
Reducing Electricity Demand Charge for Data Centers
with Partial Execution

Hong Xu
Department of Computer Science

City University of Hong Kong
Kowloon, Hong Kong

henry.xu@cityu.edu.hk

Baochun Li
Department of Electrical and Computer

Engineering
University of Toronto
Toronto, ON, Canada

bli@ece.toronto.edu

ABSTRACT

Data centers consume a large amount of energy and incur
substantial electricity cost. In this paper, we study the fa-
miliar problem of reducing data center energy cost with two
new perspectives. First, we find, through an empirical study
of contracts from electric utilities powering Google data cen-
ters, that demand charge per kW for the maximum power
used is a major component of the total cost. Second, many
services such as web search tolerate partial execution of the
requests because the response quality is a concave function
of processing time. Data from Microsoft Bing search engine
confirms this observation.

We propose a simple idea of using partial execution to re-
duce the peak power demand and energy cost of data centers.
We systematically study the problem of scheduling partial
execution with stringent SLAs on response quality. For a
single data center, we derive an optimal algorithm to solve
the workload scheduling problem. In the case of multiple
geo-distributed data centers, the demand of each data center
is controlled by the request routing algorithm, which makes
the problem much more involved. We decouple the two as-
pects, and develop a distributed optimization algorithm to
solve the large-scale request routing problem. Trace-driven
simulations show that partial execution reduces cost by 3%–
10.5% for one data center, and by 15.5% for geo-distributed
data centers together with request routing.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques; G.1.6
[Optimization]: Convex programming

General Terms

Performance, Algorithms

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

e-Energy’14, June 11–13, 2014, Cambridge, UK.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2819-7/14/067 ...$15.00.

http://dx.doi.org/10.1145/2602044.2602048 .

Keywords

Energy; Data centers; Demand charge; Partial execution;
Distributed optimization; ADMM

1. INTRODUCTION
Data centers are the powerhouse behind many Internet

services today. A modern data center, deployed by compa-
nies such as Google, Microsoft, and Facebook, often hosts
tens or even hundreds of thousands of servers to provide ser-
vices for millions of users at the global scale [15,44]. Energy
consumption of data centers is enormous: Google’s data cen-
ters draw 260 MW of power in 2011 [14], and incur millions
of dollars of electricity bills.

How to reduce data centers energy cost has thus received
much attention over the recent years. Since servers and
cooling systems constitute the majority of a data center’s
power budget [54], reducing energy cost is commonly ad-
dressed on these two fronts. Workloads may be shifted
across time and location to exploit the diversity of electricity
prices [27, 35, 37, 44, 45]. The cooling energy overhead can
also be optimized with more efficient cooling systems and
integrated thermal management [19,23,26,36,52,54].

Despite extensive efforts, the question of how the electric-
ity bill for data centers is actually calculated by utilities is
not well understood. Almost all of the previous works simply
assume that the cost is solely determined by the total en-
ergy consumption in kilowatt hours (kWh). We revisit this
question by conducting empirical investigations. Data cen-
ters, like other large industrial power users, typically enter
long-term contracts with local utilities instead of purchas-
ing power off the market to avoid price volatility [40]. Thus,
we collect real-world electricity contracts from utilities that
power Google data centers, and study the pricing structures.

Though details vary, we find that the electricity bill for
data centers has two major components: energy charge, and
demand charge. Energy charge is the commonly studied
cost of total kWh used. Demand charge, on the other hand,
calculates the cost of peak power used in kW during the
billing period, and can be much more significant than energy
charge. For example for a data center consuming 10 MW
on peak and 6 MW on average, the monthly energy charge
and demand charge amount to around $24,000 and $165,500,
respectively, according to Georgia Power’s PLH-8 contract
[28]. How to reduce the demand charge, however, has not
been fully discussed in the literature.

Motivated by this observation, in this paper, we advo-
cate to reduce the peak power and demand charge of data

51

centers by using a simple idea of partial execution. Partial
execution has been exploited to improve request completion
times for interactive services [32]. Many interactive services
execute tasks in a distributed and iterative fashion. Results
of a user request will improve in quality given additional
processing time and energy. The marginal improvement of
response quality however is diminishing. A typical applica-
tion that exhibits these properties is web search. Fig. 1 plots
the empirical search quality profile from 200K queries in a
production trace of Microsoft Bing [32]. The quality profile
is clearly concave as a result of the diminishing marginal
return in quality. Therefore, a request does not necessarily
need to be fully executed: at peak hours, partial execution
can be used to trade response quality for demand charge
savings, in addition to improving the processing time.

Figure 1: Search quality profile of Microsoft Bing.
Data is from 200K queries of a production trace [32].

The technical challenge of using partial execution is to
develop efficient workload scheduling algorithms to decide
when and how partial execution should be used, so that the
demand charge and energy cost are minimized and the Ser-
vice Level Agreement (SLA) on response quality is satisfied.
Towards this end, we make the following contributions.

First we propose a general optimization model to realisti-
cally capture both demand charge and energy charge accord-
ing to our empirical study, and the typical percentile-based
SLA constraints. We find that the SLA constraints imply
that the optimal solution at each time slot is binary, i.e.
we only need to decide whether to use a high power mode
with high quality, or low power mode with low quality. This
greatly simplifies the problem formulation.

Our second contribution is a systematic study of the work-
load scheduling problem with partial execution. We con-
sider the case of a single data center, where the problem is
an integer program, and derive a simple optimal algorithm.
We also study the case of multiple geo-distributed data cen-
ters, where each data center’s request demand as well as
power use can be adjusted by the request routing algorithm.
This new dimension adds considerable complexity to solv-
ing the joint optimization in a practical manner (e.g., every
15 minute). We decouple the problem, by first optimizing
request routing without partial execution to reduce the de-
mand fluctuation seen by each data center, and then op-
timally solving workload scheduling with partial execution.
The request routing problem itself is difficult due to its large
scale and tight constraint coupling. We rely on the alternat-

ing direction method of multipliers (ADMM) that offers fast
convergence [20, 22]. ADMM decomposes the problem into
per-user and per-data center sub-problems that are easy to
solve, leading to an efficient distributed algorithm.

Finally, we perform trace-driven simulations to evalute the
cost reductions of partial execution with our algorithms in
Sec. 5. Results demonstrate that our algorithms outperform
existing schemes that only focus on energy charge. A saving
of 3%–10.5% can be realized for one data center depending
on the relative importance of demand charge, and a saving
of 15.5% can be achieved for geo-distributed data centers.

2. MOTIVATIONS
Let us start by motivating our key idea in this paper: us-

ing partial execution to reduce the energy cost, especially
the demand charge of data centers. To make our case con-
crete, we first present an empirical analysis of the electricity
billing method to demonstrate the importance of demand
charge. We then introduce some background on the feasi-
bility of partial execution for typical data center workloads,
such as Web search.

2.1 Electricity Billing: An Empirical Analysis
of Contracts

It is generally assumed that a simple volume-based charg-
ing scheme calculates the total energy cost for all kWh a
data center consumes. Prices of the day-ahead or hour-
ahead future markets operated by ISOs (Independent Sys-
tem Operator) or RTOs (Regional Transmission Operator)
are often used as the prices data centers pay per kWh. How-
ever, ISOs and RTOs operate their markets mainly for elec-
tricity suppliers to balance the supply and demand of the
grid in real time [16]. Data centers, as an electricity con-
sumer, do not participate in and purchase power off the ISO
or RTO market. They generally enter long-term contracts
with their local utilities to obtain fixed electricity prices and
avoid volatility [40].

To see how a data center’s electricity bill is calculated
in practice, we perform an empirical analysis of real-world
electricity long-term contracts, which to our knowledge has
not been done before. We briefly explain our methodology
here. Our study is based on the locations of all six Google
data centers in the U.S. [1]. We first determine the local
utilities that power each of these data centers according to
anecdotal evidence, as shown in Table 1. In many cases
there is only one electric utility operating in the region of a
Google data center, which makes us believe that our infer-
ence is accurate.1 We then collect the long-term contracts
these utilities provide for large industrial users—such as data
centers—that has an annual contract demand of more than
10 MW. For simplicity we choose contracts with fixed rates
instead of time-of-use pricing. All utilities in our study pub-
lish contracts and rate schedules on their websites, and all
the contracts we study can be downloaded from [2]. We
believe that these contracts faithfully represent the billing
method used in the actual contracts data centers enter.

Our empirical study reveals that the monthly electricity
bill is, among other things, determined mainly by two meth-

1We provide references to anecdotal evidence for determin-
ing the local utilities that power each Google data center
in Table 1. For those without references, they are the only
utility in the region.

52

Table 1: Electric utilities for Google data centers. Monthly cost breakdown based on a 10 MW peak demand
and a 6 MW average demand. Data collected in June, 2013.

Location Utility Contract Type Demand Charge Energy Charge
The Dalles, OR Northern Wasco County PUD [3] Primary Service [4] $38,400 $147,312

Council Bluffs, IA MidAmerican Energy Large General Service, South System [5] $62,600 $114,236
Mayes County, OK The Grand River Dam Authority [6] Wholesale Power Service [7] $103,900 $93,312

Lenoir, NC Duke Energy [8] Large General Service LGS-24 [9] $111,000 $240,580
Berkeley County, SC South Carolina Electric & Gas Company Rate 23 – Industrial Power Service [10] $147,600 $217,598
Douglas County, GA Georgia Power Power and Light – High Load Factor PLH-8 [11] $165,500 $24,002

Table 2: The Industrial Power Service contract,
SCEG [10].

Item Price (USD)
Basic Facilities Charge $1925.00
Demand Charge $14.76/kW
Energy Charge $0.05037/kWh
Miscellaneous Tax, minimum charge, etc.

ods: a volume-based charging method that charges the total
kWh of energy used, and a peak-based charging scheme that
charges the maximum demand measured in kW in the billing
period. More specifically, utilities install demand meters at
customers’ facilities to record the average demand in kW for
every 15 minutes in general. The customer is billed for the
highest 15-minute average demand during the billing cycle.
In the utilities’ taxonomy, volume-based charging results in
energy charge, and peak-based charging results in demand
charge. Table 2 shows the typical structure of a contract
that we collected.

Demand charge and energy charge constitute the majority
of total energy cost. Intuitively, demand charge helps utili-
ties recover the cost of providing capacity to meet the peak
demand, which is more expensive than meeting the average
demand especially for large industrial users. Thus, demand
charge is in general on par with energy charge, and often sig-
nificantly higher. We estimate the monthly cost breakdown
of all utilities in Table 1, for a typical data center that con-
sumes 10 MW on peak and 6 MW on average. Observe that
in the case of Georgia, demand charge is almost 8x energy
charge. The importance of demand charge is more salient
when the peak-to-average ratio of the demand increases.

Therefore, one needs to take into account demand charge
in order to reduce energy cost, which unfortunately has not
yet been fully explored. Previous works focus only on reduc-
ing the energy charge, that is the total energy consumption.
They do not necessarily reduce the peak energy consumption
and demand charge.

2.2 Partial Execution: A Feasibility Check
We propose to exploit partial execution of requests to re-

duce both the peak and total energy consumption. Partial
execution is orthogonal to, and can work with existing en-
ergy management approaches that focus on energy charge.
We now provide a feasibility check for partial execution in
the context of Web search, which is one of the most impor-
tant data center workloads.

An Internet search engine consists of crawling, indexing,
and query serving systems. We focus on the query serving
system, which is a distributed system with many aggrega-
tors and index servers. When a query arrives and hits the

cache, the results are immediately returned. Otherwise, it
is assigned to an aggregator. The aggregator sends the re-
quest to index servers, each of which holds a partition of the
entire index for billions of documents. An index server then
searches its index for documents matching the keywords in
the query. It ranks the matching documents sequentially us-
ing a PageRank-like algorithm. This is the most time- and
energy-consuming part and it uses over 90% of hardware re-
sources [32], because the ranking algorithm needs to extract
and compare many features of the documents.

Web search is best-effort: The query response quality im-
proves as more time and resources are used to run the rank-
ing algorithm with more matching documents. Partial exe-
cution can be implemented in a rather straightforward way
for a search engine, by setting a threshold for the ranking
algorithm’s running time. If the elapsed processing time
reaches the threshold, the algorithm is terminated, and in-
dex servers return the top ranked results they compute. The
quality profile as in Fig. 1 is concave, meaning that a small
degree of partial execution will not severely impact quality.
These observations thus confirm that partial execution is
feasible in practice for data centers.

In fact, besides Web search, many other systems also tol-
erate inexact or tainted results. For example it is acceptable
to skip spelling correction when composing a complex web
page with many sub-components [25]. Partial execution has
already been adopted to rein in the tail request completion
times in Google and Microsoft’s Internet services [25, 32].

3. SYSTEM MODELS
Before developing algorithms that control when and how

partial execution should be used to save cost, we first state
our models and assumptions in this section.

We consider a discrete time model, where in each slot t the
average power draw is measured at the data center. There
is an interval of interest t ∈ {1, . . . , T}. The length of a time
slot equals 15 minutes, and the planning horizon T is one day
(T = 96) in which the demand series can be accurately pre-
dicted. This is a valid assumption in practice. Time series
analysis and other learning algorithms have been shown to
fairly accurately predict the aggregate demand from a large
number of users, which exhibits regular patterns [29,42]. We
cannot consider a longer planning horizon, say one month,
for which prediction becomes unreliable. However we show
through simulations in Sec. 5 that our algorithms perform
close to the ideal case when we have limited future infor-
mation. The partial execution decision is adjusted every 15
minutes for all requests.

3.1 Server Power and Energy Cost
We adopt the empirical model from [26] that calculates

the individual server power consumption as an affine func-

53

tion of CPU utilization at t, EI + (EP − EI)u(t). EI is the
server power when idle, EP is the server power when fully
utilized, and u(t) is the average CPU load at t. This model
is especially accurate for calculating the aggregate power of
a large number of servers [26]. u(t) is determined by the
15-minute request demand D(t), and the request comple-
tion ratio α(t) ∈ [0, 1] which we control. Assuming the data
center deploys N index servers to process search queries, the
cache miss rate is 10%, and each request takes 50 ms to com-
plete with 200 servers running at 100% CPU utilization, we
have:

u(t) = D(t) ·0.1 ·200 ·0.05 ·α(t)/N ·15 ·60 = α(t)D(t)/900N

We assume that servers are adequately provisioned and de-
mand can always be handled so that u(t) ≤ 1 holds, i.e.,

N ≥ D(t)/900, ∀t. (1)

Since servers are always on once commissioned [31, 40],
server idle power is an immaterial constant that we do not
consider subsequently. The total server usage power in kW
at t is then a linear function of both α(t) and D(t):

E
(

α(t), D(t)
)

= (EP − EI)
D(t)α(t)

900
. (2)

As discussed in Sec. 2.1, the electricity bill has both de-
mand charge and energy charge. Denote the demand price
as PD per kW, and the energy price as PE per 0.25 kWh
(recall a time slot is 0.25 hour). The total energy cost is
then:

max
t∈[1,T]

E
(

α(t), D(t)
)

PD +
T
∑

t=1

E
(

α(t), D(t)
)

PE (3)

Since we use partial execution for Web search, we are only
concerned with the energy consumption of index servers.
Other components of the infrastructure, such as the cool-
ing system, also consume a lot of power [54]. They can be
accounted for by a multiplying PUE factor to the server
power, which captures the energy overhead as a function
of the ambient temperature, humidity, etc. [27, 52], without
fundamentally changing the nature of our problem. Thus
we do not model them in this paper.

3.2 SLA on Response Quality
For a search engine, response quality is arguably one of

the most important performance metrics. Response qual-
ity here compares the tainted results of partial execution
against those from full execution. Thus many commercial
services specify strict Service Level Agreements (SLAs), us-
ing both high-percentile and worst-case response quality.
High-percentile guarantees ensure consistent high-quality re-
sults, at the extremes of the service distribution. For ex-
ample, a web search may have an SLA that targets a 0.99
quality for at least 95% of requests, referred to as the 95th-
percentile quality [32]. Worst-case guarantees, e.g. at least
a 0.8 quality needs to be met for all requests, ensure that
performance is at an acceptable level as the bottom line.

We model SLAs using the empirical response quality pro-
file of Bing as shown in Fig. 1. Specifically, response quality
is a function of the request completion ratio Q(α) ∈ [0, 1].
Q(α) can be obtained by applying regression techniques to
the empirical data points in Fig. 1:

Q(α) = −0.82129975α2 + 1.67356677α+ 0.14773298. (4)

Clearly Q(α) is concave in [0, 1]. To save cost, the oper-
ator will use just enough resources to satisfy the SLA. In
other words, the operator makes sure that the quality of
95% of the requests is exactly 0.99, and the quality of the
rest 5% requests is exactly 0.8 according to our examples
above. Thus, in the problem of minimizing energy cost with
demand charge, the partial execution decision is binary, even
though the entire range from 0 to 1 is possible to implement.
At each time slot, the operator needs to make a decision
of whether to operate in the high power mode where the
response quality is 0.99, or in the low power mode where
quality is 0.8.

This observation greatly simplifies our model. We let X(t)
be a binary indicator of the partial execution decision at
each time slot t. X(t) = 1 if Q

(

α(t)
)

= 0.99, i.e. α(t) =
Q−1(0.99), and X(t) = 0 if Q

(

α(t)
)

= 0.8, i.e. α(t) =
Q−1(0.8). It is then only necessary to make sure that the
95th-percentile quality guarantee is satisfied, which amounts
to the following:

T
∑

t=1

X(t)D(t) ≥ 0.95
T
∑

t=1

D(t). (5)

At this point, some may wonder to what extent could par-
tial execution reduce cost. After all, only 5% of the requests
can be served using the low power mode, and they still need
to have a 0.8 quality. Notice that sinceQ(α) is concave, a 0.8
quality can cut the processing time by half from (4), which
implies a good amount of power reduction. Also demand
charge can be reduced substantially by only using partial
execution at a few time slots. Our claims will be verified in
Sec. 5.

4. ALGORITHMS
We now systematically study the data center workload

scheduling problem with partial execution. We formally in-
troduce the problem formulations and solution algorithms
in the cases of both a single data center and multiple geo-
distributed data centers.

4.1 The Case of One Data Center
As a starting point, we consider one data center. At t = 1,

the demand information {D(t)} is known for the interval T .
Given {D(t)}, we can formulate the problem as:

min max
t∈[1,T]

E
(

α(t), D(t)
)

PD +
T
∑

t=1

E
(

α(t), D(t)
)

PE

s.t.
T
∑

t=1

X(t)D(t) ≥ 0.95
T
∑

t=1

D(t),

α(t) =

{

Q−1(0.99), if X(t) = 1,
Q−1(0.8), if X(t) = 0.

variables: X(t), ∀t. (6)

The workload schedule {X(t)} are our optimizing variables.
They entail whether the high or the low power mode should
be used at each time slot. In words, our problem is to de-
termine the optimal workload schedule that minimizes the
total cost for the period while conforming to the SLA.

The optimization (6) is an integer program, which is hard
to solve in general. A moment’s reflection tells us that it is
not the case for our problem. Since we know the demand

54

series, and setting X(t) = 0 reduces both terms of the ob-
jective function, we can derive the optimal solution with a
trial-and-error approach summarized in Algorithm 1. We
initialize all X(t) to 1. In the decreasing order of demand,
the algorithm goes through all time slots. For each t, it sets
each X(t) = 0 if this does not violate the SLA, and reverts
X(t) to 1 if otherwise.

Algorithm 1 Optimal Solution for (6)

1. Initialize X(t) to 1 for all t.
2. while {D(t)} is not empty do
3. Pick the highest D(t), and set X(t) = 0.
4. if (5) holds with X(t) = 0 then
5. Output X(t) = 0.
6. else
7. Output X(t) = 1.
8. end if
9. Set D(t) = 0.

10. end while

The optimality of the workload schedule is intuitive. The
solution is feasible to problem (6) for at each step we ensure
the SLA is satisfied. It is also optimal since we always set
the most demanding time slots in low power mode whenever
possible, thereby providing the largest cost reduction in both
demand and energy charge.

4.2 The Case of Geo-distributed Data Centers
We have assumed a single data center, in which case the

problem can be solved relatively easily. In practice we may
have multiple data centers geographically distributed over
the wide area to improve the service latency and reliabil-
ity. In this case, the provider deploys some mapping nodes,
such as authoritative DNS servers or HTTP ingress proxies
[43,51], to route user requests to an appropriate data center
based on certain criteria. Thus an individual data center’s
demand is determined by the request routing algorithm. Re-
quest routing has been studied in many recent works to ex-
ploit price diversity and save energy charge [27,37,44,52,53].
Yet it has not been studied with demand charge, where the
routing decision needs to smooth out the demand series for
each data center.

We consider a provider with J data centers, each run-
ning Nj index servers. In the subsequent analysis the same
subscript j is appended to all the notations introduced in
Sec. 3 to denote the location specific quantities when neces-
sary. We allow a mapping node to arbitrarily split a user’s
request traffic among all data centers. DNS servers and
HTTP proxies can achieve such flexibility in commercial
products [34, 51]. Let I denote the number of users. In this
work a user i is simply a unique IP prefix similar to [43].
Now at each time slot, the operator computes the request
routing decisions together with workload schedules to better
cope with dynamic request demand and reduce cost. The
joint problem can be formulated as in (11).

We use dij(t) to denote the amount of requests routed to
data center j from user i at t. {dij(t)} and {Xj(t)} are our
decision variables. Compared to (6), the objective function
is now the sum of costs from all data centers, which can be
optimized by both the workload schedule and the request
routing decision. There are three additional constraints: (8)
is a user workload conservation constraint that requires a
user’s demand to be fully satisfied at all times; (9) is a user

latency constraint that states a user’s average latency should
not be worse than L; and (10) is the simple data center
capacity constraint as discussed in Sec. 3.1. Lij denotes the
end-to-end network latency between user i and j, which can
be obtained through active measurements.

The optimization is a mixed-integer program (MIP) with
a convex objective function. Adding to the complexity of
the problem is its large scale. The number of users I, i.e.
unique IP prefixes, can be O(105) for a production cloud.
The number of data centers J is O(10), and the number
of time slots T = 240. Thus (11) has O(108) variables,
and O(106) constraints. This prohibits a direct approach
of using an optimization package to solve the problem, as
it takes more than 15 minutes for a modern solver to solve
MIPs with millions of variables and constraints [41].

min
J
∑

j=1

max
t∈[1,T]

Ej

(

αj(t),
I
∑

i=1

dij(t)

)

PD
j (7)

+
J
∑

j=1

T
∑

t=1

Ej

(

αj(t),
I
∑

i=1

dij(t)

)

PE
j

s.t.
T
∑

t=1

Xj(t)
I
∑

i=1

dij(t) ≥ 0.95
T
∑

t=1

I
∑

i=1

dij(t), ∀j,

J
∑

j=1

dij(t) = Di(t), ∀i, t, (8)

J
∑

j=1

dij(t)Lij/Di(t) ≤ L, ∀i, t, (9)

I
∑

i=1

dij(t) ≤ 900Nj , ∀j, t, (10)

αj(t) =

{

Q−1(0.99), if Xj(t) = 1,
Q−1(0.8), if Xj(t) = 0.

∀j.

variables: Xj(t), dij(t), ∀i, j, t. (11)

Since directly solving the joint optimization is infeasible,
we decouple the request routing and workload scheduling
problem to reduce the complexity. Specifically, we first solve
the request routing problem and obtain the solution d∗ij(t)
without partial execution, by setting all Xj(t) to 1. We then
solve the workload scheduling problem using Algorithm 1
for each data center j given the demand

∑

i d
∗
ij(t). Though

sub-optimal, this approach still allows request routing to ef-
fectively smooth out the demand peaks seen by data centers
in the worst case.

Thus from now on we focus on solving the decoupled re-
quest routing problem with all Xj(t) = 1. Since the server
power function Ej(·) as in (2) is linear in both αj(t) and
dij(t), the decoupled request routing problem can be writ-
ten as:

min
J
∑

j=1

max
t∈[1,T]

Ej

(

I
∑

i=1

dij(t)

)

PD
j

+
J
∑

j=1

T
∑

t=1

I
∑

i=1

Ej

(

dij(t)
)

PE
j

s.t. (8), (9), (10). (12)

55

Note αj(t) can now be omitted in Ej(·) without loss of gen-
erality. This is a large-scale convex optimization which still
has O(108) variables and O(106) constraints. More impor-
tantly, the constraints (8), (9) and (10) couple all variables
together, which makes it difficult to solve. The coupling
here in this case is especially difficult, because it happens
on two orthogonal dimensions simultaneously: The per-user
constraints (8) and (9) couple dij(t) across data centers, and
the per data center capacity constraint (10) couples dij(t)
across users.

In these cases we rely on a distributed algorithm that en-
ables parallel computations in data centers. A common ap-
proach is to relax the constraints and employ dual decom-
position to decompose the problem into many independent
sub-problems [24]. Subgradient methods can then be used
to update dual variables towards the optimum of the dual
problem [21]. Yet, dual decomposition does not apply here,
because it requires the objective function to be strictly con-
vex, for otherwise the Lagrangian is unbounded below. Our
objective function, including a max and a linear function, is
not strictly convex.

Summarizing the discussions, we need to design a prac-
tical distributed algorithm that does not require strict con-
vexity of the objective function, and preferably converges
fast for large-scale problems. Next, we present such an al-
gorithm based on the alternating direction method of mul-
tipliers (ADMM) [22] .

4.3 A Distributed Request Routing Algorithm
We first provide a brief primer on ADMM. Developed in

the 1970s [20], ADMM has recently received renewed in-
terest in solving large-scale distributed convex optimization
in statistics, machine learning, and related areas [22]. The
algorithm solves problems in the form

min f(x) + g(z) (13)

s.t. Ax+Bz = c,

x ∈ C1, z ∈ C2,

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n,
B ∈ Rp×m, and c ∈ Rp. f and g are convex functions, and
C1, C2 are non-empty polyhedral sets. Thus, the objective
function is separable over two sets of variables, which are
coupled through an equality constraint.

We can form the augmented Lagrangian [33] by introduc-
ing an extra L-2 norm term ∥Ax+Bz−c∥22 to the objective:

Lρ(x, z,λ) = f(x) + g(z) + λT (Ax+Bz − c)

+ (ρ/2)∥Ax+Bz − c∥22. (14)

ρ > 0 is the penalty parameter (L0 is the standard La-
grangian for the problem). The augmented Lagrangian can
be viewed as the unaugmented Lagrangian associated with
the problem

min f(x) + g(z) + (ρ/2)∥Ax+Bz − c∥22
s.t. Ax+Bz = c,

x ∈ C1, z ∈ C2.

Clearly this problem is equivalent to the original problem
(13), since for any feasible x and z the penalty term is zero.
The benefit of the quadratic penalty term is that it makes
the objective function strictly convex for all f and g. The

penalty term is also called a regularization term and it helps
substantially improve the convergence of the algorithm.

ADMM solves the dual problem with the iterations:

xt+1 := argmin
x∈C1

Lρ(x, z
t, λt), (15)

zt+1 := argmin
z∈C2

Lρ(x
t+1, z, λt), (16)

λt+1 := λt + ρ(Axt+1 +Bzt+1 − c). (17)

It consists of an x-minimization step (15), a z-minimization
step (16), and a dual variable update (17). Note the step
size is simply the penalty parameter ρ. Thus, x and z are
updated in an alternating or sequential fashion, which ac-
counts for the term alternating direction. Separating the
minimization over x and z is precisely what allows for de-
composition when f or g are separable, which will be useful
in our algorithm design.

The optimality and convergence of ADMM can be guaran-
teed under very mild assumptions. For more details see [20].
In practice, it is often the case that ADMM converges to
modest accuracy within a few tens of iterations [22], which
makes it attractive for practical use.

Our request routing problem (12) cannot be readily solved
using ADMM. The constraints (8) and (10) couple all vari-
ables together as mentioned before, whereas in ADMM prob-
lems the constraints are separable for each set of variables.

To address this, we introduce a set of auxiliary variables
bij(t) = dij(t), and re-formulate the problem:

min
d,b

J
∑

j=1

max
t∈[1,T]

Ej

(

I
∑

i=1

dij(t)

)

PD
j

+
J
∑

j=1

T
∑

t=1

I
∑

i=1

Ej

(

bij(t)
)

PE
j

s.t. bij(t) = dij(t), ∀i, j, t,
I
∑

i=1

dij(t) ≤ 900Nj , ∀j, t,

J
∑

j=1

bij(t) = Di(t),
J
∑

j=1

bij(t)Lij/Di(t) ≤ L, ∀i, t.(18)

This technique is reminiscent to [53]. This problem (18)
is clearly equivalent to the original problem (12). Observe
that the new formulation is in the ADMM form (13). The
objective function is now separable over two sets of vari-
ables dij(t) and bij(t). dij(t) controls the demand charge,
while bij(t) determines the energy charge. dij(t) and bij(t)
are connected through an equality constraint. Overall, they
control the provider’s total energy cost of running the index
servers.

The use of auxiliary variables also enables the separation
of per-user and per-data center constraints, and is the key
step towards reducing the complexity as we demonstrate
now. The augmented Lagrangian of (18) is

Lρ(d, b,λ) =
∑

j

max
t∈[1,T]

Ej

(

I
∑

i=1

dij(t)

)

PD
j +

∑

i,j,t

Ej

(

bij(t)
)

PE
j

+
∑

i,j,t

(

λij(t)
(

dij(t)− bij(t)
)

+
ρ
2

(

dij(t)− bij(t)
)2
)

, (19)

where d, b,λ are shorthands for {dij(t)}, {bij(t)}, {λij(t)}.

56

The dual problem is solved by updating d and b sequen-
tially. At the k-th iteration, the d-minimization step tries
to minimize Lρ(d, b

k−1, λk−1) over d with the capacity con-
straints (10) according to (15). By inspecting (19), we can
readily see that this is decomposable over data centers since
all terms related to d are separable over j. Effectively, each
data center needs to independently solve the following sub-
problem:

min
d

max
t∈[1,T]

Ej

(

I
∑

i=1

dij(t)

)

PD
j

+
∑

i,t

dij(t)
(

λk−1
ij (t) +

ρ
2

(

dij(t)− bk−1
ij (t)

)

)

s.t.
I
∑

i=1

dij(t) ≤ 900Nj , ∀t. (20)

The physical meaning of the per-data center problem is sim-
ple. Each data center computes the optimal request routing
solution d that minimizes the sum of its demand charge and
the penalty of violating the constraint d = bk−1. In other
words, the data center also takes into account the users’
perspective of the problem represented by bk−1, eventually
making sure that both parties converge to the same global
optimal solution.

The per-data center sub-problem is a much simpler convex
problem with O(107) variables and only T = O(102) con-
straints. Since the constraints are not coupled across mul-
tiple dimensions as in (12), it can now be efficiently solved
using a standard optimization solver.

We have solved the d-minimization step distributively across
all data centers by decomposing into J per-data center sub-
problem in the form (20). After obtaining the solution dk,
the b-minimization step can also be similarly attacked.

According to (16), the b-minimization step tries to min-
imize Lρ(d

k, b, λk−1) over b with the workload conserva-
tion constraints

∑

j bij(t) = Di(t), ∀i, t. Readily it can be
seen that this can also be decomposed across users, where
each user independently solves the following per-user sub-
problem:

min
b

∑

j

(

Ej

(

bij(t)
)

PE
j +

ρ
2
b2ij(t) +

(

ρdkij(t)− λk−1
ij (t)

)

bij(t)

)

s.t.
∑

j

bij(t) = Di(t),
∑

j

bij(t)Lij/Di(t) ≤ L, (21)

which a simple quadratic program for Ej() is linear. Again,
the formulation embodies an intuitive interpretation. Here
user i, at each t, optimizes its request routing strategy {bij(t)}
according to the prices {PE

j } to minimize the energy charge.
Meanwhile, it also considers the data center’s optimal solu-
tion that mainly concerns the demand charge, by staying
close to dkij(t) and minimizing the quadratic penalty term
as much as it can.

Having obtained the optimal dk and bk, the final step is
to perform the dual variable update:

λk
ij = λk−1

ij + ρ(dkij − bkij). (22)

The entire procedure is summarized in Algorithm 2. Since
the constraint set for d is clearly bounded in our problem,
according to [20] the algorithm converges to the optimal
solution.

Lemma 1. Our algorithm based on ADMM converges to
the optimal solution d∗ and b∗ of (18) and equivalently (12).

Algorithm 2 Optimal Distributed Solution for (12)

1. Initialize d0 = 0, b0 = 0, λ0 = 0, ρ = 1.
2. At k-th iteration, solve J per-data center sub-problems

(20) in parallel. Obtain dk.
3. Given dk, solve I · T per-user sub-problems (21) in par-

allel. Obtain bk.
4. Update dual variables λk as in (22).
5. Return to step 2 until convergence.

Now to summarize, our algorithm follows a divide-and-
conquer paradigm. Recall that d controls the demand charge
of processing the requests, while b determines the energy
charge. Our algorithm separately optimizes d and b for ei-
ther aspect of the problem. Additionally, the penalty terms
(i.e. the Augmented Lagrangian) force d and b to stay close
to each other, eventually ensuring that they converge to the
same request routing solution which is also optimal.

4.4 Implementation Issues of Algorithm 2
The distributed nature of Algorithm 2 allows for an ef-

ficient parallel implementation in a data center that has
abundant server resources. Here we discuss several issues
pertaining to such an implementation in reality.

First, at each iteration, step 2 can be implemented on J
servers, each solving one instance of the large-scale per-data
center sub-problem (20). Step 3 can be implemented even
on a single server since it only involves solving quadratic
programs (21). A multi-threaded implementation can fur-
ther speed up the algorithm on multi-core hardware. Thus
only J servers are required to run the distributed algorithm.

Second, our algorithm can be terminated before conver-
gence is reached. This is because ADMM is not sensitive
to step size ρ, and usually finds a solution with modest
accuracy within tens of iterations [22]. A solution with
modest accuracy is sufficient in situations of flash crowds
of requests and failure recovery. The operator can apply
an early-braking mechanism in these cases to terminate the
algorithm pre-maturely without much performance loss.

Finally, the message passing overhead of our algorithm is
also low. The request routing decisions d need to be dis-
seminated to the mapping nodes and data centers. All the
other message passing, for exchanging d, b, and λ amongst
servers, happens in the internal network of the designated
data center, which in many cases is specifically designed to
handle the broadcast and shuffle transmission patterns of
HPC applications such as MapReduce [17]. The amount of
intermediate data our algorithm produces is much smaller
than the bulky data of HPC applications [49]. Thus the mes-
sage passing overhead incurred to the data center network
is low.

5. EVALUATION
To realistically evaluate the cost reduction of partial ex-

ecution with our algorithms, we conduct trace-driven simu-
lations in this section.

5.1 Setup
We use the Wikipedia request traces [47] to represent the

Web search request traffic of a data center. The dataset

57

we use contains, among other things, 10% of all user re-
quests issued to Wikipedia from a 30-day period of Septem-
ber 2007. The prediction of workload can be done accurately
as demonstrated by previous work, and in the simulation we
simply adopt the measured request traffic as the total de-
mand. The scheduling period is 15 minutes, and the plan-
ning horizon T is one day as mentioned in Sec. 3. Fig. 2
plots the request traffic of the traces for 24 hours of the
measurement period. The scale of the traces closely matches
Google’s search traffic, which is roughly 1.2 trillion annual
searches in 2012 [12], or equivalently 2.7 million searches per
15 minutes per data center with its 13 data centers [1].

We consider six Google data centers in the U.S. We scale
the Wikipedia traffic trace by a factor of six, and time shift
it according to the time differences of these locations to syn-
thesize the total demand of the six data centers. In the case
of a single data center, the original trace is used. We rely on
iPlane [39], a system that collects wide-area network statis-
tics from Planetlab vantage points, to obtain the latency
information. We set the number of clients |I| = 105, and
choose 105 IP prefixes from a RouteViews [13] dump. We
then extract the corresponding round trip latency informa-
tion from the iPlane logs, which contain traceroutes made
to a large number of IP addresses from Planetlab nodes. We
only use latency measurements from Planetlab nodes that
are close to our data center locations. Since the Wikipedia
traces do not contain any client information, to emulate the
geographical distribution of requests, we split the total re-
quest traffic among the clients following a normal distribu-
tion.

Each data center has N = Nj = 5, 000 index servers2,
so it can process 4.5 million requests every 15 minutes ac-
cording to (1), while the peak demand of our trace is about
3.4 million requests. We use the contract prices of the local
electric utilities that power these Google data centers as de-
tailed in Sec. 2.1. We assume a server’s idle and peak power
are EI = 400 W and EP = 750 W, respectively, which are
typical for a data center server [48].

Figure 2: Total request traffic of the Wikipedia
traces [47].

5.2 The Case of One Data Center
We start with one data center, and evaluate the benefit

of partial execution with Algorithm 1. We solve the work-
load scheduling problem (6) on a daily basis for the 30-day

2A data center has more than just index servers. Here we
focus on index servers with partial execution.

Figure 3: Monthly power consumption comparison
for one data center.

period, to obtain the monthly bill. We compare the perfor-
mance of Algorithm 1, called Alg. 1, with three benchmarks.
The first one, called Baseline, is a naive approach that does
not use partial execution, and the data center is always op-
erating in the high power mode. The second one, called
Random, uses partial execution randomly without our work-
load scheduling algorithm. This represents state-of-the-art
that exploits partial execution for improving latency while
satisfying SLA [32], instead of using it to reduce the demand
charge. The third one, called Best, assumes that complete
demand information for the entire 30-day period is known,
and uses Algorithm 1 to obtain the optimal schedule with
minimum cost. This benchmark helps us understand the
impact of limited future knowledge about the workload de-
mand on reducing energy cost.

Figure 4: Monthly energy cost comparison for one
data center.

Fig. 3 plots the monthly power consumption breakdowns,
including both the peak and average demand, for the three
benchmarks. Note that this calculation includes server idle
power. All schemes reduce the average demand by 5% com-
pared to Baseline, which is the maximum that the SLA al-
lows. First notice that Random only marginally reduces the
peak power demand by 0.02%, since it does not utilize par-
tial execution strategically at times when demand is high.
Our Algorithm 1 utilizes limited (1-day) information that
is practically available, and optimizes the partial execution
schedule. Thus it is able to reduce the peak demand more
substantially than Random by 12.17%. Also observe that
when we have perfect future knowledge, Best reduces the
peak demand by 13.36%, only slightly higher than Alg. 1.

58

This demonstrates that limited future knowledge provides
close-to-optimal peak reduction with partial execution.

Fig. 4 shows the monthly energy cost comparison by using
the contract prices of all six utilities in order to understand
how much cost saving our idea can offer. Clearly we see that
given the same demand series and partial execution sched-
ules the total cost varies wildly depending on the prices. NC
and SC are the most expensive locations while others are
much cheaper. In all cases, Alg. 1 offers 3.04% to 10.49%
total cost reductions compared to Baseline without partial
execution, and is again very close to Best. The improvement
becomes more salient for locations where demand charge is
more significant than energy charge, such as OK and GA. In
dollar terms, cost savings range from about $2,400 to $7,600
per month. Though the amount seems small for a data cen-
ter, with the rapid increase of user demand and energy cost
even a single digit of cost saving is crucial for operators.
Moreover, an operator usually deploys multiple data cen-
ters, in which case the cost savings multiply and become
more substantial even without optimizing request routing.

5.3 The Case of Geo-distributed Data Centers
We now look at the case of multiple geo-distributed data

centers, and examine more closely the cost savings from opti-
mizing request routing, and the performance of Algorithm 2.
To do this we turn off partial execution in this set of sim-
ulation. We have three benchmarks here. The first, called
Baseline, directs user requests to the closest data center as
long as capacity allows, and does not attempt to reduce
energy cost. The second, called Energy, optimizes request
routing only for energy charge, i.e. it only considers the
per kWh price and directs user requests to locations where
the per kWh price is cheap while conforming to the aver-
age latency requirements. This represents a large class of
existing works that shift workloads according to geograph-
ical diversity of the energy prices [27, 35, 37, 44, 45, 52]. On
the other hand, the third, called Demand, optimizes request
routing only for demand charge, and tries to smooth out
the demand patterns at locations where the per kW price
is high. Finally, Alg. 2 refers to our Algorithm 2 that op-
timizes for both demand and energy charge, subject to the
latency constraint.

Fig. 5 shows the breakdowns of the total cost for all six
data centers. Observe that the total cost stands around
$600K, with $230K demand charge and $380K energy charge
as Baseline shows. Energy improves the situation by lowering
the energy charge. However, it actually incurs a higher de-
mand charge than Baseline, as it shifts demands to locations
with cheaper per kWh price where the per kW prices are not
necessarily cheaper. Also the demand series are more fluc-
tuating at those locations. Both factors contribute to the
higher demand charge. Demand, on the other hand, effec-
tively reduces the demand charge, with only marginally re-
duced energy cost. By taking into account both factors, Alg.
2 offers the most cost savings as expected. In all cases, the
latency constraint (9) is always satisfied. This confirms the
benefits of request routing optimization for geo-distributed
data centers.

Fig. 6 further plots the percentage of cost savings provided
by different schemes compared to Baseline. Energy and De-
mand provide 10.8% and 9.8% cost savings, while Alg. 2
is able to offer 14% cost savings. We also calculate the
cost savings of joint request routing and partial execution

by using Algorithm 2 together with Algorithm 1, shown as
Alg.2 + Alg.1 in the figure. It provides 15.5% cost reduction,
amounting to around a monthly saving of $85K for six data
centers. Our results establish that our workload scheduling
and request routing algorithms are effective in reducing the
total energy cost for practical-scale data centers.

5.4 Convergence
We now investigate the convergence and running time of

our ADMM based Algorithm 2. For comparison, we use
the subgradient method [21] to solve the dual problem of
the transformed optimization (18) with the augmented La-
grangian (19). Specifically, the primal variables α and β are
jointly optimized instead of sequentially updated as in our
ADMM algorithm, and the dual variables λ are updated by
the subgradient method. The step size is carefully chosen
according to the diminishing step size rule [21].

Fig. 7 plots the CDF of the number of iterations the two
algorithms take to achieve convergence for the 30 runs on
the traces. Our ADMM algorithm converges much faster
than the subgradient methods. Our algorithm takes at most
46 iterations to converge in the worse case, and for 80% of
the time converges within 33 iterations. The subgradient
method takes at least 72 iterations to converge, and for 80%
of the time takes more than 110 iterations. This shows the
fast convergence of our ADMM algorithm compared to con-
ventional methods.

6. RELATED WORK
Many related works on thermal management and work-

load shifting to reduce data center energy cost have been
discussed in Sec. 1. Only energy charge is considered in
these works. Some other efforts include dynamically shut-
ting down and waking up idle servers [35], using battery
and/or on-site generators to absorb workload spikes [30,46],
etc. These proposals are orthogonal to our approach using
partial execution. A recent work [38] focuses on the coin-
cidental peak charge which is a form of demand response
programs voluntary for data centers to participate to help
better balance the grid. Wang et al. [50] consider workload
dropping and delaying with penalties to reduce data cente
renergy cost, including a peak-based component. We con-
duct an empirical analysis with real-world contracts from
electric utilities which are not present in [38,50], and explic-
itly focus on reducing the demand charge through the novel
use of partial execution.

For partial execution, besides those discussed in Sec. 2.2,
[18] develops a flexible system that allows many programs
to take advantage of approximation opportunities in a sys-
tematic manner to reduce energy. This enables the general
implementation of partial execution while we focus more on
the algorithmic challenges brought by partial execution and
demand charge. We also present a model from empirical
data to quantify the trade-off between response quality and
energy usage, which has not been studied.

7. CONCLUSION
We proposed to use partial execution to reduce the peak

power demand and total energy cost of data centers, given
the importance of demand charge as established by our em-
pirical study of real-world electricity contracts. We studied
the resulting workload scheduling problem with SLA con-

59

Figure 5: Cost breakdown compari-
son for geo-distributed data centers.

Figure 6: Cost reduction compared
to Baseline.

Figure 7: CDF of number of itera-
tions.

straints in detail. The case with a single data center can
be optimally solved. For geo-distributed data centers, we
tackled the large-scale joint optimization of request routing
and workload scheduling following a decoupling approach.
Request routing is solved using an efficient distributed al-
gorithm based on ADMM that decomposes the global prob-
lem into many sub-problems, each of which can be quickly
solved. Trace-driven simulations are conducted to evaluate
the algorithm’s performance. As future work, we plan to
more thoroughly study the impact of partial execution on
demand response mechanisms of data centers.

Acknowledgment

The work was supported in part by the Start-up Grant
NO. 7200366 from City University of Hong Kong,

We would like to thank Yuxiong He from Microsoft Re-
search Redmond for providing the response quality data
from Bing, as well as insightful suggestions on the ideas of
this paper. We also thank Minghua Chen from The Chinese
University of Hong Kong, and Shaolei Ren from Florida In-
ternational University for their encouragement and helpful
discussions.

8. REFERENCES
[1] https://www.google.com/about/datacenters/

inside/locations/.
[2] http:

//www.cs.cityu.edu.hk/~hxu/share/Contracts.zip.
[3] http://www.oregonlive.com/business/index.ssf/

2011/11/do_centers_get_more_than_they.html.
[4] http://www.nwasco.com/commercial-rates.cfm.
[5] http://www.midamericanenergy.com/rates1.aspx.
[6] http://googleblog.blogspot.ca/2012/09/more-

renewable-energy-for-our-data.html.
[7] http://www.grda.com/electric/customer-

service/wholesale-sales/.
[8] http://googleblog.blogspot.ca/2013/04/

expanding-options-for-companies-to-buy.html.
[9] http://www.duke-energy.com/rates/progress-

north-carolina.asp.
[10] http://www.sceg.com/en/commercial-and-

industrial/rates/electric-rates/default.htm.
[11] http://www.georgiapower.com/pricing/business/

large-business.cshtml.
[12] http://www.google.com/zeitgeist/2012/#the-

world.
[13] http://www.routeviews.org.
[14] Google details, and defends, its use of electricity.

http://www.nytimes.com/2011/09/09/technology/

google-details-and-defends-its-use-of-
electricity.html, September 2011.

[15] Google throws open doors to its top-secret data center.
http://www.wired.com/wiredenterprise/2012/10/
ff-inside-google-data-center/all/, October 2012.

[16] http://en.wikipedia.org/wiki/ISO_RTO, 2013.
[17] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In
Proc. ACM SIGCOMM, 2008.

[18] W. Baek and T. M. Chilimbi. Green: A framework for
supporting energy-conscious programming using
controlled approximation. In Proc. ACM PLDI, 2010.

[19] C. Bash and G. Forman. Cool job allocation:
Measuring the power savings of placing jobs at
cooling-efficient locations in the data center. In
Proc. USENIX ATC, 2007.

[20] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and
Distributed Computation: Numerical Methods. Athena
Scientific, 1997.

[21] S. Boyd and A. Mutapcic. Subgradient methods.
Lecture notes of EE364b, Stanford University, Winter
Quarter 2006-2007. http://www.stanford.edu/
class/ee364b/notes/subgrad_method_notes.pdf.

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, and
J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of
multipliers. Foundations and Trends in Machine
Learning, 3(1):1–122, 2010.

[23] Y. Chen, D. Gmach, C. Hyser, Z. Wang, C. Bash,
C. Hoover, and S. Singhal. Integrated management of
application performance, power and cooling in
datacenters. In Proc. NOMS, 2010.

[24] M. Chiang, S. H. Low, A. R. Calderbank, and J. C.
Doyle. Layering as optimization decomposition: A
mathematical theory of network architectures. Proc.
IEEE, 95(1):255–312, January 2007.

[25] J. Dean. Achieving rapid response times in large online
services. Berkeley AMPLab Cloud Seminar, http:
//research.google.com/people/jeff/latency.html,
March 2012.

[26] X. Fan, W.-D. Weber, and L. A. Barroso. Power
provisioning for a warehouse-sized computer. In
Proc. ACM/IEEE Intl. Symp. Computer Architecture
(ISCA), 2007.

[27] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav. It’s
not easy being green. In Proc. ACM SIGCOMM, 2012.

[28] Georgia Power. Power and light high load factor
schedule: “PLH-8”.

60

http://www.georgiapower.com/pricing/files/
rates-and-schedules/5.10_plh-8.pdf.

[29] Z. Gong, X. Gu, and J. Wilkes. PRESS: PRedictive
Elastic ReSource Scaling for cloud systems. In
Proc. IEEE CNSM, 2010.

[30] S. Govindan, D. Wang, A. Sivasubramaniam, and
B. Urgaonkar. Aggressive datacenter power
provisioning with batteries. ACM Trans. Comput.
Syst., 31(1):1–31, February 2013.

[31] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel.
The Cost of a Cloud: Research Problems in Data
Center Networks. SIGCOMM Comput. Commun.
Rev., 39(1):68–73, 2009.

[32] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta:
Scheduling interactive services with partial execution.
In Proc. ACM SoCC, 2012.

[33] M. R. Hestenes. Multiplier and gradient methods.
Journal of Optimization Theory and Applications,
4(5):303–320, 1969.

[34] R. Krishnan, H. V. Madhyastha, S. Srinivasan,
S. Jain, A. Krishnamurthy, T. Anderson, and J. Gao.
Moving beyond end-to-end path information to
optimize CDN performance. In Proc. ACM IMC, 2009.

[35] M. Lin, A. Wierman, L. L. H. Andrew, and
E. Thereska. Dynamic right-sizing for
power-proportional data centers. In Proc. IEEE
INFOCOM, 2011.

[36] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach,
Z. Wang, M. Marwah, and C. Hyser. Renewable and
cooling aware workload management for sustainable
data centers. In Proc. ACM Sigmetrics, 2012.

[37] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L.
Andrew. Greening geographical load balancing. In
Proc. ACM Sigmetrics, 2011.

[38] Z. Liu, A. Wierman, Y. Chen, and B. Razon. Data
center demand response: Avoiding the coincident peak
via workload shifting and local generation. In
Proc. ACM Sigmetrics, 2013.

[39] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon,
T. Anderson, A. Krishnamurthy, and
A. Venkataramani. iPlane: An information plane for
distributed services. In Proc. USENIX OSDI, 2006.

[40] D. A. Maltz. Challenges in cloud scale data centers. In
Keynote, ACM Sigmetrics, 2013.

[41] H. Mittelmann. Mixed integer linear programming
benchmark (serial codes).
http://plato.asu.edu/ftp/milpf.html, 2011.

[42] D. Niu, H. Xu, B. Li, and S. Zhao. Quality-assured
cloud bandwidth auto-scaling for video-on-demand
applications. In Proc. IEEE INFOCOM, 2012.

[43] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai
network: A platform for high-performance Internet
applications. SIGOPS Oper. Syst. Rev., 44(3):2–19,
August 2010.

[44] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag,
and B. Maggs. Cutting the electricity bill for
Internet-scale systems. In Proc. ACM SIGCOMM,
2009.

[45] L. Rao, X. Liu, L. Xie, and W. Liu. Minimizing
electricity cost: Optimization of distributed Internet
data centers in a multi-electricity-market environment.
In Proc. IEEE INFOCOM, 2010.

[46] J. Tu, L. Lu, M. Chen, and R. K. Sitaraman. Dynamic
provisioning in next-generation data centers with
on-site power production. In Proc. ACM e-Energy,
2013.

[47] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia
workload analysis for decentralized hosting. Elsevier
Computer Networks, 53(11):1830–1845, July 2009.

[48] A. Vasan, A. Sivasubramaniam, V. Shimpi,
T. Sivabalan, and R. Subbiah. Worth their watts? —
An empirical study of datacenter servers. In
Proc. IEEE HPCA, 2010.

[49] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat,
D. G. Andersen, G. R. Ganger, G. A. Gibson, and
B. Mueller. Safe and effective fine-grained TCP
retransmissions for datacenter communication. In
Proc. ACM SIGCOMM, 2009.

[50] C. Wang, B. Urgaonkar, Q. Wang, G. Kesidis, and
A. Sivasubramaniam. Data center power cost
optimization via workload modulation. In
Proc. IEEE/ACM International Conference on Uitlity
and Cloud Computing (UCC), 2013.

[51] P. Wendell, J. W. Jiang, M. J. Freedman, and
J. Rexford. DONAR: Decentralized server selection for
cloud services. In Proc. ACM SIGCOMM, 2010.

[52] H. Xu, C. Feng, and B. Li. Temperature aware
workload management in geo-distributed datacenters.
In Proc. USENIX ICAC, 2013.

[53] H. Xu and B. Li. Joint request mapping and response
routing for geo-distributed cloud services. In
Proc. IEEE INFOCOM, 2013.

[54] R. Zhou, Z. Wang, A. McReynolds, C. Bash,
T. Christian, and R. Shih. Optimization and control of
cooling microgrids for data centers. In Proc. IEEE
ITherm, 2012.

61

