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ABSTRACT
Integration of wind power with the grid has become an important
problem. For integration, a producer needs to bid in a time-ahead
market to deliver an amount of energy at a future point in time. Be-
cause wind speed and price are both uncertain, a producer needs to
place bids on the basis of expected wind power yield and price. To
this end, improving the accuracy of the prediction of wind speed
has received much attention. However, the trade-off between ex-
pected profit and the prediction errors over a multi-period setting
has been less studied.

We fill this gap by quantifying trade-offs between profits and pre-
diction errors. First, we obtain, under idealized conditions on the
price and the yield processes, an optimal bid strategy as a closed-
form expression. Next, we evaluate the profit-vs-prediction trade-
off using this idealized bidding strategy on synthetic datasets which
satisfy all the idealistic assumptions. We also consider two base-
lines - a naive strategy and an oracle strategy that has perfect knowl-
edge over a limited horizon. Finally, we relax our assumptions and
evaluate all strategies under real-world datasets. We identify and
work around limitations of the idealized bidding strategy when the
underlying assumptions are violated.

On synthetic datasets, with no buffering and a (relative) predic-
tion error of 25% , we find that our bidding approach performs
significantly better than a naive approach and compares favourably
(86%) to an oracle with a look-ahead of two time-slots and infinite
buffer. On real-world datasets, with buffer equivalent to 20% of the
maximum yield, our approach exceeds the naive approach by 25%,
while remaining within 62% of a two-step look-ahead oracle that
uses infinite buffering.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes; J.7 [Comp-
uters in Other Systems]
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1. INTRODUCTION
The global demand for energy is expected to grow by 56% from

2010 to 2040 [20]. With increasing awareness of the carbon emis-
sions of fossil-fuel based power generation such as coal, gas, etc.,
it has become important for utilities to diversify their energy bas-
ket across cleaner sources of energy. Renewable and nuclear en-
ergy are the fastest growing cleaner sources of energy [20]. While
hydroelectricity has traditionally been considered a clean source
of energy, there are significant ecological and financial issues in
commissioning new hydroelectric power projects. At this junc-
ture, wind energy installations are expected to grow by 20% per
annum [23].

Integration of wind power with the grid involves a producer mak-
ing a bid to supply an agreed quantity of electricity at a future time.
This involves placing a bid in a time-ahead market. For instance, a
day-ahead bidding process would mean that the producer makes a
bid for supplying wind power one day ahead of the actual genera-
tion. When a producer makes a bid for supplying energy, they do
so under the following sources of uncertainty: 1) the actual amount
of energy produced; 2) the price of energy some time ahead. The
uncertainty in energy production can result in a producer produc-
ing more or less energy than what they bid for. In the former case,
the excess energy produced may or may not be buffered. In the lat-
ter case, the producer has to pay a (Unscheduled Interchange - UI)
penalty to the utility for failing to meet the contract obligation.

In developing economies (e.g., India, South Africa), where the
energy market is still evolving evolving, wind integration primarily
involves avoidance of penalties of under-delivery. For instance, in
India, a shortage in delivered power beyond 30% of the bid placed,
will incur a penalty for the shortage at the UI rate. In developed
economies (e.g., UK, EU), the wind producer can seek to maximize
profits by participating in spot and future energy markets. In either
case, it is important to have a bidding strategy that maximizes the
operating profits of the producer [9].

For a small producer of electricity, the pricing of the spot market
is largely unaffected by its bid. In other words, the bidding pro-
cess is the only control knob available to them in the face of the
uncertainty. The bid of the producer is determined by the trade-
offs between the expected price in the electricity market and the
wind power yield. This requires a model for wind power predic-
tion whose expected values can drive the bidding process. In this
context, two natural questions arise:
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1. How should a producer bid under uncertainty?

2. What is the economic impact of prediction errors?

Wind power prediction has been very well studied in the literature
(e.g., [18]). Question 1 has also been addressed very extensively
under a variety of assumptions about the price market and the wind
yields (e.g., [5,17,21], detailed related work is in Section 2). Ques-
tion 2, on the other hand, has received little attention and has been
typically addressed for one-period problems [4]. The economic
impact of the prediction accuracy depends on the how the bidding
process uses information about the prediction. While several ap-
proaches have been proposed to answer question 1, the trade-off
between prediction errors and profits has not been widely studied
over a multi-period horizon. We fill this gap and complement ex-
isting work by focusing on the economic impact of wind power
(mis)prediction.

Exact analysis under simplifying assumptions: First, we de-
velop, under idealized assumptions, a closed form analytical ex-
pression for idealized bidding (IB). Specifically, we assume an 1)
arbitrary price process that is independent of our bidding strategy;
2) a Markovian wind power yield process that is conditionally uni-
form and independent of the price process; and 3) an infinite buffer.
Under these stochastic driving processes, we optimize the expected
value of wind power over a finite horizon of one year as opposed
to several existing works that focus on optimizing the wind power
over the next bidding slot alone. We derive the optimal bidding
process by solving the Bellman recursion exactly. The expression
for the optimal bid in each timestep involves a) the buffer at the
beginning of the timestep; b) the expected wind power yield over
that timestep; and c) the expected prices over that timestep and the
next (details are in Section 3).

Cross-validation with synthetic datasets: We then cross-validate
our analytical derivation of the optimal bidding strategy under ide-
alized conditions. To do this, we derive the price and yield from
stochastic models that satisfy the requirements of our analysis. Un-
der this synthetic dataset, we evaluate the profit-prediction trade-
off. Specifically, we quantify the impact of prediction errors on the
profits over the optimization horizon for varying caps on the buffers
to store the excess energy produced. We find that a buffer can help
mitigate any mispredictions to a certain extent, beyond which the
expected profits almost linearly degrade with increasing prediction
error. As two extreme baselines, we use a naive approach and an
oracle based approach. The former makes no use of the buffer in-
formation to place a bid, while the latter has perfect knowledge of
the price and the yield up to a look-ahead window into the future.
With no buffering and a (relative) prediction error of 25% , we find
that our bidding approach performs significantly better than a naive
approach and compares favourably (86%) to an oracle with a look-
ahead of two time-slots and infinite buffer.

Empirical evaluation with real-world datasets: Next, we re-
lax each of our simplifying assumptions and evaluate our approach
with real-world data and a finite buffer. We identify the limita-
tions of our approach when the data (specifically, the price process)
does not match our assumptions. Then we modify our approach to
work around this limitation (details in Section 5). We compare our
approach by comparing with the two baselines mentioned above.
With buffer equivalent to 20% of the maximum yield, our approach
exceeds the naive approach by 25%, while remaining within 62%
of a two-step look-ahead oracle that uses infinite buffering.

Economic impact of prediction errors: We want to explore the
profit vs. prediction error trade-off in a manner that is agnostic to
the predictor. Specifically, we do this by constructing sample paths
of the predicted yields with a parametrized prediction error from

the actual wind yield obtained from real-world data. Then we eval-
uate the expected profits under our idealized bidding algorithm, and
the naive and oracle-based baselines. This quantifies the trade-off
between the profits from wind power and the errors in mispredic-
tion. For a given tolerance of the profit from the maximum possible,
we also quantify the trade-off between the buffer sizing required as
a function of the prediction error.

Contributions: Our specific findings and contributions include
the following:
• We analyze a one-period ahead bidding strategy to obtain a

closed-form expression for the optimal bid under idealized
conditions. The closed-form expression provides intuition
behind the choice of the bid as a trade-off point between the
higher and lower limits of the yield distribution and the ex-
pected prices.

• We cross-validate the analytical expression on synthetic datasets
for the price and yield processes. The price and yield pro-
cesses match real-world data in mean and deviation. We
quantify the profit vs. prediction error trade-off with varying
absolute and relative prediction errors. We find that predic-
tion errors do not matter significantly beyond a buffer capac-
ity of 30% of the maximum generation. For a buffer capacity
of 20%, we find that the impact of prediction errors on profits
to be less than 1.2%.

• We evaluate our approach on real-world datasets by relaxing
the assumptions on the price and the yield processes. Specif-
ically, we modify our approach to account for the fact that
price and yield processes in reality violate our idealized as-
sumptions. Under our modified bidding strategy, we quantify
the profits vs. prediction error trade-off. We find that modi-
fied IB remains stable on the real-world data.

• We present two baselines as comparison with IB for both
synthetic and real datasets. At the lower extreme, we con-
sider a naive bid strategy; and at the higher extreme, we con-
sider an oracle that gives perfect prediction of yield and price
processes over the next few time-slots.

• We quantify the impact of the increasing penalties on the ex-
pected net profits. We find that modified idealized bidding is
almost agnostic to variations in the penalty.

The rest of the paper is organized as follows. Related work is
surveyed in Section 2. Section 3 presents our analysis of optimal
bidding using a Bellman recursion and identifies the formula for
the optimal bid. Section 4 evaluates our algorithm on synthetic
datasets that satisfy all the assumptions of our analysis. Section 5
evaluates our algorithm on real-world datasets for price and yield
and explains how to improve our algorithm when the conditions
assumed in the analysis are not met. Section 6 studies the impact
of penalty on net profits. Section 7 concludes.

2. RELATED WORK
A number of wind yield prediction techniques have been tried.

These techniques are based on statistical methods, numeric weather
prediction methods, machine learning models and hybrid forecast-
ing approaches [11]. Reference [18] uses alternative models based
on the variables involved and combine these models to obtain the
final prediction. Numerical Weather Prediction (NWP) models out-
perform statistical and machine learning techniques over long term
prediction horizons. However, the statistical techniques perform
better over shorter horizons [19], [2], [12].
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A large section of the related literature focuses on optimal bid-
ding as a one period problem, optimizing for just the next period,
under various settings. Usaola et al [22] look at the problem of
bidding one period ahead in an intraday market, given a position in
a forward market. Botterud et al [5] consider the question of how
to make the next bid in a day ahead market for different types of
objective functions (Conditional Value at Risk (CVAR), expected
profit, etc.). Puglia et al [17] also look at minimization of a risk
measure, under the presence of both a day ahead and an ancil-
lary market. Liang et al [13] address the problem of bidding opti-
mally for the next period, provided the wind producer has access
to both an energy market and a reserve market. Bitar et al [3]
solve the problem of optimally bidding for the next time slot, al-
lowing wind output to vary continuously within the slot. They then
generalize the problem somewhat by allowing storage to be used
within the slot, but it is still with a constant bid over the entire
period. Other papers that look at one-period bidding problems in-
clude [16], [24], [6], [7], [8], [25] and [21]

There have been a few papers that have looked at N-period hori-
zon bidding problems. Lohndorf et al [14] consider such an N-
period problem, with finite buffers. They model the problem as
a Markov decision process, and use an approximate dynamic pro-
gramming approach to provide approximate solutions to it. Apart
from the fact that our paper provides detailed empirical analysis of
the value of prediction accuracy to bidding (which is not consid-
ered in [14]), a few other differences can also be noted between
this work and ours. We allow for an arbitrary price process, while
this work models price by an AR(1) process and the solution crit-
ically depends on this assumption. Further, our work provides an
analytical solution that is optimal. Our optimal solution also turns
out to be simple and can be implemented at each state of the system
in constant time; on the other hand, the ADP methods used in [14]
take significant computational resources. Morales et al [15] solve
an N-period problem by reducing continuous variables into discrete
scenarios and using linear programming. However, they do not al-
low buffers (any excess is sold off immediately), and therefore it is
fundamentally not different from just a one-period problem. Fur-
ther, the running time can quickly go up with increasing number
of scenarios chosen. Giannitrapani et al [10] employ a similar LP
technique as [15]; [10] differs from [15] by allowing buffers, but
assuming a constant price and penalty throughout.

One of the main objectives of this paper is to analyze how bet-
ter prediction accuracy can translate to better bidding, and there-
fore better profits. There has been some recent initial effort in this
area, but only for a one-period case. Bitar et al, in [4], consider a
problem of choosing an optimal constant bid for the next time slot,
allowing wind output to vary continuously within the slot. They
also analyze value of information about next period’s wind power
to the quality of bidding. Specifically, they quantify information
using the conditional value-at-risk (CVaR) measure, and show how
better information can increase profits. However, in this paper, we
seek to evaluate (empirically) the value of prediction accuracy in a
more general situation with multiple periods and with storage.

3. IDEALIZED BIDDING (IB)
Consider a wind power producer who needs to bid at time-slot

t − 1 for supplying energy in the slot t. The bid placed kt needs
to be decided by the producer in response to the predictions of the
yield Yt and the price Pt processes. Suppose buffering is allowed
and the buffer at the end of a slot t is bt, then the energy delivered
dt in slot t is given by min(Yt + bt−1, kt).

If buffering is allowed, the buffer bt stores any energy that is pro-
duced in excess of the bid, and can be used to meet any shortfall
in the yield below the bid. We ignore buffer related energy losses
in this work. Any unit of energy that is actually delivered from the
yield or the buffer earns a revenue of Pt and any energy delivered
by procuring from the spot market incurs a penalty of Lt. The net
profit is difference between the revenue and the penalty paid. In
sum, our problem statement is as follows:

Problem statement: Over an optimization horizon of T (say,
a year) divided into equal number of (say, six hour) slots, given
(probabilistic) knowledge about the yield and the price, we want to
identify a bid strategy that maximizes the expected value of the net
profit over the entire duration T at time t = 0 with future profits
discounted by a factor δ.

Symbol Meaning
T Optimization horizon
t Timeslot id; ranges in [1..T ]
CFt Net profit in slot t
Yt Yield in t
yl Lower bound on Yt|Yt−1

yh Upper bound on Yt|Yt−1

Pt Unit price in t
bt−1 Buffer at end of t− 1
kt Bid placed at t− 1 for delivery in t
dt Amount actually delivered in t

given by dt = min (Yt + bt−1, kt)
Lt Penalty for each unit of under-delivery
δ Discount factor

to translate cash-flows between slots
p0 Terminal sale price at last slot T
Et[] Expectation given all information up to

and inclusive of t
P() Probability distribution

Table 1: Notation

Notation used is summarized in Table 1. Our goal is to find the
optimal strategy {k∗1 , ..., k∗T } to maximize

T∑
t=1

δtE0(CFt)

In other words, we want to identify a strategy that maximises the
value function where the expected cash flows of future timeslots
are discounted by the factor δ. The cash flow at the terminal time
slot T is:

CFT = dTPT − [kT − dT ]LT + [bT−1 + YT − dT ]p0

where dT = min (YT + bT−1, kT ) Specifically, at T , there is no
further buffering. Anything in excess of the delivered amount is
dumped at the dumping price pD . The cash flow at slots t < T is:

CFt = dtPt − [kt − dt]Lt

We obtain the optimal strategy using Bellman dynamic program-
ming. The value function is:

Vt = CFt + δ · Et(V ∗t+1), t < T

with VT = CFT . We update the buffer at every t as follows:

bt = bt−1 + Yt − dt
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The problem at each t ∈ {0, 1, ..., T − 1} is:

V ∗t = max
kt+1

Vt

The value under the optimal strategy {k∗1 , ..., k∗T } is V ∗0 .

3.1 Assumptions
For the sake of analytical tractability, we make the following

simplifying assumptions (that will be relaxed in the experimental
evaluation):

• At t− 1, we bid kt for delivery during t.

• Yt is conditionally uniform: Yt|Yt−1 is ∼ U(yl, yh), where
the range is determined by Yt−1.

• Yt and Pt are independent.

• Buffers are infinite and costless.

• The per-unit price of dumping is low:

p0 < Et(Pt+1), ∀t (1)

• Penalty is sufficiently large to avoid simple hoarding:

Et−1[Lt] > Et−1[−Pt + δPt+1], ∀t (2)

Essentially, this precludes someone from buying in the spot
market at time t and hoarding it to sell it at time t+ 1.

3.2 Preliminaries
Our strategy is to calculate the expected delivery Et−1[dt] and

see how it changes with the bid value kt. Since the delivered
amount is the minimum of the bid placed and the available energy
(the sum of the buffer and the current yield), we proceed as follows:

Et−1[dt] = Et−1[bt−1 +min{Yt, kt − bt−1}] (3)

If Y is a uniform random variable in [yl, yh], then for a ∈ [yl, yh]

E[min(Y, a)] =

∫ a

−∞
xf(x)dx+

∫ ∞
a

af(x)dx

= aαt −
a2

2(yh − yl)
+ g(yh, yl)

where αt = yh
yh−yl

and g(.) is a function of only yh and yl and
independent of a. Using this result in Equation 3, we have

Et−1[dt] = bt−1(1− αt) + ktαt −
(kt − bt−1)

2

2(yh − yl)
+ g(.) (4)

Differentiating Et−1[dt] with respect to kt yields,

∂Et−1(dt)

∂kt
= αt −

(kt − bt−1)

(yh − yl)
(5)

3.3 Solving the Bellman recursion for t = T

We solve for the optimal bid in every timestep using Bellman’s
recursion working from backwards. Recall that the value function
is recursively defined with

Vt = dtPt − [kt − dt]Lt + δEt(V ∗t+1)

with a terminal condition at:

VT = dTPT − [kT − dT ]LT + (bT−1 + YT − dT )p0

Now
∂VT−1

∂kT
= δ

∂

∂kT
ET−1[VT ]

∂ET−1[VT ]

∂kT
=

(
∂ET−1[dT ]

∂kT

)(
ET−1[PT + LT ]− p0

)
−
(
ET−1[LT ]

)
(6)

We use Equation 5 to evaluate ∂ET−1[dT ]

∂kT
. To solve for the opti-

mal kT we equate Equation 6 to 0. Under the assumption given
in Equation 1, the second derivative w.r.t. kT (that we omit for
the sake of brevity) is negative and hence the local optimum is a
maximum. Thus, the optimal bid for T works out to:

k∗T = yh + bT−1 −
ET−1[LT ](yh − yl)
ET−1[PT + LT ]− p0

(7)

3.4 Solving the Bellman recursion for t < T

Solving the recursion for t < T is slightly more involved, and
we give only the highlights of the analysis. Recall that

Vt−1 = dt−1Pt−1 − [kt−1 − dt−1]Lt−1 + δEt−1(V
∗
t )

∂Vt−1

∂kt
= δ

∂

∂kt
Et−1(V

∗
t )

= δ

((
∂Et−1[dt]

∂kt
· Et−1[Pt + Lt]

)
− Et−1[Lt]

)
+ δ2

∂

∂kt
Et−1[V

∗
t+1] (8)

The first term of Equation 8 is similar to the expression for the
case of k = T that we saw earlier in Equation 6 (only with p0 set
to zero). Because t < T does not have a terminal condition, we
need to evaluate the second term of Equation 8 separately. Using
the law of iterated expecations and some algebraic transformations,
we have

δ2
∂

∂kt
Et−1[V

∗
t+1] = −δ2

∂

∂kt

(
Et−1[dt] · Et−1[Pt+1]

)
(9)

Now, substituting Equation 9 back into Equation 8 and equating
it to zero, we have

k∗t = αt(yh − yl) + bt−1 −
Et−1[Lt](yh − yl)

Et−1[Pt − δPt+1 + Lt]

which is

k∗t = yh + bt−1 −
Et−1[Lt](yh − yl)

Et−1[Pt − δPt+1 + Lt]
(10)

This choice of k∗t is a maxima because the assumption in Equation
2 ensures that the second derivative is negative.

3.5 Discussion
We make the following observations about the expression for

the optimal bid. As Et−1[Lt] increases, k∗t decreases, indicating
that as the penalty increases, the bidding strategy should be more
conservative. Similarly, if Et−1[Pt] increases, k∗t increases, but if
Et−1[Pt+1] increases, k∗t decreases. If the expected price in the
next slot t is higher, we bid more, if the expected price in the
slot t + 1 is higher, we defer. As yh increases, k∗t increases if
next period’s expected price is relatively more attractive (i.e. if
Et−1[Pt] > δ · Et−1[Pt+1])
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Data Value Units
Min Wind Yield 0 KwH
Max Wind Yield 21000 KwH
Average Wind Yield 5358 KwH
Min Unit Price 8.48 £/KwH
Max Unit Price 257.21 £/KwH
Average Unit Price 25.41 £/KwH

Table 2: Digest of real-world data for slots of 6 hours. All yields
are normalized to a single turbine. The data is from the UK geog-
raphy and the prices are in GBP (£)

Parameter Symbol Value Units

Price
µP 16.92 £/KwH
αP 0.47
σP 9.41 £/KwH

Yield
µY 1533 KwH
αY 0.73
σY 4061 KwH

Risk-free interest rate rf 3.5% p.a.
Discount factor δ 0.99
Absolute prediction error σ Varied KwH
Relative prediction error ρ Varied % of

prediction

Table 3: Values of parameters used to generate price and yield pro-
cesses. The data is from the UK geography and the prices are in
GBP (£)

4. EVALUATION ON SYNTHETIC DATASETS
We now evaluate our IB strategy with data that is generated syn-

thetically but matching real-world data in mean and deviation. We
use a synthetic dataset to ensure that all the assumptions made for
the analysis are satisfied by the dataset. On this, we explore the
profit vs. prediction tradeoff for IB.
Time model: We consider a bidding horizon of 1 year. Each bid-
ding slot is 6 hrs, i.e., we consider wind prediction and bid over
(non-overlapping) 6 hour blocks. Thus we have T = 1yr

6hrs
= 1460

slots. Under this horizon, we want to maximize the expected prof-
its over all timeslots with the profit at each slot t discounted by
δt. To get the discount factor δ, we use the annual risk-free rate
of interest rf = 3.5% and divide it across 6 hour blocks. That is,
δ = 1

(1+rf/T )
= 1

(1+0.025/1460)
= 0.99

Price model: For the price process, following [14], we use an
AR(1) process. We use real-world datasets obtained from [1] to
obtain the mean, variance, and the first-order correlation of the
price process. Specifically, the price process is modeled as Pt+1 =
αPPt + µP + ξt, where Preal denotes the price from a real-world
dataset, µP = E[Preal](1 − αP ) and ξt is N (0, σ) with σ2 =
V ar[Preal](1− α2).

Under this model the assumption that the bidding knows P(Pt+1|Pt)
at time t and hence Et[Pt+1] is satisfied.

Yield and prediction errors: For the yield process, we similarly
use real-world data 1 to identify parameters for an AR(1) process.
We first generate a sample path Ŷ (t) from an AR(1) process. We
introduce a prediction error to the actual yield Ŷt to get a pre-
dicted yield Yt as follows. Specifically, once a sample path Ŷ (t) is

1We do not mention the source of real-world data for the wind
power yields due confidentiality requirements.

generated, we assume that the predicted yield is given by

P(Yt+1|Ŷt) = Ŷt+1 + Uniform[−σ, σ] (11)

to model absolute errors in prediction that are same over the entire
region of wind values or

P(Yt+1|Ŷt) = Ŷt+1 + Uniform[−ρ,+ρ ]× Ŷt+1 (12)

to model relative errors in prediction whose ranges depend on
the actual value being predicted. This satisfies the assumption in
the analysis that the conditional yield is uniformly distributed and
that the lower and upper limits of the uniform distribution are de-
termined by Ŷt. The parameters used for generating the yield and
the price processes are shown in Table 3.

Bidding strategies evaluated: We evaluate the following bid strate-
gies:

1. Our approach (IB) described in Section 3. Here yh would
be Ŷt + σ and yl would be Ŷt − σ in the case of absolute
prediction errors and the corresponding ρ term for relative
prediction errors.

2. The first baseline strategy (termed Naive) bids exactly the
expected value of the yield according to the wind prediction
model, i.e., kt = Ŷt + prediction noise, while the actual
yield is Ŷt and the noise is given in Equations 11 and 12
respectively.

3. The second baseline strategy (termed Oracle(l)) is as fol-
lows:

• The bidder knows perfect information about the price
for the next l steps.

• With an infinite buffer, the yield Yt is always sold at the
maximum price in the slots [t, t+ l − 1]

• With l = 1, slot t’s yield is sold off at that slot’s price
Pt with no penalty at all.

4.1 The profit-prediction tradeoff
Under these generating processes for the price and the yield, we

generate an ensemble of 1000 sample paths for each set of param-
eters. We compute (ensemble average) expected net profit over the
entire bidding horizon. Then we plot the prediction error on the
X-axis and the expected net profit on the Y-axis for the various
bidding strategies. This quantifies the tradeoff between prediction
error and the expected net profit.

The results are shown in Figures 1a, 1b, and 1c for IB, naive,
and oracle bid strategies when the prediction errors are absolute
(i.e., the error magnitude is the same irrespective of the predicted
value). The X-axis shows the absolute prediction error, and the
Y-axis shows the expected net profits for each of the bidding strate-
gies. Each plot shows a family of curves parametrized by various
buffer values (Bcap). We make the following high-level observa-
tions:

• The expected profits fall with increasing errors in both IB
and naive strategies. In the Oracle strategy, with increasing
look-ahead knowledge, we have improved profits.

• The rate of fall is higher for the naive strategy than IB despite
both using buffers of the same capacities.

• In general, for increasing buffer capacities, the tolerance of
the net profit to error increases for both IB and Naive. For IB,
beyond a buffer cap of about 6000 KwH (which is 30% of
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Figure 1: Profit-vs-prediction tradeoff with varying buffer capacities and absolute prediction errors

the peak yield), prediction errors do not matter significantly.
With a buffer capacity of 20% of peak yield, the impact of
prediction errors on profits is less than 1.2%.

• The Oracle strategy with a perfect look-ahead of length l = 1
matches closely with IB, indicating that IB is nearly optimal
when the look-ahead knowledge is perfect only over short-
intervals.

Figures 2a and 2b show the profit-vs-prediction tradeoff for rel-
ative errors in prediction. We note that the trends are similar to the
absolute prediction errors. We now analyze each of these bidding
strategies in detail.

4.2 Analysis of IB
Figure 1a shows IB’s performance for varying values of pre-

diction noise. Specifically, the X-axis shows the absolute error
in prediction of the yield. The Y-axis shows the expected value
of the cashflow over the entire bidding period. The curves are
parametrized by increasing values of the buffer cap (Bcap). We
see that as the prediction error increases, the expected cash flow
falls as one would expect. For very high values of Bcap, there is no
significant fall as the buffer can handle the excess and deficit over
multiple timeslots. For lower values of Bcap the expected net cash
flow stays flat for lower values of σ, but show a sharp dip when σ
exceeds some threshold. All deviations are within 5% of the en-
semble means. Figure 2a shows similar results when the errors are
no longer absolute but are a constant fraction (ρ) of the predicted
value. As before, the X-axis shows increasing values of ρ and the
Y-axis shows the expected cash flow. For the sake of brevity, we
restrict our analysis of the IB to the case where the prediction errors
are absolute (i.e., for the errors parametrized by σ). Specifically, we
explain the behaviour of the expected cash flows with increasing σ.
We have assumed that the prediction error is uniform in [−σ,+σ].
For sake of brevity, we omit (t − 1) in Et−1[.] and use E[.]. Be-
cause Pt+1 = αPPt + µ + ξt is a weak-sense stationary process,
we have as αP < 1

lim
t→∞

E[Pt] = lim
t→∞

E[Pt+1] =
µ

(1− αP )
(13)

Therefore, under the assumption that E[Lt] = λE[Pt], the optimal
bid k∗t simplifies to

k∗t = yh + bt−1 −
λ

(1− δ) + λ
× (yh − yl) (14)

Further, because δ ≈ 1 (explained earlier in Section 4) we have
k∗t = bt−1 + yl. Recall that yl is the lower limit of the uniform
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Figure 2: Profit-vs-prediction tradeoff for varying buffer capacities
and relative prediction errors
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Figure 3: Break-up of the expected net cash flow into the positive
and negative cash flows confirming the analytical predictions. The
buffer cap used is 2000 KwH.

marginal P (Yt+1|Yt). On an average, the expected bid at t is given
by E[bt−1] + E[yl] Because we bid at the lower limit, the penalty
is never paid. And we store E[Yt − yl] in the buffer. For a constant
error of prediction parametrized by σ, we have E[Yt − yl] = σ.
Therefore, we expect to discharge σ from the buffer and store σ on
an average over every t.
If the buffer cap Bcap > σ, all of the yield excess over the bid
value can be stored over all timesteps. The expected per-step cash
flow over all timesteps would be limt→∞ E[Yt]E[Pt]. By our as-
sumptions of independence, this would simplify to µY µP

(1−αP )(1−αY )

which is independent of Bcap and σ. Therefore, we get a flat line
behaviour. The expected steady-state buffer size is given by σ.
If the buffer cap Bcap < σ, we will expect to lose some energy in
every timestep when the yield is in excess of the bid value because
the buffer cannot store it. Specifically, the expected per-step cash
flow is given by E[Pt(bt−1 + YL) + PD(Yt − YL)]. The expected
buffer size is given by Bcap and E[YL] = E[Yt] − σ. Thus the
per-step cash flow becomes

µP
1− αP

×
(
Bcap +

µY
1− αY

− σ
)
+ (σ −Bcap)Pdump

Because Pdump <
µP

1− αP
, the expected cash flow is a linearly

decreasing function of σ.
Figure 3 shows the expected net cash flow and the expected neg-

ative and positive cash flows of the IB algorithm for varying values
of σ for Bcap = 2000. As we can see, the expected negative cash
flow stays almost constant at zero, while the expected positive cash
flow decreases after σ > Bcap as predicted by the analysis thus
confirming our analysis of the IB algorithm.

Figure 4 shows the time evolution of the expected buffer size
for the IB algorithm. As expected, for σ < Bcap, the steady-state
buffer value is approximately σ, while for σ > Bcap, the buffer
saturates close to the maximum cap available Bcap. Thus our ex-
periments confirm our analytical predictions.

4.3 Analysis of naïve bidding
Figure 1b shows the performance of naïve bidding for various

values of the prediction noise.
For the naïve bidding strategy, where kt = E[Yt], we see a

smooth behaviour in the curve (as opposed to a threshold-based
knee like behaviour seen for IB.) When we bid E[Yt], any excess
of the yield over the bid is buffered and any deficit in the yield can
be met from the buffer. However, the buffer value itself is not used
to make a bidding decision. Therefore, if εt = E[Yt] − Yt the
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Figure 4: Time evolution of the ensemble average buffer E[Bt] for
t ∈ [0, 1460] for the bid strategies with prediction errors. IB

buffer evolves according to the following equations:

Bt+1 =


min(Bt − εt, Bcap) if εt < 0

max(Bt − εt, 0) if εt > 0

Bt if εt = 0

Because εt is uniform in range [−σ,+σ], we can solve the stochas-
tic difference equation for the steady state behaviour of Bt as t →
∞ similar to diffusion processes with barriers. We omit the analy-
sis for sake of brevity and state the following results:

lim
t→∞

E[Bt] = Bcap/2

lim
t→∞

P(Bt)
D→ Unif [0, Bcap]

with point masses pm at {0, Bcap}

An illustration of the buffer distribution is shown in Figure 5.
At timeslot t, if there is no penalty, then the expected profit is

precisely E[Pt]E[Yt]. However, if the yield happened to be less
than the bid and the buffer cannot meet the deficit, we end up pay-
ing a penalty. To estimate the probability of paying a penalty in
the steady-state we proceed as follows. Because Yt is exogenous, it
and, therefore, εt are independent ofBt−1. Recall that εt andBt−1

are continuous and mixed (i.e., continuous with point masses) ran-
dom variables respectively. So we have

P(penalty) =
∫
x

P(εt ∈ [x, x+ dx])×P(Bt−1 < x)

For Bcap > σ, we have

P(penalty) =

∫ σ

0

dx

2σ
×
∫ x

0

P(B)dy

=

∫ σ

0

dx

2σ
×
(
pm +

x(1− 2pm)

Bcap

)
=

pm
2

+
σ(1− 2pm)

4Bcap

Because σ < Bcap this is an increasing function of pm, and
consequently the penalty would increase with increasing pm. For
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Figure 5: PDF of the steady-state buffer distribution for Bcap = 2000 units for σ in the list [200, 600, 1000, 2000, 3800] units.
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Figure 6: Time evolution of the ensemble average buffer E[Bt] for
t ∈ [0, 1460] for the bid strategies with prediction errors. Naive
approach

σ > Bcap, we have

P(penalty) =
(σ −Bcap)

σ
+

∫ Bcap

0

dx

2σ
×
∫ x

0

P(B)dy

=
(σ −Bcap)

σ
+
Bcap
4σ

independent of pm and increases smoothly with σ. For σ = Bcap,
the expressions for the latter two cases both simplify to 1

4
as can be

expected.
Summary: Therefore, the expected penalty also increases super-
linearly and smoothly with σ for σ < Bcap as well as σ > Bcap.
So the net cash flow falls smoothly. The inflection point occurs
at σ = Bcap. Figure 6 shows the time evolution of the expected
buffer size averaged across 1000 runs for the range of timeslots for
Bcap = 2000 and various values of σ. As the analysis predicts,
it converges to approximately Bcap/2. The slight deviation from
Bcap/2 is because the empirical evaluation does not allow the yield
values to become negative, while the analysis does not explicitly
account for the case (instead focusing on the buffer values alone
being non-negative).

5. EVALUATION ON REAL-WORLD DATA
SETS

As mentioned before, we had access to historical data for wind
yield over 2003 and 2005. The price data for the same period was
obtained from [1]. Figure 7 shows the price and the yield data for

2003; Figure 8 shows the same for 2005. We evaluated the perfor-
mance of the IB algorithm and the two benchmarks as follows. The
expected value of the wind was uniformly chosen within an inter-
val of the actual wind speed. This makes the prediction error to be
uniformly distributed in a pre-determined interval.
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Figure 7: Price and yield for wind in 2003
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Figure 8: Price and yield for wind in 2005

Under this assumption on the prediction error, we evaluated the
IB algorithm with real-world price and yield data (2003). Figures
9a and 9b show the results for absolute and relative errors respec-
tively. IB performs significantly worse than the other naive bidding
algorithms that do not even use the buffer or the buffer state.
Explanation of poor performance of IB: To understand this be-
haviour, we evaluated if the conditions (specified in Equations 1
and 2) for the IB algorithm to be optimal are valid. The assumption
that the price process satisfies the condition that E[Lt] > E[Pt]−
δE[Pt+1] is violated in the real-world price data that we used. In-
tuitively, the IB algorithm assumes that the price process varies
smoothly. Indeed, if Lt = λPt, then E[Pt+1] <

(1+λ)E[Pt]
δ

. The
violation of this assumption has two consequences:
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Figure 9: Poor performance of the IB algorithm on the real-world
data for 2003.
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Figure 11: Intuition behind choice of optimal bid when the condi-
tion for local maxima is flipped.

• The second derivative used for checking the optimality in the
expected per-slot payoff flips signs to become positive and
therefore indicative of a minima.

• In the optimal bid formula

k∗t = yh + bt−1 −
Et−1[Lt](yh − yl)

Et−1[Pt − δPt+1 + Lt]

the denominator Et−1[Pt − δPt+1 + Lt] becomes negative,
and so the bid placed becomes

k∗t = yh + bt−1 + a positive quantity

In other words, IB systematically overbids above the range
of possible yields in every timestep leading to a very high
negative cashflow and, consequently, a poor performance.

Modifying IB for real-world data: We observe that even under
the violation of the price assumption, the expression for the optimal
k∗t still identifies a local extrema. Without going into the details of
the mathematics, we give the intuition in Figure 11.

When the second derivative changes sign, we expect the bid to
be a local minima rather than a maximum. Because there are no
other local extrema, the boundary value of the function at the low-
est choice of the bid is the local maxima in that interval. This cor-
responds to a bid value of precisely 0. Therefore, we modify the IB
algorithm to bid zero when the condition on the expected price is
violated.
Performance of modified IB: We now evaluate the modified IB
algorithm with the price and yield data (2005) obtained from real-
world sources. We also restrict the buffer capacity to 20% of the
maximum yield (i.e., a value of 4 MwH) to avoid unrealistic buffer

sizes. Figure 10a shows the results of IB when the error involved
in the prediction is absolute. In both cases, the IB algorithm is
relatively stable in the face of increasing errors, while the naive
strategy quickly degrades in performance.

6. IMPACT OF PENALTY
So far, we studied the impact of prediction inaccuracy assuming

that the penalty is a constant multiple of the bid price. In other
words, Lt = λPt with λ being held constant. We now study the
impact of prediction errors on the profits when the Lt varies sig-
nificantly. Specifically, for a given constant prediction error σ, we
vary Lt as follows:

• Relative to Pt, i.e., increasing the value of λ

• Independent of Pt, with L varying from Pmax
10

to 2Pmax in
steps of Pmax
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.

1.4

1.6

1.8

2.0

2.2

2.4

2.6

156 338 520

0

2

4

6

8

10

12

14

16

18

20

% Deviation = 5.41%

Penalty (£/MWh)

E
x
p
e
c
te

d
 n

e
t 
p
ro

fi
ts

 (
in

 1
0
0
K

 £
)

B
u
ff
e
r 

(i
n
 M

W
h
)

(a) Absolute penalty

1.4

1.6

1.8

2.0

2.2

2.4

2.6

50 120 200

0

2

4

6

8

10

12

14

16

18

20

% Deviation = 6.08%

Penalty (as % of bid price)

E
x
p
e
c
te

d
 n

e
t 
p
ro

fi
ts

 (
in

 1
0
0
K

 £
)

B
u
ff
e
r 

(i
n
 M

W
h
)

(b) Relative penalty

Figure 12: Effect of penalty on the expected profit for IB. Some-
what constant, but falls with increasing values of penalty.

Figures 12a and 12b show the effect of increasing penalty values
on the expected profits on the real-world data for IB. These can be
understood as follows. Because IB in the real-world data incurs
penalties, we expect the expected profit to decline with increasing
penalties. This trend is seen across the same value of Bcap. With
increasing Bcap, we expect the effect of penalty to be less as the
buffer helps smoothen out the bid-yield mismatch. This trend is
also observed in both figures. A similar behaviour is seen in Figures
13a and 13b for the naive bidding strategy, except that the penalty
increases rapidly with increasing penalty.

For the synthetically generated datasets, as indicated in the anal-
ysis in Section 4, the bid formula does not depend on the penalty
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(b) Relative penalty

Figure 13: Effect of penalty on the expected profit for naive bidding
for 2003 real dataset. The expected profits fall off more rapidly than
IB.
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Figure 10: Profit vs. prediction for realistic buffer capacities and absolute prediction errors for IB, Naive, and Oracle approaches. Data is
from year 2005.
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Figure 14: Effect of penalty on the expected profit for synthetic
datasets and IB. The net profit is almost independent of the penalty
as IB hardly pays any penalties.

value, and the penalty paid is close to zero, and thus the actual value
of the per-unit penalty price does not affect the net profit. Figures
14a and 14b confirm the expected trend.

7. CONCLUSIONS
Integration of wind energy with the grid is an important problem.

Placing a bid in a time-ahead market is a key mechanism for wind
power generators to integrate with the grid. A bidding strategy uses
predictions about the wind power yield and the price. To do this,
we need a bidding strategy and understand the trade-off between
profits and the prediction accuracy. We presented a bidding strat-
egy that computes the optimal bid under idealized situations. We
cross-validated this approach under synthetic datasets that match
the idealized requirements. Next, we identified the modifications
required for our idealized bidding strategy to work on real-world
datasets. For both synthetic and real-world datasets, we explored
the trade-off between the net profits and the prediction errors. On
real-world data, we find that buffers can help reduce the impact
of prediction errors significantly, but are not required if the errors
are within 10% to achieve 83% of baseline profits. Future direc-
tions of work include generalizing the strategy for costs associated
with buffering and evaluating the profit-prediction trade-off when
buffers incur capital expenditure and operational expenses.
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