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ABSTRACT
Metering of the energy supplied to consumers is an impor-
tant component of operations for utility providers. Several
schemes have been employed for this purpose, including tra-
ditional postpaid and prepaid metering, and more advanced
smart metering technology. Analysis of the data generated
by these meters has the potential to provide insights into
consumer characteristics and power consumption patterns,
including consumer segmentation and anomaly detection.
We describe the different types of power purchase and con-
sumption data, as well as the analytics algorithms that can
be applied to them. Most applications developed for energy
meter data require high resolution information of the type
provided by smart meters, thus leaving aggregate prepaid
or postpaid meter schemes at a disadvantage. In this paper,
we present analytics-based methodologies to upgrade aggre-
gate prepaid and postpaid meter data resolution, which will
allow smart meter analytics to be applied without expensive
infrastructure upgrades.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Energy Metering, Prepaid, Postpaid, Smart Meters

Keywords
Analytics Algorithms, Data Resolution Upgrade

1. INTRODUCTION
Energy metering technology has been in development since

the 1880s [1]. Energy meters can be broadly classified into
two types: postpaid and prepaid meters. The traditional
business model for electricity retail involves the installation
of postpaid meters at customer premises and subsequent
billing for the amount of energy consumed during the pre-
vious billing period (typically a month or a quarter). Since
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these meters rarely have access to communication facilities,
they must be read and billed manually. Prepaid meters
are gaining popularity because they simplify billing oper-
ations, especially in areas where utility providers face severe
non-payment issues. This metering scheme requires the cus-
tomers to make advance payment for their energy. Prepaid
meters are being used in many countries including Brunei,
India, Ireland, South Africa and Sudan [2, 3, 4].

Conventional metering schemes (both prepaid and post-
paid) are limited by the aggregate nature of measurement,
which does not allow tracking of the rate of energy con-
sumption as a function of time. This information is im-
portant for utility providers, since it can be leveraged for
applications such as time-of-use pricing, demand response
programs and fine-grained spatio-temporal load forecasts [5].
This shortcoming is addressed by the use of smart meters,
which can record the amount of energy consumed as a func-
tion of time [6]. These meters can directly communicate
time-stamped consumption data to meter data management
systems. Residual concerns with regard to cost and data
privacy have restricted their popularity at present [7]. Con-
sequently, there is a need for low-cost solutions to the prob-
lem of obtaining high-resolution data from energy meters.
As far as the authors can determine, the algorithm pre-
sented in Sec. 4 is the first effort to address the issue with a
purely analytical approach. The principal advantage of this
methodology is that no hardware changes or retrofitting is
required to the aggregate energy meters.

In Sec. 3, we discuss the applicability of various analysis
algorithms to different types of energy consumption data.
Sec. 4 presents algorithms for extracting fine-grained tem-
poral consumption details from the aggregate consumption
data reported by conventional postpaid and prepaid meters.
We present a convergence analysis for the proposed algo-
rithms, as well as a derivation of the corresponding error
bounds. In Sec. 5, we validate our assumptions using actual
empirical data and also evaluate the estimation algorithms
using real-world and synthetic datasets.

2. RELATED WORK
Analysis of energy meter data has received wide attention

in past literature. The emphasis has been on applications
such as segmentation of consumers into groups based on
similarity of usage [8, 9], predicting consumer behaviour [10]
and setting of power tariffs [11, 12]. Most prior studies focus
on smart meter data because of the high resolution that it
provides. Such data is important for applications such as
fraud detection [13, 14] and real-time consumer feedback
[15]. We review some of these applications in Sec. 3.
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The problem of recovering high-resolution data from low-
resolution aggregate data has been addressed in multiple
fields of research. Data fusion in wireless networks presents
challenges when the sensors are separated spatio-temporally
[16]. Upgrade algorithms for sensor data are also developed
in the field of compressed sensing [17, 18]. It is necessary
to interpolate data being received from low-resolution sen-
sors, in order to combine it effectively with high-resolution
sensors. The problem considered in this paper has a similar
objective, with aggregate energy meter data being used to
estimate dynamic energy consumption.

The concept of combining data from multiple proximal
sensors into a single high-resolution data stream is frequently
used in climate modelling [19, 20, 21] and image process-
ing [22]. Analogously, in this paper we combine the meter
readings of consumers with similar consumption patterns to
estimate dynamic energy consumption for each consumer.

3. ALGORITHMS FOR DATA ANALYSIS
As discussed in the previous section, the three major types

of metering mechanisms are (i) prepaid meters, (ii) postpaid
meters, and (iii) smart meters. The corresponding data for-
mats can be broadly classified as purchase data for prepaid
meters, aggregate consumption for postpaid meters, and dy-
namic consumption for smart meters. In this section, we
describe the analysis algorithms that can be applied to each
type of data without any interconversion. Algorithms for up-
grading the resolution of purchase and aggregate consump-
tion data are described in Sec. 4.

3.1 Analysis of purchase data
Prepaid meter data consists of logs of the number of units

purchased by each consumer, with the corresponding time
(and possibly location) stamps. In the absence of ground
truth about rate of energy consumption, analysis algorithms
for this type of data are limited to characterization of the
trends in energy purchased. In this paper, we use data from
Brunei Darussalam for studying these patterns empirically.
The time range for this data covers three years, from Jan-
uary 2010 to December 2012.

It is possible to use the prepaid data to identify segments
of nominal purchase patterns, using standard cluster analy-
sis techniques such as k-means [23]. A sample plot with 7
consumer segments is shown in Fig. 1. The X axis in the
figure depicts the progression of time from Jan 2010 to Dec

Jan−10 Jun−10 Dec−10 Jun−11 Dec−11 Jun−12 Dec−12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

U
ni

ts
 b

ou
gh

t p
er

 m
on

th

Units purchased

 

 
Average (all)
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

Figure 1: Segments of residential consumers separated into
7 clusters based on unit purchases. Large users can be seen
to have reduced energy purchases in 2012.
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Figure 2: Purchase-based outlier detection.

2012, and the Y axis shows the average monthly purchased
energy for each consumer segment. Each consumer in the
data is mapped to one of the seven segments. This type of
consumer segmentation facilitates the automated detection
of outliers, or consumers whose purchase patterns are not
similar to any of the common patterns seen in the data. Such
information may be used for further analysis, with fraud de-
tection being an example. Fig. 2 shows a sample plot for two
outliers detected in the prepaid data. The two highlighted
users can be seen to have stopped purchasing energy mid-
way through the period of analysis. This behaviour could
be indicative of illegal activities such as energy purchases
from unauthorized dealers. Note that aggregate data only
enables us to detect gross changes in consumption patterns.
A more effective anomaly detection mechanism - one that
is sensitive and that can pinpoint the cause of the anomaly
- requires high resolution data. This further motivates the
necessity of developing algorithms such as those presented
in Sec. 4.

3.2 Analysis of aggregate consumption data
Utilities collect aggregate consumption data from meters

primarily for billing. The meter reading interval typically
coincides with the billing period, which may range from a
few weeks to a few months. Although aggregate meter read-
ings are temporally sparse, they can nevertheless be used
for some analytical applications. One example is that of in-
ferring connectivity models of electricity grids. The connec-
tivity model of a distribution network provides the under-
lying interconnection between various assets (such as trans-
formers) and customers in the grid. Prior literature has
shown that meter readings from a subset of the distribution
points are sufficient to estimate grid connectivity [24]. The
accuracy of this information deteriorates over time due to
repairs, maintenance, and balancing efforts. Partial or in-
correct connectivity information leads to delays and higher
costs in identifying the true location of a malfunction.

Analysis of aggregate consumption data can reveal in-
sights about consumer segments, patterns in their behavior,
and potential theft [25]. It can also be used at a macro scale
to determine economic development metrics. For example,
the World Bank uses national energy and electricity produc-
tion in their World Development Reports [26]. Additionally,
Lorenz curves (commonly used by economists to estimate
income inequality) are sometimes used to combine energy
access and consumption into a single equity metric [27, 28].
Using data from Norway, the US, El Salvador, Thailand,
and Kenya, prior studies show that the distribution of en-
ergy across consumers in industrialized nations is far more
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Figure 3: Lorenz curve comparison between commercial
(EnerNOC) and residential (Brunei Darussalam and Ire-
land) aggregate consumption data.

uniform than in developing nations. Fig. 3 shows a com-
parison of the Lorenz curves for 100 commercial consumers
in the US and 57156 and 782 residential consumers from
Brunei Darussalam and Ireland respectively. The curves il-
lustrate the higher disparity in commercial enterprises than
in residential consumers, owing to the wider spectrum of
companies served by the utility.

3.3 Analysis of dynamic consumption data
The proliferation of real-time sensing and feedback in elec-

tricity grids has enabled their evolution into smart grids.
Smart meters perform sensing functions at the individual
household level in smart grids [29]. These meters record
energy consumption with fine granularity (5 minute to 30
minute intervals). The use of two-way communication be-
tween smart meters and utilities has allowed the implemen-
tation of applications such as outage detection, identifica-
tion of demand response (DR) potential and the detection
of consumption anomalies and energy theft [30, 31].

Demand response programs aim to provide higher system
reliability by altering consumer demand in response to avail-
able supply and economic conditions [32, 33, 34]. These pro-
grams identify the target set of consumers based on criteria
such as the day of week, time of day, peak loads and de-
mand variability. For example, Fig. 4 shows representative
smart meter data for three residential consumers in Ireland,
measured over a period of six months. The variability of de-
mand on collated on an hourly basis is shown in the form of
box plots. The higher the variability of demand, the greater
is the potential flexibility of the consumer. From Fig. 4,
it is seen that consumer A is the most suitable for demand
response in the morning, while both consumers A and B can
be targeted in the evening. Note that such insights are only
available through high resolution consumption data. They
cannot be directly derived from traditional power purchase
data or aggregate postpaid consumption data.

Anomalous consumption patterns could indicate energy
theft, and are a major concern for utility providers. A com-
mon vector for energy theft is to bypass the energy meters at
certain times of the day (such as late nights) or on certain
days of the week (such as weekends) [35]. It is observed
that only a fraction of non-technical losses due to fraud
are ever detected using historical aggregated consumption
data. However, dynamic consumption data can be used for
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Figure 4: Selecting consumers for specific DR events based
on their hourly dynamic consumption data

theft detection through advanced data analysis techniques
[36, 37]. Similarly, smart meter data combined with context
data (weather, public events) and demographic attributes
can also used for consumer segmentation [38]. For the end-
users, real-time feedback about energy usage [13, 14] can
help reduce energy costs by taking advantage of time of use
pricing [15]. In summary, insights from dynamic smart me-
ter data enable utility providers to maintain efficient and
reliable grid operations, while also allowing consumers to
use energy more effectively.

4. UPGRADING DATA RESOLUTION
The analytics algorithms that are applicable to different

types of meter data were described in Sec. 3. It was shown
that the data produced by smart meters is the most useful
for deep analytics and for real-time applications. The un-
derlying property of smart meter data that makes it more
useful than postpaid or prepaid meter data, is its high reso-
lution. However, this richness of information is accompanied
by higher cost, because of the accompanying communication
and sensing infrastructure that needs to be installed.

In this section, we present algorithms that can upgrade
the resolution of prepaid and postpaid meter data with-
out any additional hardware installation. These algorithms
are based on the similarity of consumption patterns across
consumers within a single segment. As such, the temporal
resolution that they can achieve is a function of the min-
imum time interval between data samples across different
consumers. The traditional postpaid regime receives me-
ter readings for different consumers tagged with the day of
reading. Thus, the best temporal distinction between data
samples is one day. As a result, this section focuses on con-
verting aggregate meter readings to an estimate of daily con-
sumption. We emphasize that the algorithms themselves are
applicable to any two time scales, as long as the stated as-
sumptions regarding the underlying consumption patterns
are satisfied. For example, the same algorithms presented
in Sec. 4.1 and Sec. 4.2 can be used to upgrade daily con-
sumption data to an estimate of 15-minute consumption.
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Figure 5: Transaction amount and inter-transaction period
characteristics in prepaid data. Both axes are normalized
by the corresponding averages for each customer.

4.1 Estimation of aggregate consumption from
purchase data

Energy utilities using the prepaid meter model typically
only have access to transaction data. Any conversion from
monetary transactions to high-resolution consumption esti-
mates necessarily involves an intermediate step where aggre-
gate consumption is estimated. Therefore, in the following
development, we only describe an algorithm to form a noisy
estimate of aggregate consumption from prepaid transaction
information. Sec. 4.2 develops the subsequent method for
converting noisy aggregate consumption data to estimates
of daily consumption.

Fig. 5 shows the transaction behaviour of consumers in
Brunei Darussalam for the years 2010 and 2011. The Y axis
shows the standard deviation in the amount per transaction
for residential consumers, normalized by the average amount
per transaction. The X axis shows the analogous statistic
for the inter-transaction period. The size of each circle is
proportional to the frequency with which the corresponding
(x, y) coordinate is seen in the data. It can be seen that
the behaviour across all consumers varies considerably, with
the most common cases falling in the region where both sets
of standard deviation are 50% of the mean. It is, however,
possible to determine some estimate of the aggregate con-
sumption based on the following assumption.

A-1 Consumers recharge their prepaid meters when the
residual units in the meter drop below a certain thresh-
old. The threshold itself may vary from consumer to
consumer.

It is reasonable to expect that most consumers will have a
threshold below which they judge themselves to be in dan-
ger of running out of electricity, and will therefore have an
urge to recharge their meters. This assumption is clearly not
valid in all cases, as seen from Fig. 5. However, in absence of
accompanying consumption data with the prepaid transac-
tion data set, we will proceed to estimate aggregate energy
consumption based on A-1. In steady state, the ‘threshold’

number of units will always be present in the meter. Each
fresh transaction will simply add to this number and the
meter will subsequently count down back to the threshold
value. The value will act like a ‘displaced zero’ with the
following consequence:

P-1 All units purchased during one transaction are con-
sumed by the time when the next transaction takes
place. If u1 units are purchased at time t1 and u2 units
are subsequently purchased at time t2, then it follows
that u1 units are consumed over the period from t1 to
t2.

The estimate of aggregate consumption obtained using P-
1 can be fed into the algorithm described in Sec. 4.2 to esti-
mate dynamic energy consumption. In effect, this two-step
procedure converts prepaid transaction data into estimates
of dynamic energy consumption.

4.2 Estimation of dynamic consumption from
aggregate consumption data

In the following development, we focus on estimating daily
consumption from an aggregate consumption measurement
period of M days. As noted earlier, the same algorithm is
applicable to any other pair of time scales. We use data
from EnerNOC, a US-based utility provider, to test the va-
lidity of the assumptions made in the following treatment.
Commercial energy consumption data from this provider is
freely available online for a set of 100 consumers and a du-
ration of one year [39]. The raw data is available from the
utility in the form of 5-minute energy consumption infor-
mation for each consumer. This is artificially aggregated
in order to emulate postpaid meter readings, thus allowing
us to compare the results of the estimation algorithm with
ground truth.

4.2.1 Background assumptions
We will make the following assumptions before we begin

the discussion of using aggregate consumption data for form-
ing an estimate of dynamic consumption.

A-2 Monthly meter readings are taken for different con-
sumers on different days, each aggregated over M days.

We will denote the aggregate consumption by Fc(i), where
c ∈ {1, 2, . . . , N} is the index of the consumer and i is the
day when the reading is taken.

A-3 The consumption for each user c can be mapped to a
single consumption pattern through some one to one
mapping function. In this paper, we will use a simple
scaling factor ac.

This factor may be calculated based on context information
such as area of premises and occupancy, or by base-lining
average consumption over a previous time period. Fig. 6
depicts empirical daily energy consumption for consumers
subscribing to EnerNOC. The upper plot in the figure shows
the actual spread of consumption for each of the 100 users
over a 60 day period. The value of the scaling constant ac
is assumed to be equal to the median daily consumption
for each consumer, and the lower plot shows the resulting
normalized values. The variability of the daily consumption
values can be seen to be substantially smaller in the lower
plot, compared to the upper plot. Fig. 7 quantifies this
improvement by comparing the spread in the original data
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Figure 6: Comparison of the spread in daily energy con-
sumption in the original data (top plot) and the spread in
data normalized using the scaling constants ac.
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Figure 7: The distribution of normalized data around the
median of the normalized data. The original data has been
scaled by the original median for comparison.

with that in the normalized data. The ‘original data’ has
been scaled by a single value (median daily consumption)
across all consumers, while the ‘normalized data’ has been
scaled using the estimated constants ac. It can be seen that
the scaling factors substantially reduce the differences across
consumers, allowing the estimation of a common consump-
tion pattern for the entire data set.

The normalized daily consumption will be denoted by f(i)
with i being any integer (negative values for past days), and
the aggregate reading for each consumer can be calculated
by the following relation.

Fc(i) =

i∑
j=i−M+1

ac f(j).

The normalized aggregate consumption is the same across

all users (according to A-3) and is denoted by y(i) = Fc(i)
ac

.
We will now proceed to make an assumption that will allow
us to build an algorithm for estimating daily consumption.

A-4 The underlying consumption function f(i) is periodic
with a (possibly unknown) period T . We will denote
the daily consumption values by {z1, z2, . . . , zT }, and
note that z1 = f(1) = f(T + 1) and so on. As a con-

sequence, the normalized aggregate consumption also
becomes periodic with y(1) = y(T + 1) and so on.

The periodicity assumption allows us to define linear re-
lations between the daily consumption and aggregate con-
sumption values. Periodicity is a property seen in real-world
empirical energy consumption data, as shown in Sec. 5.
These relations can be solved either by directly inverting the
coefficient matrix (denoted by B in Sec. 4.2.4) or through
the iterative procedure described in Sec. 4.2.2, subject to
the following three properties.

P-2 If the period T is exactly equal to the measurement
period M , it is not possible to construct an algorithm
for estimating daily consumption from aggregate data.

This follows from the observation that T = M gives us linear
equations with the same set of variables (the T unknowns
{z1, z2, . . . , zT }) and the same coefficients for each equation.
The equations are linearly dependent, the coefficient matrix
is singular, and no estimation of the individual variables is
possible [40]. A minor extension of this linear dependency
argument gives us two additional properties.

P-3 Estimation of daily consumption is also not possible if
T and M have one or more common prime factors.

P-4 Exact estimation of daily consumption is possible if
the period T is known and the measurement period M
has no common prime factors with T . The number of
aggregate readings required for this estimation is T .

If there are no common prime factors between T and M ,
we can write T linearly independent equations with T read-
ings {y(1), . . . , y(T )}, and simply invert the coefficient ma-
trix to calculate the exact values of each of the unknowns
{z1, z2, . . . , zT } [40]. We will make one final assumption be-
fore proceeding to develop an iterative estimation algorithm
for daily consumption.

A-5 The period T can be independently calculated from
prior empirical data.

This is a reasonable assumption to make, with one possible
approach for calculating T involving matching the aggregate
supply and demand characteristics for the utility provider.

4.2.2 Iterative estimation algorithm
If the period T is known exactly, and there is no noise

in the system and in the measurements, then inverting the
linear relation between daily and aggregate consumption is
the simplest way of estimating daily consumption. How-
ever, these conditions are unlikely to be satisfied in a real-
istic setting. When there is noise in the data and/or trends
in consumption, it is desirable to implement the estimation
procedure over a rolling window of size T . For large T , it
is expected that an iterative algorithm initialized with the
estimates from the previous window will be computationally
faster than solving the full set of linear equations each time.
The functional period T can be very large when real-time
estimation of consumption is required. For example, 15-
minute resolution estimates with a consumption periodicity
of one day (1440 minutes) will imply T = 1440

15
= 96. The

computational time for the algorithm is even more impor-
tant if real-time demand response signals are to be generated
based on the consumption estimates.
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i

Figure 8: Relation between the start of the measurement
cycle i, and the reading date mapped to the principal period
i∗. For illustration, it is assumed that T = 4 and M = 11.

The uniqueness of the solution to a non-singular linear
system of equations [40] ensures that the problem formula-
tion satisfies one of the necessary conditions for convergence
of iterative update algorithms [41]:

P-5 If conditions A-4 and A-5 are met and T and M
have no common prime factors, then there is only one
unique solution {z1, z2, . . . , zT } to an observed aggre-
gate consumption pattern {y(1), . . . , y(T )}.

We now proceed to define the structure of the estimation
algorithm. Let us assume that the period T is known, and
denote the estimated daily consumption variables by ẑi and
the predicted normalized aggregate consumption by ŷ(j).
We further assume that the measurement period is M and
that n = bM

T
c is the number of full functional cycles in

each measurement period. Consider a measurement cycle
that begins on day i. The normalized reading for this cy-
cle will be y(i + M − 1), taken on day (i + M − 1). By
the periodicity assumption, this reading will be equal to
y
(
(i+M − 1)− T b i+M−1

T
c
)
, which falls within the princi-

pal period {1, . . . , T}. For simplicity, we will use the symbol
i∗ to denote the mapping of (i + M − 1) to the principal
period. Fig. 8 clarifies the relation between i and i∗. We
now define the iterative update algorithm for each variable
ẑi to be,

ẑ+
i = ẑ−i + k [y(i∗)− ŷ(i∗)], (1)

where ẑ−i is the estimate of zi before the update step and ẑ+
i

is the estimate after the update step. Only one ẑi is updated
at a time. The predicted measurement ŷ(i∗) is calculated
using the relation,

ŷ(i∗) = n

T∑
j=1

ẑj +

i∗∑
m=i

ẑm. (2)

Note that the second summation may involve a roll-over if
i∗ < i. In that case, the summation will be evaluated over
ẑm with m ∈ {i, i + 1, . . . , T, 1, 2, . . . , i∗}. The estimation
mechanism in Eq. (1) is to compensate for the prediction
error by increasing the estimate of the first day in the mea-
surement cycle, with a gain equal to k. P-5 guarantees that
termination can occur only with the unique solution.

4.2.3 Selection of the update gain k

There are two types of error associated with the iterative
algorithm given by Eq. (1). The first kind is introduced
by noise in the aggregate measurements, and fundamentally
limits the accuracy of the estimated daily consumption (in-
dependently of the estimation algorithm). A treatment of
this kind of error is given in Sec. 4.2.4. The second type

of error relates to successive iterations of Eq. (1) for the
same set of T aggregate readings, and is a property of the
applied estimation algorithm. We can show that this can be
driven to zero through a judicious selection of the update
gain k. The post-update estimation error can be computed
by subtracting Eq. (1) from the true value zi:

zi − ẑ+
i = zi − ẑ−i − k [y(i∗)− ŷ(i∗)]

= zi − ẑ−i − k

[(
n

T∑
j=1

zj +

i∗∑
m=i

zm

)
−

(
n

T∑
j=1

ẑj +

i∗∑
m=i

ẑm]

)]

= zi − ẑ−i − k

[
n

T∑
j=1

(zj − ẑj) +

i∗∑
m=i

(zm − ẑm)

]
zi − ẑ+

i = [1− (n+ 1) k] (zi − ẑ−i )

− (n+ 1) k

i∗∑
m=i+1

(zm − ẑm)

− nk

[
i−1∑
j=1

(zj − ẑj) +

T∑
p=i∗+1

(zp − ẑp)

]
. (3)

The last step follows from the fact that there are (n + 1)
copies of individual error terms (zj − ẑj) ∀j ∈ {i, . . . , i∗},
and n copies for all other j. Consider evaluating Eq. (3) for
i = 1, and let 1∗ be the equivalent of i∗. If we denote the
error terms (zj − ẑj) by erj where j ∈ {1, . . . , T} and r is
the iteration number, then the error for j = 1 after the first
iteration is given by,

e11 =
[
(1− (n+ 1)k) −(n+ 1)k ... −nk

]

e01

e02

...
e0T

 . (4)

For ease of representation, consider the simple case where
T = 3 and M = 2, which means that the consumption pat-
tern repeats every third day and measurements are taken on
every second day. The number of complete cycles involved
in each reading is n = 0 and 1∗ = 2 (last day of the mea-
surement period which started on day 1). Instantiating Eq.
(4) for this example, the error after the first update is,

e11 =
[
(1− k) −k 0

] e01

e02

e03


⇒

e11

e02

e03

 =

(1− k) −k 0
0 1 0
0 0 1

e01

e02

e03

 = A1

e01

e02

e03

 . (5)

The next update corresponds to the aggregate reading z3 +
z1, and is equivalent to substituting i = 3 in Eq. (1). This
update will use the updated version of ẑ1 with the corre-
sponding error e11. Therefore, the post-update error vector
in Eq. (5) is now modified to,e11

e02

e13

 =

 1 0 0
0 1 0
−k 0 (1− k)

e11

e02

e03
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⇒

e11

e02

e13

 =

 1 0 0
0 1 0
−k 0 (1− k)

A1

e01

e02

e03

 = A3A1

e01

e02

e03

 .
The final update in the first stage of iteration will be for ẑ2,
and the error terms after this step will be given by,e11

e12

e13

 =

1 0 0
0 (1− k) −k
0 0 1

e11

e02

e13

 = A2

e11

e02

e13


⇒

e11

e12

e13

 = A2A3A1

e01

e02

e03

 = A

e01

e02

e03

 . (6)

In the last step, we have denoted the product of the three
error update matrices by the matrix A. The entries of this
matrix are only a function of k and are well known. All
further iterations involve the same three update steps, and
are equivalent to pre-multiplying Eq. (6) by A each time.

P-6 The convergence of the estimation algorithm is deter-
mined by the eigenvalues of A. As the system is dis-
crete, errors erj are guaranteed to decay to 0 iff the
dominant eigenvalue is smaller than 1 in magnitude
[42].

The A matrix can be calculated for any period T once the
order of updates is known (ẑ1 → ẑ3 → ẑ2 in Eq. (6)). The
update gain can be selected by calculating the eigenvalues of
the corresponding A matrix as a function of k, and choosing
any value that guarantees stability, as shown in Sec. 5.

4.2.4 Confidence bounds for estimation errors
In the following development, we consider the effect of er-

ror in the aggregate measurements on the estimates of daily
consumption. We assume a structure for the introduction
of noise into the system, and then proceed to analyse the
problem for various properties of the noise function.

A-6 There is an underlying periodic function zi with period
T (i ∈ {1, 2, . . . , T}), and the actual daily consumption
is the sum of zi and some form of additive noise.

The assumption of periodicity is not restrictive, because (i)
periodicity is seen in most real-world data sets for energy
consumption, and (ii) the noise terms can account for small
variations in the estimation of T .

The simplest case to analyse is that for a single consumer,
where the estimation algorithm uses T successive aggregate
readings to compute ẑi. Since each reading period is M days
long, the total time period before these estimates can be
computed is equal to MT . We make the following assump-
tion for analysing the statistical properties of the estimated
daily consumption for a single consumer:

A-7 Additive noise in consumption on day i is equal to
wi, zero-mean, independent and identically distributed
(i.i.d). The consumption on day i is thus (zi + wi).

We have not specified the distribution of wi beyond the i.i.d
assumption, because:

P-7 As long as the noise is zero-mean i.i.d, the central limit
theorem ensures that the sum of the noise variables
approaches a zero-mean normal distribution with vari-
ance equal to the variance of

∑
wi [43].

The jth normalized aggregate measurement for a single con-
sumer will be given by the relation,

y(jM) =

jM∑
i=(j−1)M+1

(zi + wi),

and will be composed of M days. The periodicity assump-
tion implies that zj+T = zj , but this relation need not hold
true for the noise terms wj . The set of values {ẑ1, . . . , ẑT }
will be estimated from the measurements {y(M), . . . , y(MT )}.
There are MT i.i.d noise terms involved with no overlap be-
tween readings, thus implying the following property:

var(y(jM)) = var

 jM∑
i=(j−1)M+1

(zi + wi)


= var

 jM∑
i=(j−1)M+1

zi


︸ ︷︷ ︸

constants

+ var

 jM∑
i=(j−1)M+1

wi


︸ ︷︷ ︸

M i.i.d variables

= 0 +M var (wi).

P-8 The variance of each aggregate reading y(jM) is M
times the variance of each day’s consumption.

Let us denote the nominal daily consumption [z1, . . . , zT ]′ by
Z, where ′ is the matrix transpose operator. Similarly, let
the estimated daily consumption be Ẑ = [ẑ1, . . . , ẑT ]′, and
the vector of aggregate readings be Y = [y(M), . . . , y(MT )]′.
Regardless of the method of estimation (matrix inversion or
the iterative algorithm), the estimated daily consumption

is the unique solution of the relation B Ẑ = Y , where B is
composed of the coefficients of ẑi in Eq. (2). The entries of
this matrix are equal to the number of copies of each zi in
the aggregate readings, and are equal to n or (n + 1). P-
4 tells us that B is non-singular and hence invertible. The
estimated daily consumption is thus given by,

Ẑ = B−1 Y.

The error bounds for the estimation algorithm are related
to the statistical properties of Ẑ:

P-9 The estimation procedure is unbiased since the expec-
tation of the estimate of daily consumption is given by,

E [Ẑ] = E [B−1 Y ] = B−1 E [Y ] = Z.

The last equality follows from A-7 (the noise in each aggre-

gate reading is zero-mean). To calculate the variance of Ẑ,

we first calculate the expectation of the outer product ẐẐ′:

E [ẐẐ′] = E
[
(B−1 Y )(B−1 Y )′

]
= B−1 E [Y Y ′](B−1)′. (7)

The right hand side of Eq. (7) is easy to compute numer-
ically, because the matrix B is well known and E[Y Y ′] can
be approximated using observed aggregate readings. Equiv-
alently, the left hand side can be directly calculated from the
empirical mean of ẐẐ′. In either case, we note the following
property for single-customer consumption estimation.

P-10 While the estimate Ẑ can be computed from T aggre-
gate readings, several more sets of aggregate readings
are required to compute the error bounds on Ẑ.
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The variance of each zi can be calculated from the diagonal
elements of E [ẐẐ′] using the following relation.

var (ẑi) = E [ẑ2
i ]− (E [ẑi])

2.

A combination of P-9 and the central limit theorem allows
us to equate the variance of the estimates ẑi to the variance
of the errors (zi − ẑi).

P-11 For a sufficiently large number of aggregate readings,
the error (zi − ẑi) is Gaussian with zero mean and

standard deviation σi =
√

var(ẑi).

When there are multiple consumers in the data, the analysis
is different from that of the single-consumer case. We show
that the variability across consumers tends to increase the
estimation error, but if the consumer segmentation has been
correctly carried out, increasing the number of consumers in
the data set helps drive the error down. We will assume that
A-3 nominally holds true, but that there may be a tempo-
rary increase/decrease in each customer’s consumption rel-
ative to the normalized mean (from A-3, the normalization
constant for each consumer c is ac). Therefore, the noise in
the aggregate readings across consumers and over the mea-
surement time period M will have two sources.

A-8 Individual trends in consumption (not accounted for
by the normalization by ac) for each consumer c are
represented by the i.i.d random variable vc. In addi-
tion, the random variation around the nominal pattern
for consumer c on day i is represented by wci, also i.i.d
with i ∈ {1, 2, . . . ,M}. The total energy consumption
for consumer c on day i is given by zci = zi + vc +wci,
where zi is the mean nominal consumption for that
particular consumer segment.

As a consequence of this assumption, the normalized ag-
gregate reading for consumer c for a measurement period
starting on day i is given by,

yc(i+M − 1) =

i+M−1∑
j=i

zcj

=

i+M−1∑
j=i

zj︸ ︷︷ ︸
Mean trend

+ M vc︸ ︷︷ ︸
Cust. specific

+

i+M−1∑
j=i

wcj︸ ︷︷ ︸
Random variation

.

In order to be able to estimate the mean trend of consump-
tion, we compute the average across consumers of all read-
ings taken on day (i + M − 1). Let Ci denote the set of
consumers whose meter readings are taken on this day, and
let |Ci| be the number of such consumers. Then the average
normalized reading y(i+M − 1) is given by,

y(i+M − 1) =
1

|Ci|
∑
c∈Ci

yc(i+M − 1)

=
1

|Ci|
∑
c∈Ci

i+M−1∑
j=i

zj +
M

|Ci|
∑
c∈Ci

vc

+
1

|Ci|
∑
c∈Ci

i+M−1∑
j=i

wcj .

Since the mean trend zj is the same across consumers, the

first summation opens out and we get,

y(i+M − 1) =

i+M−1∑
j=i

zj +
M

|Ci|
∑
c∈Ci

vc

+
1

|Ci|
∑
c∈Ci

i+M−1∑
j=i

wcj . (8)

Each batch of T variables for the mean trend {ẑi, . . . , ẑi+T−1}
is computed using the set of T consumer-averaged readings
{y(i+M−1), . . . , y(i+M+T−2)}. Computing the variance
of (8) provides useful insights into the estimation accuracy:

var (y(i+M − 1)) = var

(
i+M−1∑

j=i

zj

)
+ var

 M

|Ci|
∑
c∈Ci

vc


+ var

 1

|Ci|
∑
c∈Ci

i+M−1∑
j=i

wcj


= 0 +

M2

|Ci|2
var

∑
c∈Ci

vc


+

1

|Ci|2
var

∑
c∈Ci

i+M−1∑
j=i

wcj


=
M2 |Ci|
|Ci|2

var (vc) +
M |Ci|
|Ci|2

var (wcj).

P-12 The variance of each consumer-averaged aggregate read-
ing is thus given by,

var (y(i+M − 1)) =
M2

|Ci|
var (vc) +

M

|Ci|
var (wcj). (9)

Note the difference between P-8 and P-12. While the vari-
ance in the former case scaled linearly with M , the variance
in the latter case scales quadratically with M . However,
it is possible to drive this variance down by increasing the
number of readings |Ci| taken on any given day. The mea-
surement period M at which the first term in Eq. (9) starts
dominating the second term depends on the relative ratio
between var (vc) and var (wcj). This fact emphasizes the ne-
cessity of accurate consumer segmentation: |Ci| should not
be increased at the cost of an increase in var (vc).

The same procedure as demonstrated in Eq. (7) can
be used for estimating the confidence bounds on ẑi. The
only modification required is that the empirical values of Y
used for calculating the expectation will be the consumer-
averaged aggregate readings, instead of the time-averaged
readings for a single consumer.

5. EXPERIMENTAL EVALUATION
We now validate the data resolution upgrade algorithm

described in Sec. 4.2. Simulated data is used for evalu-
ating the iterative estimation algorithm and the confidence
bounds for the single consumer case. Empirical data from
EnerNOC, a utility based in the United States, is used for
evaluating the confidence bounds for estimation of daily con-
sumption for multiple consumers. We reiterate that the raw
data has a resolution of 5 minutes, and is artificially aggre-
gated in order to simulate postpaid meter readings. Fig. 9
shows that data from consumers subscribing to this utility
has strong periodicity with a principal period of one week
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Figure 9: Validation of the assumption of periodicity in en-
ergy consumption, for the EnerNOC data set.
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Figure 10: The evolution of the dominant eigenvalue of A
for a weekly consumption cycle, and various values of M .
Locations of k = 0.2 and k = 0.3 for M = 30 are marked.

(T = 7). It depicts the cumulative normalized power spec-
tral distribution for daily energy consumption for all the
users in the data set, and indicates that the consumption
patterns across users are not only periodic, but have the
same periodicity.

Fig. 10 illustrates the implications of P-6 for the case of
a weekly consumption cycle and for various potential values
of the aggregate measurement period M . Each curve traces
the locus of the dominant eigenvalue of A, parametrized by
the gain k. A monthly measurement cycle can be approx-
imated by the curve for M = 30. The unit circle in Fig.
10 marks the boundary of the stable region for the itera-
tive algorithm. All the curves originate at (1, 0) for k = 0.
This value represents the open-loop case, when the coeffi-
cient matrix A is the identity matrix. Choosing a value of k
such that the dominant eigenvalue falls within the unit cir-
cle ensures convergence of the algorithm (1), and vice versa.
Conformance to this property is demonstrated for simulated
data in Fig. 11, where the iterative algorithm is seen to con-
verge for k = 0.2 (within the unit circle in Fig. 10) but not
for k = 0.3 (outside the unit circle).

An illustration of the confidence bounds derived in P-11
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Figure 11: Simulated estimation runs for T = 7 andM = 30.
The case with k = 0.2 converges to the correct estimates,
while that with k = 0.3 does not. The magnitudes of the cor-
responding dominant eigenvalues of A are 0.914 and 1.008.

for the single-consumer case is shown in Fig. 12. The nom-
inal daily consumption was assumed to be {z1, . . . , z7} =
{50, 20, 80, 40, 110, 90, 140}, with a measurement cycle of 30
days. Uncorrelated random noise wj ∼ N (0, 0.5) was added
to the nominal values, and the algorithm (1) was used to es-
timate the daily consumption. E[Y Y ′] was calculated empir-
ically by taking aggregate consumption readings over several
cycles. The 99.7% error bounds in Fig. 12 are equivalent to
±3 standard deviations of the estimated noise in Ẑ. Since
the confidence intervals for individual ẑi are nearly equal to
each other, only one set is shown.

Analogous bounds for consumption estimates based on
data from multiple consumers are shown in Fig. 13. The
estimates are based on a real-world data set consisting of
100 consumers subscribing to the utility EnerNOC. The data
was available for a period of one year. The normalization
constant ac for each consumer was calculated by computing
the average daily consumption for that consumer over the
first four months in the data. The remaining eight months
were used for testing the estimation algorithm.

Aggregate meter readings were simulated based on the
measured daily consumption for each consumer. The date of
reading ic for each consumer c was generated from a uniform
distribution on the range [1,M ], where M was the length of
the measurement period. The normalized aggregate read-
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Figure 12: Dynamics of the estimation algorithm and error
bounds for a single consumer.

ings for that consumer were calculated by summing the daily
consumption over the time periods [ic−M+1, ic], [ic+1, ic+
M ] and so on, and then dividing each sum by the constant
ac. Since the data set was limited both in terms of number
of consumers and the available time period, the number of
readings |Ci| generated for any particular day i was inversely
proportional to the measurement time period M . As a con-
sequence, Eq. (9) suggests that the estimation quality for
the mean as well as the tightness of the confidence bounds
will deteriorate rapidly with increasing M .

Fig. 13 illustrates this property by using three sample val-
ues for M . The ground truth for daily consumption for all
100 consumers is depicted by the light pink dots, while the
actual mean consumption across all consumers is shown by a
dashed red line. The estimated consumption, based on read-
ings aggregated over M days, is shown with a solid black line
and the corresponding 95% confidence intervals (±2 stan-
dard deviations) by hollow black circles. Eq. (9) indicates
that the confidence intervals are related to the variation vc
across consumers rather than the random noise wci around
the mean trend. The estimates as well as the bounds are
based on the empirical value of E [Y Y ′], and can therefore
be improved by increasing the number of readings (either
by increasing the number of consumers or by taking more
readings over the course of time). The case with M = 8 is
seen to produce the tightest confidence intervals, with 95%
of all consumers falling within the corresponding confidence
bounds on each day.

The dominance of the noise term vc over wcj in Eq. (9)
can be seen when recovering the consumption estimates for
each consumer, scaled back to the original values. Since the
trend vc is expected to dominate the random variation wcj ,
the estimate for each consumer is computed by shifting the
estimated segment means ẑi by an amount proportional to
the difference in the individual readings yc(i) and the mean
reading y(i). Empirical results show that this adjustment
reduces the RMS error in daily consumption for 94% of con-
sumers in the data set. If the trend vc were not dominating
wcj , this procedure would increase/decrease the RMS error
in a purely random fashion: a 50% performance. The signif-
icantly better results seen in empirical data show that the
M2 var (vc)�M var (wcj) assumption in P-12 is valid.

Finally, we demonstrate the application of the estimation
algorithm for identifying and analysing anomalous consump-
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Figure 13: Estimation of the mean trend and error bounds
for measurement periods M = 8, 15 and 30 days. The same
number of aggregate readings are taken per day, in all three
cases. It can be seen that the confidence intervals grow larger
with increasing M .
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Figure 15: Estimated daily consumption across all con-
sumers, as well as for the anomalous consumer.

tion patterns. We simulate daily consumption for a set of
1400 consumers with a periodicity of T = 7, and a nominal
daily consumption pattern of [80, 50, 60, 50, 60, 50, 80] units.
Meter readings are taken in a staggered fashion, with a mea-
surement time period of M = 30 days for each consumer.
The consumer-specific deviation vc in each measurement cy-
cle is drawn from the normal distribution N (0, 1) while the
daily random variation wcj is drawn from the distribution
N (0, 10). Only one of the 1400 consumers is assumed to
have a consumption of 40 units on the first and last day of
each weekly consumption cycle, as opposed to 80 units. The
estimation algorithm is run on simulated data for several
measurement cycles, and the estimated consumer-specific
variation vc is noted. It can be seen from Fig. 14 that
the anomalous consumer shows a clear difference from the
rest of the consumers, even though the standard deviation of
wcj is an order of magnitude larger than that of vc. Estima-
tion of daily consumption based only on aggregate readings
from the anomalous consumer is shown in Fig. 15. It clearly
emphasizes the differentiation capabilities of the algorithm
presented in Sec. 4.2.

6. CONCLUSION
Our objective in writing this paper was to present a com-

parative study of the technical limits for analysing each
type of meter data (prepaid, postpaid and smart meters).
We characterized the usefulness of several algorithms for
analysing aggregate as well as dynamic consumption data.
These functions include consumer segmentation as well as
automated detection of anomalous consumption patterns.
The depth of insight available from the data was shown to
improve with data resolution. Consequently, we also de-
scribed analytical approaches to extract fine-grained tempo-
ral consumption details from coarse-grained aggregate con-
sumption data. The proposed algorithms were analysed
from the point of view of stability and the statistical proper-
ties of estimation error. Empirical data was used to show the
efficacy of the estimation algorithms for several applications,
including the detection and characterization of anomalous
consumption patterns. We believe that the methodology
presented in this paper can be applied effectively by utility
providers for acquiring high quality consumption data from
existing infrastructure, at relatively low cost.
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