbusy, as described in the previ-
ous section. Each experiment lasts 30 s and it is repeated
10 times. Results are summarized in terms of average and
standard deviation. Specifically, in the figures reported in
this section, the power consumption for each tested configu-
ration is depicted by means of a vertical segment centered
on the average power consumption measured, and with seg-
ment size equal to two times the standard deviation of the
samples.

The results of these experiments for each of the 3 servers
are presented in Figure 1 (the measurements for some fre-
quencies and some number of cores are omitted for clarity).
Here, for each configuration of number of active cores, fre-
quency, and load in ACPS, the mean and standard deviation
of all the experiments with that configuration are presented.
Also the least squares polynomial fitting curve for the sam-
ples is shown for each number of cores and frequency. The
curves shown are for polynomials of degree 7, but we ob-
served that using a degree 3 polynomial instead does not
reduce drastically the quality of the fit (e.g., the relative
average error of the fitting increases from 0.7% with 7-th
degree polynomials to 1.5% with degree equal to 3 for Er-
dos, while it remains practically stable and below 0.7% for
Nemesis). In general, we can use an expression like the fol-
lowing to characterize the CPU power consumption:

Ppc(p) = Zakpk, n <7, (1)
k=0

where Ppc includes both the baseline power consumption

of the servers and the power consumed by the CPU, and

p is the load expressed in active cycles per second. There-
fore, coefficient g in Eq. 1 represents the consumption of
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Figure 1: Power consumption of 3 servers (Survivor, Neme-
sis, and Erdos) for baseline and CPU characterization ex-
periments.

the system when the CPU activity tends to 0, and we can
thereby interpret ap as the baseline power consumption of
the system. Note that the polynomial fitting, and hence the
baseline power consumption ag, depends on the particular
combination of number of cores and frequency adopted. Ho-
wever, for sake of readability, we do not explicitly account
for such a dependency in the notation.

A first observation of the fitting curves for each particular
server in Figure 1 reveals that the power for near-zero load
is almost the same in curves (e.g., for Nemesis this value
is between 84 and 85 W). Observe that it is impossible to
run an experiment in which the load of the CPU is actually
zero to obtain the baseline power consumption of a server.
However, all the fitting curves converge to a similar value
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Figure 2: CPU performance bounds of Nemesis.

for p — 0, which can be assumed to represent the baseline
power consumption.

A second observation is that for one core the curves grow
linearly with the load. However, as soon as two or more
cores are used, the curves are clearly concave, which implies
that for a fixed frequency the efficiency grows with the load
(we will discuss later the efficiency in terms of number of
active cycles per energy unit).

A third observation is that frequency does not significantly
impact the power consumption when the load is low. In con-
trast, at high load, the consumption clearly increases with
the CPU frequency. More precisely, the power consumption
grows superlinearly with the frequency, for a fixed load and
number of cores. This is particularly evident in the curves
characterizing Erdos, which is the most powerful among our
servers.

From the previous figures it emerges that the power con-
sumption due to CPU and baseline can be minimized by
selecting the right number of active cores and a suitable
CPU frequency. Similarly, we can expect that the energy ef-
ficiency, defined as number of active cycles per energy unit,
can be maximized by tuning the same operational parame-
ters. We graphically represent the impact of operation pa-
rameters on power consumption and energy efficiency in Fi-
gures 2 and 3 respectively for Nemesis and Erdos (results
for Survivor are similar to the ones shown for Nemesis and
are omitted). In particular, Figures 2(a) and 3(a) report all
possible fitting curves for the power consumption measure-
ments, plus a curve marking the lowest achievable power
consumption at a given load. We name such a curve “min-
imal power curve” Pnin(p), and we observe that (¢) it only
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Figure 3: CPU performance bounds of Erdos.

depends on the load p, and (i7) it is a piecewise concave
function, which makes it suitable to formulate power opti-
mization problems. Finally, to evaluate the energy efficiency
of the CPU, we report in Figures 2(b) and 3(b) the number
of active cycles per energy unit obtained from our measure-
ments respectively for Nemesis and Erdos. We compute the
power due to active cycles as the power Pgc — ao, i.e., by
subtracting the baseline consumption from Pgpc, and we ob-
tain the efficiency nc by dividing the load (in active cycles
per second) by the power due to active cycles:

p

7T Paclp) — a0’ ®
Also in this case we show the curve that maximizes the ef-
ficiency at a given load, which we name “Maximal efficiency
curve” Nmax(p). Interestingly, we observe that (i) Nmax(p)
presents multiple local maxima, (i) for a given configura-
tion of frequency and number of active cores, the efficiency
is maximized at the highest achievable load, (7i:) all local
maxima corresponds to the use of all available active cores,
but (iv) the absolute maximum is not achieved neither at
the highest CPU frequency nor at the lowest.

3.3 Disks

We now characterize the power and energy consumption
of disk I/O operations. During the experiments, we continu-
ously commit either read or write operations, while keeping
the CPU load p as low as possible (i.e., we disconnect the
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network and we do not run other tasks). Still, the power
measurements obtained during the disk experiments contain
both the power used by the disk and power due to CPU and
baseline. Indeed, Figure 4 shows, for each experiment, the
total measured power P;, the power Pgc computed accord-
ing to Eq. 1 at the load p measured during the experiment,
and the power due to disk operations, computed as:

Pp = P, — Pgc(p), (3)

where superscripts r and w refer to reading and writing op-
erations, respectively. We test sequentially all the available
frequencies for each server (see Table 1), and I/O block sizes
ranging from 10 KB to 100 MB. Figure 4 shows average and
standard deviation of the measures over 10 experiment repe-
titions. Results for Survivor are omitted since they are like
Nemesis’ results. Indeed, Survivor and Nemesis have simi-
lar disks and file systems, while Erdos is equipped with SAS
disks with RAID. In all cases shown in the figure, the disk
power is small but not negligible with respect to the base-
line consumption. Furthermore, we can observe that the two
servers presented behave differently. Indeed, while the power
consumption due to writing is affected both by the block size
B for both machines, we observe that Nemesis’ disk writing
power Pp is not affected by the CPU frequency, while Er-
dos’ results show an increase with the frequency. Moreover,
the results obtained with Erdos are affected by a substantial
amount of variability in the measurements, which we believe
is due to the caching operations enforced by the RAID me-
chanism in Erdos.

Similarly to what was described for the CPU, we now
comment on the energy efficiencies 1 and np of disk read-
ing and writing operations. Figure 5 reports efficiency as a
function of the I/O block size, and shows one line per each
CPU frequency. The efficiency is computed by subtracting
the baseline power from the total power, and by measuring
the volume V' of data read or written in an interval 7"

z € {r,w},

Il
8
m

—~

Iy
S

—

(4)

We can observe that results are similar for all the servers.
Specifically, reading efficiency is almost constant at any fre-
quency and for each block size, while writing is more efficient
with large block sizes. We also observe that the efficiency
changes very little with the adopted CPU frequency. An-
other observation is that the efficiency saturates to a disk-
dependent asymptotic value, which is due to the mechanical
constraints of the disk (e.g., due to the non-negligible seek
time, the number of read /write operations per second is lim-
ited). In addition, although not visible in the figure due to
the log-scale adopted, 135 is a concave function of the block
size B.

3.4 Network

The last server component that we characterize via mea-
surements is the network card. Similarly to the cases de-
scribed previously, we run experiments in which only the
operating system and our test scripts are active. In this case,
we run a script to either transmit or receive UDP packets
over a gigabit Ethernet connection and count the system ac-
tive cycles p. We measure the total power consumption P;
during the experiment, so that the power due to network
activity can be then estimated as follows:

Py = P, — Prc(p),

b

(5)

z € {s,r},
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Figure 4: Instantaneous power consumption for a reading/writing operations. Results are presented for every frequency and

for 4 different block sizes for each one of our servers.
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Figure 5: Disk reading and writing efficiencies for Erdos (red
dotted lines) and Nemesis (blue solid lines).

where superscripts s and r refer to the sender and the re-
ceiver cases, respectively.

In the experiments, we sequentially test all the available
frequencies for each server (see Table 1), and fix the packet
size S and the UDP transmission rate within the achievable
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set of rates (which depends on the packet size, e.g., < 950
Mbps for 1470-B packets). We report results for the net-
work energy in terms of efficiencies n% and ny (volume of
data transferred per unit of energy). These efficiencies are
computed as follows:

W= me, €, (6)
N
where R is the transmission rate during the experiment.
Figure 6 shows the network efficiencies of Nemesis and
Survivor averaged over 3 samples per transmission rate R.®
For sake of readability, the figure only shows results for the
extreme value used for the packet size, and for three CPU
frequencies: the lowest, the highest, and an intermediate
frequency in the set of available frequencies reported in Ta-
ble 1 for Nemesis and Survivor. The figure also reports the
polynomial fitting curves for efficiency, which we found to be
at most of second order. Since the efficiency is represented

8Network results are obtained by using a point-to-point
Ethernet connection between two controlled servers. Since
Erdos is located in a different building with respect to Neme-
sis and Survivor, it was not possible to test the network
efficiency of Erdos.
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Figure 6: Network efficiencies for different frequencies and 64-B and 1470-B packets.

in terms of network activity only, in the fitting we force the
zero-order coefficient of the polynomials to be 0. Therefore,
we can use the following expression to characterize the net-
work efficiencies of our servers:
nk = PR+ BR>, € {s,r}, (7)

where the (; coeflicients are computed by minimizing the
least square error of the fitting. Table 2 gives the fitting
coefficients for sending and receiving efficiencies for the cases
shown in Figure 6 and for other tested configurations.

From both the figure and the table, we can observe that
efficiencies are almost linear or slightly superlinear with the
transfer rate, e.g., the receiving efficiency of Survivor ex-
hibits an evident quadratic behavior. Indeed, our measure-
ments show that the network power consumption is inde-
pendent from the throughput, which is a well known result
for legacy Ethernet devices. In fact, the NICs of our servers
are not equipped with power saving features like, e.g., the
recently standardized IEEE 802.3az [9].

In all cases, the efficiency is strongly affected by the se-
lected CPU frequency. Moreover, efficiency is also affected
by packet size, although the impact of packet size changes
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from server to server, e.g., Survivor sending efficiency is
only slightly affected by it.

Another observation is that, depending on the packet size
and frequency used, sending can be more energy efficient
than receiving at a given transmission rate, and using the
highest CPU frequency is never the most efficient solution.
Note also that the efficiency decreases with the packet size,
although this effect is particularly evident at the receiver
side, while it only slightly impacts the efficiency of the packet
sender. However, network activity also causes non-negligible
CPU activity, as shown in Figure 7 for a few experiment con-
figurations for Nemesis. Overall, the lowest CPU frequency
yields the lowest total power consumption during network
activity periods.

4. ESTIMATING ENERGY CONSUMPTION

While the results presented in the previous sections are
useful to understand the power consumption pattern of CPU,
disk and network, we believe that a much more important
use of these results is to estimate the energy consumption of
applications. In this section we describe how this could be
done from simple data about the application, and validate



Table 2: Polynomial fitting for network efficiency: empirically evaluated coefficients for Eq. 7 (coefficients 81 are expressed in

W', while coefficients B2 are in W™ - bps™!).

RECEIVER
Survivor Nemesis
_frea | 5 amn | 1.6 GHz | 1.867 GHz | 2.133 GHz _frea | 506 GHz | 1.995 GHz | 2.394 GHz | 2.794 GHz
pck size pck size
B1 61 B 1.751e-2 | 1.314e-2 | 1.268¢-2 T.254¢-2 64 B T1.491¢-2 1.410¢-2 1.330¢-2 1.227¢-2
Ba] 1.904e-5 2.160e-5 1.395e-5 1.031e-5
b1 500 B 1.736e-2 1.386e-2 1.144e-2 9.962e-3 500 B 1.565e-2 1.234e-2 1.107e-2 1.074e-2
B2 2.627e-6 1.595e-6 2.836e-6 3.541e-6
B1 1.560e-2 | 1.296e-2 | 1.132¢-2 1.029¢-2 T.170e-2 9.451c-3 7.712¢-3 7.448¢-3
B2 1000 B 3.155e-6 1.736e-6 1.080e-6 1.208e-6 1000 B
b1 1.497e-2 1.216e-2 1.073e-2 2.684e-2 1.072e-2 8.849e-3 8.207e-3 8.040e-3
B8s 1470 B | 393166 | 4.0060-6 | 3.5336-6 | -4.7460-6 1470 B
SENDER
Survivor Nemesis
_frea o qm. | 1.6 GHz | 1.867 GHz | 2.133 GHz _fred 1y 506 GH | 1.995 GHz | 2.304 GHz | 2.794 GH
pck sizée pck sizé
b1 64 B 2.239e-2 1.802e-2 1.582e-2 1.462e-2 64 B 1.642e-2 1.313e-2 1.029e-2 8.625e-3
B1 500 B 1.742e-2 1.576e-2 1.429e-2 2.205e-2 500 B 1.599e-2 1.130e-2 1.234e-2 1.014e-2
B1 1000 B 1.784¢-2 | 1.634¢-2 | 1.454¢-2 2.230e-2 1000 B 1.767¢-2 1.781c-2 1.824¢-2 T.179¢-2
B1 1470 B 1.801e-2 | 1.620e-2 | 1.461¢-2 2.369¢-2 1470 B 1.703¢-2 1.863¢-2 1.279¢-2 1.134¢-2
Baseline =xxxx PU = Network — s— .
asefine CPU ?t 0 Then, once the number of cores and the frequency that will
Sender Receiver be used have been defined, it is also possible to estimate
140 - 64-bytes  1470-bytes 64-bytes  1470-bytes . v Y p ¢
S 100l : .u T : K : 1 . ) the baseline power plus CPU power, Ppc, from the fitting
s 1207 | | curves of Figure 1. This allows to estimate the sum of the
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S 100 F . - first two terms of Eq. 8 as
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0 the efficiency of reading, 1, and writing, n35 (see Figure 5).
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Figure 7: Power consumption with network activity for
Nemesis (64-B experiments were run with a transmission
rate R = 150 Mbps, while R = 400 Mbps for the experi-
ments with 1470-B packets).

the proposed process by estimating the energy consumed by
map-reduce Hadoop computations.

4.1 Energy Estimation Hypothesis

The process we propose to estimate the energy consumed
Eapp by an application has as basic assumption that this
energy is essentially the sum of the baseline energy Ep (the
baseline power times the duration of the execution), the en-
ergy consumed by the CPU E¢, the energy consumed by the
disk Ep, and the energy consumed by the network interface
EN. I.e.,

Eopp = Ep+ Ec + Ep + En. (8)

Hence, the process of estimating FE.pp is reduced to esti-
mating these four terms. In order to estimate the first two
terms, we need to know the total number of active cycles
that the application will execute, Cqpp, and the load papp
(in ACPS) that the execution will incur in the CPU. From
this, the total running time T4y, can be computed as

Tapp = Capp/ Papyp-
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These, combined with the total volume of data read and
written by the application, denoted as V}, and V}5 respec-
tively, allow to obtain the estimate energy as

_ Y5 Vb

Ep = — = -
b Uks)

(10)

Finally, to estimate Ey, the transfer rate R and packet
size S has to be chosen, which combined with the frequency
used, yield sending and receiving efficiencies n3; and 0}y (see
Figure 6). Then, if the total volume of data to be sent and
received is Vy and V3, respectively,
V%

NN In
All is left to do to obtain the estimate Fqpp is to add up the
values obtained in Equations 9, 10, and 11.

En

(11)

4.2 Empirical Validation

We test now the process and hypothesis presented above
for the estimation of the energy consumed by an application.
For that, we have chosen to execute in Nemesis a map-reduce
Hadoop application that computes several iterations of the
pagerank algorithm on an Erdos-Renyi random (directed)
graph with 1 million nodes and average degree 5. Since
the pagerank application does not use the network, while it
is running we execute another process generating network
traffic. This provides a richer experiment.

An execution of the pagerank application has three phases:
preprocessing, map-reduce, and postprocessing. On its side,
the map-reduce phase is a sequence of several homogeneous



(= CPU Il Disk I Network [ Error
64 bytes 1470 bytes
2r |
= [ | [ |
)
S1s - . | ]
:
s
o
> 1F |
2
5
&
05 |
1596 1.995 2394 2794 1506 1.995 2394  2.794
Frequency [GHz]
(a) Sender side.
25X10°
’ _ cpU Il Disk [l Network [l Error
64 bytes 1470 bytes
[l 1
= L
: B | .
TR
:
s
o
> 1
2
5
&
05

1.596

1.995 2.394 2.79: 596 1.995 2.394 2.794

4 1.
Frequency [GHz]

(b) Receiver side.

Figure 8: Comparison of the real versus estimated energy
consumption values.

iterations of the pagerank algorithm. For simplicity, we only
estimate the energy consumed during the map-reduce phase
of the pagerank algorithm. In our experiments we run in
Nemesis one instance of the pagerank application with 10
iterations in its map-reduce phase for each one of the 11
available frequencies. We run this experiment 4 times, each
with different characteristics of the network traffic generated
in parallel. In particular, we run experiments with Nemesis
behaving as a sender and as a receiving, and using packets of
64 and 1470 bytes. Instead of estimating the energy for the
whole sequence of 10 iterations, it is simpler to estimate the
energy for every iteration separately. Then, for each itera-
tion 7 we can register the total active cycles executed Cflpp,
the time consumed Tgpp, and the volume of data read and
written, V[,‘i and V5 " respectively, and the transfer rate R
(the same for all iterations: 150 Mbps for experiments with
64-B packets and 400 Mbps for experiments with 1470-B
packets).

Unfortunately, we cannot measure the instantaneous CPU
load. Instead, we assume that the CPU load is the same dur-
ing the execution for a given frequency and network confi-
guration. Hence we estimate it as pflpp = Cépp/T;pp. Then,
from this value we obtain the estimate of the instantaneous
power P using the fitting curves as described above. Fi-
nally, using Eq. 9 we compute the estimate B + Ef.

In order to estimate the energy consumed by the disk op-
erations, we use the fact that Hadoop uses a block size of
64 MB. This allows us to estimate the reading and writing
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%

efficiencies, 15’ and ng’i (see Figure 5). Combining these
values with the measured volume of data read and written
(V5" and V") as described in Eq. 10, we obtain E}.

Finally, to estimate the network consumption in one iter-
ation with Nemesis sending traffic (resp., receiving traffic),
the sending efficiency 03, (resp., receiving efficiency ny) is
obtained from the transfer rate R, and the frequency and
packet size used (see Figure 6). The amount of data sent
(reps., received) is obtained as the product of the rate R
and the time T7,,. Then, the energy of the network is ob-
tained using Eq. 11.

Once we have computed the energy due to the different
components in iteration ¢, the total energy Eflpp is obtained
by adding them. Adding these values for the 10 iterations of
an experiment we obtain the estimate Eqpp. The (approxi-
mate) total real energy Eépp consumed by iteration ¢ is com-
puted by obtaining the average value of the power samples
we registered with our power analyzer during the iteration,
and multiplying it by T.pp. Again, the total energy con-
sumed by the experiment are obtained as Eapp = Eggl Eflpp.
The estimation error for each experiment is then computed
as Eapp — Eapp.

We show the results obtained for four selected frequencies
(the results for the rest are similar) in Figure 8(a), for the
sender cases, and Figure 8(b) for the receiving cases. Each
figure includes the results for the two packet sizes used. As
can be seen, the error is very small (always below 7% of the
total energy), being a bit more relevant in the case of the
highest frequency.

5. DISCUSSION

We discuss now some of the implications of our results.
We start with consolidation. It has been typically assumed
that the best way of doing consolidation is to fill servers as
much as possible, to reduce the total number of servers be-
ing used, hence proposing bin-packing based solutions [3, 15,
20] and not necessarily having frequency into account. Ho-
wever, the results presented in Figures 2(b) and 3(b) show
that the highest frequency is not the most efficient one, and
this has been found to be true for two different architectures
(Intel and AMD). This implies that, by running servers at
the optimal amount of load, and the right frequency, a con-
siderable amount of energy could be saved.

A second relevant aspect is the baseline consumption of
servers. The results presented for all 3 servers show that
their baselines are within a 30-50% of the maximum con-
sumption. Then, it is straightforward that more effort is to
be done for reducing baseline consumption. For instance, a
solution could consist in switching off cores in real time, not
just disabling them, or in introducing very fast transitions
between active and lower energy states, i.e., to achieve real
suspension in idle state.

Finally, we refer to the CPU load associated to disk and
network activity. It can be observed in Figure 4 that disks
do not incur much CPU overhead. In fact, the power con-
sumed by CPU plus baseline does not change much across
the experiments. Instead, the energy consumed by CPU
due to network operations is even larger than the energy
consumed by the NIC (see Figure 7). Some works [7] have
already pointed out that the way the packets are handled by
the protocol stack is not energy efficient. Our results rein-
force this feeling and point out that building a more efficient



protocol stack would certainly reduce the amount of energy
consumed due to the network.

6. RELATED WORK

There is a large body of work in the field of modeling
server power consumption and its components, both theo-
retical and empirical. The consumption of servers has been
assumed as linear e.g., by Wang et al. [20], Mishra et al. [15]
or Beloglazov et al. [3], who assumed models where consum-
ption depended mainly on CPU and linearly on its utiliza-
tion, proposing bin-packing-like algorithms to reduce power
consumption. Other works like the ones from Andrews et
al. [1] or Irani et al. [10] proposed non-linear models, claim-
ing that energy could be saved by running processes at the
lowest possible speed.

Moving to the empirical field, we first classify works in two
different groups, those who consider the effect of frequency
on their analysis and those who do not consider it. We start
with those not considering frequency. In this category we
find articles proposing models where server components fol-
low a linear behavior like [11, 14, 19] or more complex ones,
like in [2, 5, 13]. In [14], Liu et al. propose a simple linear
model and evaluate different hardware configurations and
types of workloads by varying the number of available cores,
the available memory, and considering also the contribution
of other components such as disks. Vasan et al. [19] moni-
tored multiple servers on a datacenter as well as the power
consumption of several of the internal elements of a server.
However, they considered that the behavior of this server
could be approximated by a model based only on CPU uti-
lization. Similarly, Krishnan et al. [11] explored the feasibil-
ity of lightweight virtual machine power metering methods
and examined the contribution of some of the elements that
consume power in a server like CPU, memory and disks.
Their model depends linearly on each of these components.
In [5], Economou et al. proposed a non-intrusive method
for modeling full-system power consumption by stressing its
components with different workloads. Their resulting model
is also linear on the utilization of its components. Finally,
Lewis et al. [13] and Basmasjian et al. [2] presented much
more complex models which, apart from the contribution of
different components of the server, considered extra parame-
ters like temperature and cache misses as well as multiple
cores. In particular, Lewis et al. [13] reported also an exten-
sive study on the behavior of reading and writing operations
in hard disk and solid state drives. In contrast, we show that
linear models are not accurate and we complement the exist-
ing studies by showing the effect of different block sizes and
frequencies, e.g., on network and individual read or write
operations.

Now we move to the works which also considered fre-
quency in their analysis. Miyoshi et al. [16] analyzed the
runtime effects of frequency scaling on power and energy.
Brihi et al. [4] presented an exhaustive study of DVFS us-
ing a cpufrequtils as we do. Main differences with our
work were that they studied four different power manage-
ment policies under DVFS and centered their study on the
relationship between CPU utilization and power consum-
ption. However, they also present interesting results about
disk consumption that match partially our results, showing a
flat consumption in reading operations and variations in the
writing ones that they attribute to the size of the files being
written. Although it was not the main objective of their
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work, Raghavendra et al. [18] performed a per-frequency
and core CPU power characterization of two different blade
servers. However, they claimed that CPU power depends
linearly on its utilization. The main difference with our
analysis is that we consider that the load supported by a
server increases with the number of active cores and, hence,
this load should not be represented in percentage. Gandhi
et al. [6] published an analysis of global power consumption
versus frequency, based on DVFS and DFS and gave some
intuition about the non-linearity of this relation. In con-
trast, we present a per-component analysis, which allows us
to enter into deeper details on the power versus frequency
analysis.

7. CONCLUSIONS

In this work we have reported our measurement-based
characterization of energy and power consumption in a server.
We have exhaustively measured the power consumed by
CPU, disk, and NIC under different configurations, iden-
tifying the optimal operational levels, which usually do not
correspond to the static system configurations commonly
adopted. We found that, besides the baseline component,
which does not changes significantly with the operational
parameters, the CPU has the largest impact on energy con-
sumption among all the three components. We observe that
CPU consumption is neither linear nor concave with the
load, i.e., the systems are not energy proportional. Disk
I/0 is the second larger contributor to power consumption,
although performance changes sensibly with the I/O block
size used by the applications. Finally, the NIC activity is
responsible for a small but not negligible fraction of power
consumption, which scales almost linearly with the network
transmission rate. In general, most of the energy/power per-
formance figures do not scale linearly with the utilization,
in contrast to what is commonly assumed in the literature.
We have then shown how to predict and optimize the en-
ergy consumed by an application via a concrete example us-
ing network activity plus pagerank computation in Hadoop.
Our model achieves very accurate energy estimates, within
7% or less from the measured total power consumption.
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