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ABSTRACT
The integration of intermittent and volatile renewable en-
ergy resources requires increased flexibility in the operation
of the electric grid. Storage, broadly speaking, provides the
flexibility of shifting energy over time; network, on the other
hand, provides the flexibility of shifting energy over geo-
graphical locations. The optimal control of general storage
networks in uncertain environments is an important open
problem. The key challenge is that, even in small networks,
the corresponding constrained stochastic control problems
with continuous spaces suffer from curses of dimensional-
ity, and are intractable in general settings. For large net-
works, no efficient algorithm is known to give optimal or
near-optimal performance.

This paper provides an efficient and provably near-optimal
algorithm to solve this problem in a very general setting. We
study the optimal control of generalized storage networks,
i.e., electric networks connected to distributed generalized
storages. Here generalized storage is a unifying dynamic
model for many components of the grid that provide the
functionality of shifting energy over time, ranging from stan-
dard energy storage devices to deferrable or thermostatically
controlled loads. An online algorithm is devised for the cor-
responding constrained stochastic control problem based on
the theory of Lyapunov optimization. We prove that the
algorithm is near-optimal, and construct a semidefinite pro-
gram to minimize the sub-optimality bound. The resulting
bound is a constant that depends only on the parameters of
the storage network and cost functions, and is independent
of uncertainty realizations. Numerical examples are given
to demonstrate the effectiveness of the algorithm.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques, Per-
formance attributes; G.4 [Mathematical Software]: Algo-
rithm design and analysis
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1. INTRODUCTION
To ensure a sustainable energy future, deep penetration of

renewable energy generation is essential. Renewable energy
resources, such as wind and solar, are intrinsically variable.
Uncertainties associated with these intermittent and volatile
resources pose a significant challenge to their integration into
the existing grid infrastructure [1]. More flexibility, espe-
cially in shifting energy supply and/or demand across time
and network, are desired to cope with the increased uncer-
tainties.

Energy storage provides the functionality of shifting en-
ergy across time. A vast array of technologies, such as bat-
teries, flywheels, pumped-hydro, and compressed air energy
storages, are available for such a purpose [2, 3]. Further-
more, flexible or controllable demand provides another ubiq-
uitous source of storage. Deferrable loads – including many
thermal loads, loads of internet data-centers and loads cor-
responding to charging electric vehicles (EVs) over certain
time interval [4] – can be interpreted as storage of demand
[5]. Other controllable loads which can possibly be shifted to
an earlier or later time, such as thermostatically controlled
loads (TCLs), may be modeled and controlled as a stor-
age with negative lower bound and positive upper bound on
the storage level [6]. These forms of storage enable inter-
temporal shifting of excess energy supply and/or demand,
and significantly reduce the reserve requirement and thus
system costs.

On the other hand, shifting energy across a network, i.e.,
moving excess energy supply to meet unfulfilled demand
among different geographical locations with transmission or
distribution lines, can achieve similar effects in reducing the
reserve requirement for the system. Thus in practice, it is
natural to consider these two effects together. Yet, it re-
mains mathematically challenging to formulate a sound and
tractable problem that accounts for these effects in electric
grid operations. Specifically, due to the power flow and net-
work constraints, control variables in connected buses are
coupled. Due to the storage constraints, control variables in
different time periods are coupled as well. On top of that,
uncertainties associated with stochastic generation and de-
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mand dramatically complicate the problem, because of the
large number of recourse stages and the need to account for
all probable realizations.

Two categories of approaches have been proposed in the
literature. The first category is based on exploiting struc-
tures of specific problem instances, usually using dynamic
programming. These structural results are valuable in pro-
viding insights about the system, and often lead to ana-
lytical solution of these problem instances. However, such
approaches rely heavily on specific assumptions of the type
of storage, the form of the cost function, and the distribution
of uncertain parameters. Generalizing results to other spec-
ifications and more complex settings is usually difficult, and
consequently this approach is mostly used to analyze single
storage systems. For instance, analytical solutions to opti-
mal storage arbitrage with stochastic price have been derived
in [7] without storage ramping constraints, and in [8] with
ramping constraints. Problems of using energy storage to
minimize energy imbalance are studied in various contexts;
see [9, 10] for reducing reserve energy requirements in power
system dispatch, [11, 12] for operating storage co-located
with a wind farm, [13, 14] for operating storage co-located
with end-user demands, and [15] for storage with demand
response.

The other category is to use heuristic algorithms, such as
Model Predictive Control (MPC)[16] and look-ahead poli-
cies [17], to identify sub-optimal storage control rules. Usu-
ally based on deterministic (convex) optimization, these ap-
proaches can be easily applied to general networks. The ma-
jor drawback is that these approaches usually do not have
any performance guarantee. Consequently, it lacks theoreti-
cal justification for implementing them in real systems. Ex-
amples of this category can be found in [16] and references
therein.

This work aims to bring together the best of both worlds,
i.e., to design online deterministic optimizations that solve
the stochastic control problem with provable guarantees. It
contributes to the existing literature in the following ways.
First, we formalize the notion of generalized storage as a dy-
namic model that captures a variety of power system com-
ponents which provide the functionality of storage. Second,
we formulate the problem of storage network operation as a
stochastic control problem with general cost functions, and
provide examples of applications that can be encapsulated
by such a formulation. Third, we devise an online algorithm
for the problem based on the theory of Lyapunov optimiza-
tion 1, and prove guarantees for its performance in terms of
a bound of its sub-optimality. We also show that the bound
is independent of the realizations of the uncertain parame-
ters. The bound is useful not only in assessing the worst-case
performance of our algorithm, but also in evaluating the per-
formance of other sub-optimal algorithms when the optimal
costs are hard to obtain. It can also be used to estimate
the maximum cost reduction that can be achieved by any
storage operation, thus provides understanding for the limit
of a certain storage system. To the best of our knowledge,
this is the first algorithm with provable guarantees for the
storage operation problem with general electric networks.

Our methodology is closely related to that of [14], where
the focus is on solving the problem of operating an idealized

1Although closely related to the classical Lyapunov theory
for stability, the theory and techniques of Lyapunov opti-
mization are relatively recent. See [18] for more details.

energy storage (with no energy dissipation over time, and no
charging/discharging conversion loss) at data-centers. Our
objective is to provide an algorithm to operate generalized
storage network in a wide range of different settings. This
requires an extended or a new analysis in the following as-
pects. From the modeling perspective, in order to capture
applications such as deferrable loads and TCLs, we do not
assume storage level is non-negative, instead, we only as-
sume each storage is feasible (see Assumption 2.1 for more
details). Furthermore, modeling the dissipation of energy
over time leads to a new sub-optimality bound; the bound
in [14] becomes a special case of our bound when the dissipa-
tion factor (or storage efficiency) is one. A semidefinite pro-
gram is constructed to decide parameters of the algorithm
in order to minimize the sub-optimality bound. Finally, the
aspect of power network appears to be completely new.

The rest of the paper is organized as follows. Section 2
formulates the problem of operating a generalized storage
network under uncertainty. Section 3 gives the online algo-
rithm and states the performance guarantee. Section 4 ana-
lyzes the single bus case in detail with a generalized storage,
and Section 5 provides a summary of results for general stor-
age networks. Numerical examples are then given in Section
6. Section 7 concludes the paper.

2. PROBLEM FORMULATION

2.1 Generalized Storage Models
We start by defining a generalized storage model for each

fixed bus of the electric network. A diagram is shown in
Figure 1. Such a model may be used for a single bus system
by setting the network inflow to be zero, or as a component
of an electric network as discussed in Section 2.3. We work
with a slotted time model, where t is used as the index for
an arbitrary time period. Given that the actual length of
each time interval is constant, this allows for simple con-
version from power units (e.g., MW) to energy units (e.g.,
MWh) and vice versa. Thus we assume all quantities un-
der consideration in this paper are in energy units, albeit
many power system quantities are conventionally specified
in power units.

+

Charge Discharge

Storage

Network inflow

Energy
imbalance

Residual
energy
imbalance

δ(t)

u+(t) u−(t)

f(t)

s(t)

δ(t)− hC (u+(t))
+hD (u−(t)) + f(t)

hC (u+(t)) hD (u−(t))

Figure 1: Diagram of a single-bus storage system.

For the bus under consideration and time period t, the
local energy imbalance δ(t) is defined to be the difference
between the local generation and demand. Both the local
generation and demand can be stochastic, and therefore δ(t)
is stochastic in general. The bus may be connected to other
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parts of the network, whose net energy inflow is denoted
by f(t). The bus is also connected to a generalized storage,
which is specified by the following elements:

• The storage level or State of Charge (SoC) s(t) sum-
marizes the status of the storage at time period t. If
s(t) ≥ 0, it represents the amount of energy in storage;
if s(t) ≤ 0, −s(t) can represent the amount of cur-
rently deferred (and not fulfilled) demand. It satisfies
s(t) ∈ [Smin, Smax], where Smax is the storage capacity,
and Smin is the minimum allowed storage level.

• The storage operation u(t) summarizes the charging
(when u(t) ≥ 0) and discharging (when u(t) ≤ 0) oper-
ations of the storage. It satisfies charging and discharg-
ing ramping constraints, i.e., u(t) ∈ [Umin, Umax], where
Umin ≤ 0 whose magnitude is the maximum discharge
within each time period, and Umax ≥ 0 is the max-
imum charge within each time period. We also use
u+(t) = max(u(t), 0) and u−(t) = max(−u(t), 0) to
denote the charging and discharging operations respec-
tively.

• The storage conversion function h maps the storage
operation u(t) into its effect on the bus. In partic-
ular, it is composed of two linear functions, namely
the charging conversion function hC, and the discharg-
ing conversion function hD, such that the quantity
hC(u+(t)) is the amount of energy that is withdrawn
from the bus due to u+(t) amount of charge, and hD(u−(t))
is the amount of energy that is injected into the bus
due to u−(t) amount of discharge, whence

h(u(t)) = hD(u−(t))− hC(u+(t))

is the net energy injection into the bus.

• The storage dynamics is then

s(t+ 1) = λs(t) + u(t), (1)

where λ ∈ (0, 1] is the storage efficiency which models
the loss over time even if there is no storage operation.

The storage parameters satisfy the following consistency con-
ditions.

Assumption 2.1 (Feasibility). Starting from any feasible
storage level, there exists a feasible storage operation such
that the storage level in the next time period is feasible, that
is

1. λSmin + Umax ≥ Smin,

2. λSmax + Umin ≤ Smax.

The residual energy imbalance, after accounting for the
network inflow and storage operation, is then given by:

δ(t) + h(u(t)) + f(t) = δ(t)− hC(u+(t)) + hD(u−(t)) + f(t).
(2)

We give a few examples of generalized storage models as
follows.

Example 2.2 (Storage of energy). Storage of energy can
be modeled as a generalized storage with Smax ≥ Smin ≥
0. Here Umin and Umax correspond to the power rating of
the storage, up to a multiple of the length of each time pe-
riod. By setting hC(u+(t)) = (1/µC)u+(t), and hD(u−(t)) =

µDu−(t), one models the energy loss during charging and
discharging operations. Here µC ∈ (0, 1] is the charging ef-
ficiency; µD ∈ (0, 1] is the discharging efficiency; and the
round-trip efficiency of the energy storage is µCµD. For in-
stance, based on the information from [19], a NaS (sodium
sulfur) battery can be modeled with parameters:

(Smin, Smax, Umin, Umax, µC, µD,λ) = (0MWh, 100MWh,

− 10MW× 1h, 10MW× 1h, 0.85, 0.85, 0.97),

and a CAES (compressed air energy storage) can be modeled
with parameters:

(Smin, Smax, Umin, Umax, µC, µD,λ) = (0MWh, 3000MWh,

− 300MW× 1h, 300MW× 1h, 0.85, 0.85, 1.00).

Example 2.3 (Storage of demand). Pre-emptive deferrable
loads may be modeled as storage of demand, with −s(t) cor-
responding to the accumulated deferred (but not yet fulfilled)
load up to time t , and with u(t) corresponding to the amount
of load to defer/fulfill in time period t. We have Smin ≤
Smax ≤ 0 in this case. Storage of demand differs from stor-
age of energy in the sense that it has to be discharged before
charging is allowed. The conversion function can usually be
set to h(u(t)) = u(t), and generally λ = 1 in deferrable load
related applications.

Example 2.4 (Generalized battery models). It is shown
recently that an aggregation of TCLs may be modeled as a
generalized battery [6]. A discrete time version of such a
model can be cast into our framework by setting Smin =
−Smax and Smax ≥ 0. Other storage parameters can be set
properly according to Definition 1 of [6], and we have λ ≤ 1
to model energy dissipation.

We consider the following stochastic piecewise linear cost
function for each fixed bus

g(t) =
L∑

ℓ=1

p(t,ℓ )
(
αδ(ℓ)δ(t)− αC(ℓ)hC(u+(t)) (3)

+ αD(ℓ)hD(u−(t)) + αF(ℓ)f(t) + αConst(t,ℓ )
)+

,

where the parameter p(t,ℓ ) is in general stochastic, and fol-
lows a prescribed probability law, and αδ(ℓ), αC(ℓ), αD(ℓ),
αF(ℓ) and αConst(t,ℓ ) are constants, for each ℓ = 1, . . . , L
and t. This cost function serves as a generalization of pos-
itive (and/or negative) part cost function of the residual
energy imbalance, and it encapsulates many applications of
storage as shown in Section 2.2. Our analysis applies to
a more general class of cost functions; see Appendix A for
more details.

2.2 Applications in Single Bus Systems
The storage operation problem on a single bus system

(f(t) = 0) can be posed as an infinite horizon average cost
stochastic control problem as follows:

minimize lim
T→∞

1
T

[
T∑

t=1

g(t)

]
(4a)

subject to s(t+ 1) = λs(t) + u(t), (4b)

Smin ≤ s(t) ≤ Smax, (4c)

Umin ≤ u(t) ≤ Umax, (4d)

29



where we aim to find a control policy that maps the state s(t)
to storage operation u(t), minimizes the expected average
cost and satisfies all constraints for each time period t. Here,
the initial state s(1) ∈ [Smin, Smax] is given.

Combining some specific cases of the generalized storage
model given in Examples 2.2-2.4 with properly defined cost
functions leads to possible problem instances of optimal con-
trol of storage under uncertainty. Here we provide examples
that are considered in the literature.

Example 2.5 (Balancing). Storage may be used to mini-
mize residual energy imbalance given some stochastic {δ(t) :
t ≥ 1} process. Typical cost functions penalize the positive
and negative residual energy imbalance differently, and may
have different penalties at different time periods . (For ex-
ample, to model the different consequences of load shedding
at different times of the day.) The problem of optimal stor-
age control for such a purpose can be modeled by problem (4)
with the cost function

g(t) =q+(t)
(
δ(t)− hC(u+(t)) + hD(u−(t))

)+

+ q−(t)
(
δ(t)− hC(u+(t)) + hD(u−(t))

)−

=q+(t)
(
δ(t)− hC(u+(t)) + hD(u−(t))

)+

+ q−(t)
(
−δ(t) + hC(u+(t))− hD(u−(t))

)+
,

where q+(t) and q−(t) are the penalties2 for each unit of pos-
itive and negative residual energy imbalance at time period
t, respectively.

Example 2.6 (Arbitrage). Given that the locational marginal
prices {pLMP(t) : t ≥ 1} are stochastic, a storage may be
used to exploit arbitrage opportunities in electricity markets.
The problem of maximizing the expected arbitrage profit us-
ing storage operations can be cast as an instance of (4), with
the cost function (i.e., negative profit) given by:

g(t) =pLMP(t)(hC(u+(t))− hD(u−(t)))

=pLMP(t)
(
hC(u+(t))− hD(u−(t))

)+

− pLMP(t)
(
−hC(u+(t)) + hD(u−(t))

)+
.

Example 2.7 (Storage co-located with a stochastic genera-
tion or demand). Applications of this type may be cast into
our framework using {δ(t) : t ≥ 1} to model the stochastic
generation or demand process, and {p(t,ℓ ) : t ≥ 1} to model
the stochastic prices. A possible cost function is

g(t) = pLMP(t)
(
−δ(t) + hC(u+(t))− hD(u−(t))

)+
,

where the residual energy is curtailed with no cost/benefit,
and the residual demand is supplied via buying energy from
the market at stochastic price pLMP(t).

2.3 Network Models
The electric network can be modeled as a directed graph

G(V,E). Let n = |V |, m = |E|, and ER be the edge set with
all edges reversed. We use the notation e ∼ v to indicate
that e ∈ {(v′, v) ∈ E ∪ ER : v′ ∈ V }. Each edge models

2These penalties are usually prescribed deterministic se-
quences [9].

a transmission (or distribution) line, and is associated with
some power flow. Assuming the power system is operated in
steady state, and the power flow is approximately a constant
over each time period t, the energy flow through the line can
be obtained by multiplying the power flow by the length of
each time period and is denoted by fe(t) for e ∈ E, with
the direction of the edge indicating the positive direction
of the flow.3 The flow vector f(t) ∈ m satisfies power
flow constraints, which can be compactly summarized by
the following set of linear constraints using the classical DC
power flow approximations to AC power flow equations [20]:

f(t) ∈ F , F = {f ∈ m : −Fmax ≤ f ≤ Fmax,Kf = 0},
(5)

where Fmax ∈ m is the vector of the line capacities of the
network, andK ∈ (m−n+1)×m is a matrix summarizing the
Kirchhoff’s voltage law. The construction of this K matrix
from network topology and line parameters can be found
in [21]. Note that additional network constraints may be
included in the definition of the set F .

Each node models a bus in the electric network. On bus
v ∈ V , a set of variables as described in Section 2.1 is defined,
with a subscript v attached to each of the bus variables, and
the network inflow is replaced by network flows to the bus
from incident lines. The cost for bus v and time period t is
then given by

gv(t) =
Lv∑

ℓ=1

pv(t,ℓ )
(
αδ
v(ℓ)δv(t)− αC

v (ℓ)h
C
v (u

+
v (t)) (6)

+αD
v (ℓ)h

D
v (u

−(t))+αF
v (ℓ)

∑

e∼v

fe(t)+αConst
v (t,ℓ )

)+
,

and the networked storage stochastic control problem is de-
fined as follows:

minimize lim
T→∞

1
T

[
T∑

t=1

∑

v∈V

gv(t)

]
(7a)

subject to sv(t+ 1) = λvsv(t) + uv(t), (7b)

Smin
v ≤ sv(t) ≤ Smax

v , (7c)

Umin
v ≤ uv(t) ≤ Umax

v , (7d)

f(t) ∈ F . (7e)

In this problem, we aim to find a control policy that maps
the state s(t) to storage operation u(t) and network flow
f(t), and minimizes the expected average cost objective func-
tion(7a), such that constraints (7b)-(7d) hold for each t and
v, and (7e) holds for each t.

3. ONLINE ALGORITHM AND PERFOR-
MANCE GUARANTEES

This paper provides an online algorithm for solving (7)
with provable performance guarantees. Here we give a pre-
view of the algorithm (Algorithm 1) and its sub-optimality
bound (Theorem 3.3). The performance theorem will hold
under the following additional technical assumptions.

3To lighten the notation, for each e = (v1, v2) ∈ E, we also
define fe′(t) = −fe(t) for e′ = (v2, v1), and therefore for
all v ∈ V , the net inflow

∑
e∼v fe(t) =

∑
e=(v′,v)∈E fe(t) +∑

e=(v′,v)∈ER fe(t) =
∑

e=(v′,v)∈E fe(t)−
∑

e=(v,v′)∈E fe(t).
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Algorithm 1 Online Lyapunov Optimization for Storage
Network Control

Input: (i) Storage specifications (Smin
v , Smax

v , Umin
v , Umax

v ,
hC
v , hD

v , λv), (ii) cost parameters in gv(t) (including an
upper bound and a lower bound on the sub-derivative of
gv(t) with respect to uv(t), denoted byDgv(t) andDgv(t),
and excluding any information about stochastic parame-
ters δv(t) and pv(t,ℓ ), ℓ = 1, . . . , Lv) for each bus v ∈ V ,
and (iii) network parameters K and Fmax.

Offline-Phase: Determine algorithmic parametersΓ v, for
each bus v ∈ V , and W by solving semidefinite program
(24).

Online-Phase:
for each time period t do

Each bus v ∈ V observes realizations of stochastic pa-
rameters δv(t) and pv(t,ℓ ), ℓ = 1, . . . , Lv.

Solve the following deterministic optimization for stor-
age operation u(t) and network flow f(t):

minimize
∑

v∈V

λv(sv(t) + Γv)uv(t) +Wgv(t) (8a)

subject to Umin ≤ u(t) ≤ Umax, (8b)

f(t) ∈ F . (8c)

end for

Assumption 3.1. For each bus v ∈ V , the range of storage
control is smaller than the effective capacity of the storage,
i.e., Umax

v − Umin
v < Smax

v − Smin
v .

Since the bounds for storage control Umax
v and Umin

v are
the product of the power rating of storage (in unit MW for
example) and the length of each time period, this assump-
tion holds for most systems as long as the length of each time
period is made small enough. For instance, this assumption
is satisfied for both energy storage examples in Example 2.2.

We make the following assumption on the stochastic pa-
rameters of the system.

Assumption 3.2. Let the collection of stochastic parame-
ters be θ(t) = {δv(t), pv(t,ℓ ), ℓ = 1, . . . , Lv, v ∈ V }. Then
one of the following two assumptions is in force:

1. θ(t) is independent and identically distributed (i.i.d.)
across time t, and is supported on a compact set.

2. θ(t) is some deterministic function of the system stochas-
tic state ω(t), which is supported on an (arbitrarily
large) finite set Ω, and follows an ergodic Markov Chain.

The first assumption is used to give a simple proof of the
performance theorem and provide insights on the construc-
tion of our algorithm. The second alternative assumption
intends to generalize the performance bounds to non-i.i.d.
cases. The additional assumptions such as that ω(t) lies in
a finite set are introduced to reduce the required technicality
in view of the page limit. The same result can be obtained
in a more general setting where {θ(t) : t ≥ 1} follows a re-
newal process. The performance bounds in these setting are
the same, up to a multiple of the mean recurrence time of
the stochastic process under consideration.

Under Assumptions 3.1 and 3.2, the following performance
guarantee holds.

Theorem 3.3. The control actions (u(t), f(t)) generated by
Algorithm 1 are feasible for (7) and sub-optimal, whose sub-
optimality4 is bounded by a constant that depends only on
the parameters of the storages and cost functions, and is
independent of realizations of the stochastic parameters.

The precise expressions of the sub-optimality bounds for
the single bus case and general network case are given in
Section 4 and Section 5, respectively, both under the i.i.d.
assumption (Assumption 3.2.1). The bounds for settings
with the Markov assumption (Assumption 3.2.2) are given
in [21].

Remark 3.4 (Convexity). Our result holds without assum-
ing that gv(t) is convex in uv(t), v ∈ V . However, we
do assume the online optimization (8) can be solved effi-
ciently, and in all numerical examples we work with convex
cost functions.

4. ANALYSIS FOR SINGLE BUS SYSTEMS
To demonstrate the proof ideas without unfolding all tech-

nicalities, we prove Theorem 3.3 for a single bus system un-
der the following simplifying assumptions.

Assumption 4.1. We assume in this section:

• the imbalance process {δ(t) : t ≥ 1} is independent and
identically distributed (i.i.d.) across t and is supported
on a compact interval [δmin, δmax];

• for each ℓ = 1, . . . , L, the process {p(t,ℓ ) : t ≥ 1} is
i.i.d. across t and is supported on a compact interval
[pmin(ℓ), pmax(ℓ)].

Define

ū ! lim
T→∞

1
T

[
T∑

t=1

u(t)

]
, s̄ ! lim

T→∞

1
T

[
T∑

t=1

s(t)

]
.

Note that for s(1) ∈ [Smin, Smax],

ū = lim
T→∞

1
T

[
T∑

t=1

s(t+ 1)− λs(t)

]
= (1− λ)s̄.

As s(t) ∈ [Smin, Smax] for all t ≥ 0, the above expression
implies

(1− λ)Smin ≤ ū ≤ (1− λ)Smax.

Problem (4) can be equivalently written as follows

P1: minimize lim
T→∞

1
T

[
T∑

t=1

g(t)

]
(9a)

subject to s(t+ 1) = λs(t) + u(t), (9b)

Smin − λs(t) ≤ u(t) ≤ Smax − λs(t), (9c)

Umin ≤ u(t) ≤ Umax, (9d)

(1− λ)Smin ≤ ū ≤ (1− λ)Smax, (9e)

where bounds on s(t) are replaced by (9c), and (9e) is added
without loss of optimality.

The proof procedure is depicted in the diagram shown in
Figure 2, where we use JP1(u) to denote the objective value
4Here the sub-optimality is defined as the difference between
the objective value of (7) with (u(t), f(t)) generated by Al-
gorithm 1 and the optimal cost of (7).
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of P1 with storage operation sequence u (as an abbreviation
of {u(t) : t ≥ 1}), u⋆(P1) to denote an optimal sequence
of storage operation for P1, J⋆

P1 ! JP1(u
⋆(P1)), and we

define similar quantities for P2 and P3. Here P2 is an
auxilliary problem we construct to bridge the infinite horizon
storage control problemP1 to online Lyapunov optimization
problems P3 (8) (or (15) for single storage case). It has the
following form

P2: minimize lim
T→∞

1
T

[
T∑

t=1

g(t)

]
(10a)

subject to Umin ≤ u(t) ≤ Umax, (10b)

(1− λ)Smin ≤ ū ≤ (1− λ)Smax. (10c)

Notice that it has the same objective as P1, and evidently
it is a relaxation of P1. This implies that u⋆(P2) may not
be feasible for P1, and

J⋆
P2 = JP1(u

⋆(P2)) ≤ J⋆
P1. (11)

The reason for the removal of state-dependent constraints
(9c) (and hence (9b) as the sequence {s(t) : t ≥ 1} becomes
irrelevant to the optimization of {u(t) : t ≥ 1}) in P2 is that
the state-independent problem P2 has easy-to-characterize
optimal stationary control policies. In particular, from the
theory of stochastic network optimization [18], the following
result holds.

Lemma 4.2 (Optimality of Stationary Disturbance-Only
Policies). Under Assumption 4.1 there exists a stationary
disturbance-only5 policy ustat(t) , satisfying (10b) and (10c),
and providing the following guarantees for all t:

(1− λ)Smin ≤ [ustat(t)] ≤ (1− λ)Smax, (12)

[g(t)|u(t) = ustat(t)] = J⋆
P2, (13)

where the expectation is taken over the randomization of
δ(t), p(t,ℓ ), ℓ = 1, . . . , L, and (possibly) ustat(t).

Equation (13) not only assures the storage operation in-
duced by the stationary disturbance-only policy achieves the
optimal cost, but also guarantees that the expected stage-
wise cost is a constant across time t and equal to the opti-
mal time average cost. This fact will later be exploited in
order to establish the performance guarantee of our online
algorithm. By the merits of this Lemma, in the sequel, we
overload u⋆(P2) to denote the storage operation sequence
obtained from an optimal stationary disturbance-only pol-
icy.

An issue with u⋆(P2) for the original problem is that it
may not be feasible for P1. To have the {s(t) : t ≥ 1}
sequence induced by the storage operation sequence lie in the
interval [Smin, Smax], we construct a virtual queue related
to s(t) and use techniques from Lyapunov optimization to
“stabilize” such a queue. Let the queueing state be a shifted
version of the storage level:

s̃(t) = s(t) + Γ, (14)

where the shift constant Γ will be specified later. We wish
to minimize the stage-wise cost g(t) and at the same time
to maintain the queueing state close to zero. This motivates
us to consider solving the following optimization online (i.e.,

5The policy is a pure function (possibly randomized) of the
current disturbances δ(t) and p(t,ℓ ), ℓ = 1, . . . , L.

P1: Original problem

P2: State-independent problem

• It has an optimal control policy u⋆(P2) that is stationary
and disturbance-only

• E[g(t)|u⋆(P2)] = J⋆
P2

P3: Online Lyapunov optimization

• u⋆(P3) feasible for P1

• JP1(u⋆(P3)) ≤ J⋆
P2 + S ≤ J⋆

P1 + S

Relax

• u⋆(P2) may be infeasible for P1

• J⋆
P2 ≤ J⋆

P1

Stabilize

• u⋆(P2) is feasible for P3

• J⋆
P3 ≤ JP3(u⋆(P2))

Figure 2: An illustration of the proof procedure as
relations between problems considered in Section 4.
Here S denotes the sub-optimality bound.

at the beginning of each time period t after the realizations
of stochastic parameters p(t,ℓ ), ℓ = 1, . . . , L, and δ(t) have
been observed)

P3: minimize λs̃(t)u(t) +Wg(t) (15a)

subject to Umin ≤ u(t) ≤ Umax, (15b)

where the optimization variable is u(t), the stochastic pa-
rameters in g(t) are replaced with their observed realiza-
tions, and W > 0 is a weight parameter. Note that the
objective here is a weighted combination of the stage-wise
cost and a linear term of u(t), whose coefficient is positive
when s(t) is large, and negative when s(t) is small. We use
the notation uol(t) for the solution to P3 at time period t,
u⋆(P3) for the sequence {uol(t) : t ≥ 1}, JP3,t(u(t)) for the
objective function of P3 at time period t, and J⋆

P3,t for the
corresponding optimal cost. In the rest of this section, we
give conditions for parameters Γand W such that solving
P3 online will result in a feasible {s(t) : t ≥ 1} sequence
(Section 4.1), characterize the sub-optimality of u⋆(P3) as
a function of Γ and W and state the semidefinite program
for identifying the optimal Γand W pair (Section 4.2).

4.1 Feasibility
We start with a structural result for the online optimiza-

tion problemP3. It follows from Lemma A.1 which is proved
for general cost functions in Appendix A.

Lemma 4.3. At each time period t, the solution to P3,
uol(t), satisfies

1. uol(t) = Umin whenever λs̃(t) ≥ −WDg,

2. uol(t) = Umax whenever λs̃(t) ≤ −WDg,

where

Dg ! inf

⎧
⎪⎪⎨

⎪⎪⎩
ξ ∈ ∂u(t)g(t)

∣∣∣∣∣∣∣∣

u(t) ∈ [Umin, Umax],
p(t,ℓ ) ∈ [pmin(ℓ), pmax(ℓ)], ∀ℓ,
δ(t) ∈ [δmin, δmax],
f(t) ∈ F , t ≥ 1

⎫
⎪⎪⎬

⎪⎪⎭
,
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and

Dg ! sup

⎧
⎪⎪⎨

⎪⎪⎩
ξ ∈ ∂u(t)g(t)

∣∣∣∣∣∣∣∣

u(t) ∈ [Umin, Umax],
p(t,ℓ ) ∈ [pmin(ℓ), pmax(ℓ)], ∀ℓ,
δ(t) ∈ [δmin, δmax],
f(t) ∈ F , t ≥ 1

⎫
⎪⎪⎬

⎪⎪⎭

are the greatest lower bound and the least upper bound of the
sub-derivatives of g(t), respectively.

Remark 4.4 (Evaluation of Dg, Dg). Any finite lower
bound and upper bound for the sub-derivative of the cost
g(t) can be used as Dg and Dg, respectively. Here we use
the greatest lower bound and least upper bound to provide
the tightest performance bounds. For cases with simple cost
functions, e.g., for idealized storage with L = 1, Dg and Dg
can be easily obtained from pmin(ℓ), pmax(ℓ), and constants
in the cost function g(t) (such as αC(ℓ) and αD(ℓ)). In cases
where g(t) is differentiable with respect to u(t), Dg and Dg
may be obtained by solving a simple optimization problem.

This allows us to construct the following sufficient con-
dition that will assure the feasibility of the {s(t) : t ≥ 1}
sequence induced by u⋆(P3).

Theorem 4.5 (Feasibility). Suppose the initial storage level
satisfies s(1) ∈ [Smin, Smax], then the storage level sequence
{s(t) : t ≥ 1} induced by the sequence of storage operation
u⋆(P3) is feasible with respect to storage level constraints,
i.e., s(t) ∈ [Smin, Smax] for all t, provided that

Γmin ≤Γ ≤ Γmax, (16)

0 <W ≤ Wmax, (17)

where

Γmin=
1
λ

[
−WDg + (Umax− (1− λ)Smax)+

]
−Smax, (18)

Γmax=
1
λ

[
−WDg −

(
(1− λ)Smin− Umin

)+]
−Smin, (19)

and

Wmax=
1

Dg−Dg

[
λ(Smax− Smin)−

(
(1− λ)Smin−Umin

)+

− (Umax − (1− λ)Smax)+
]
. (20)

Proof. The result is proved by induction, where Lemma 4.3
is used to partially characterize the uol(t) sequence. See
Appendix B for more details.

4.2 Performance
In the previous result, we have established that u⋆(P3)

is feasible for P1 as long as parameters Γand W satisfy
(16) and (17). In the next theorem, we characterize the
sub-optimality of u⋆(P3) for fixed Γ and W .

Theorem 4.6 (Performance). The sub-optimality of storage
operation u⋆(P3) is bounded by M(Γ)/W , that is

J⋆
P1 ≤ JP1(u

⋆(P3)) ≤ J⋆
P1 +M(Γ)/W, (21)

where

M(Γ) = Mu(Γ) + λ(1− λ)Ms(Γ),

Mu(Γ) =
1
2
max

((
Umin+ (1− λ)Γ

)2
, (Umax+ (1− λ)Γ)2

)
,

Ms(Γ) = max

((
Smin + Γ

)2
, (Smax + Γ )2

)
.

Proof. A quadratic Lyapunov function is constructed. The
relation between the Lyapunov drift and the objective of P3
is exploited, which in turn relates to the objective of P2 and
so P1. Appendix B contains the whole proof.

The theorem above guarantees that the worst-case cost
(among different uncertainty realizations) of our online al-
gorithm is bounded above by J⋆

P1 + M(Γ)/W . The sub-
optimality bound M(Γ)/W reduces to a much simpler form
if λ = 1.

Remark 4.7 (Sub-Optimality Bound, λ = 1). For a storage
with λ = 1, we have

M ! M(Γ) = (1/2)max((Umin)2, (Umax)2),

and the online algorithm is no worse than M/W sub-optimal.
In this case, one would optimize the performance by setting

W = Wmax =
(Smax − Smin)− (Umax − Umin)

Dg−Dg
,

and the corresponding interval [Γmin,Γmax] turns out to be
a singleton, where

Γmin = Γmax = −Dg(Smax − Umax) +Dg(Umin − Smin)

Dg−Dg
.

Let Smax − Smin = ρ(Umax − Umin). Suppose |Umax| =
|Umin|. For efficient storage (λ = 1), the sub-optimality
bound is

M
W

=
(1/2)(Dg −Dg)(Umax)2

(Smax − Smin)− (Umax − Umin)
=

Dg −Dg
4(ρ− 1)

Umax.

For fixed Umax, as storage capacity increases , i.e., ρ → ∞,
the sub-optimality (M/W ) → 0. If Umax and Smax increases
with their ratio ρ fixed, the bound increases linearly with
Umax.

The remaining case λ ∈ (0, 1) requires solving an opti-
mization program to identify the bound-minimizing param-
eter pair (Γ,W ). In the next result, we state a semidefinite
program to find (Γ⋆,W ⋆) that solves the following parame-
ter optimization program

P3-PO: minimize M(Γ)/W

subject toΓ min ≤ Γ ≤ Γmax, 0 < W ≤ Wmax.

In the current form, this program appears to be non-convex.
The next result reformulatesP3-PO into a semidefinite pro-
gram. Note thatΓ min andΓ max are linear functions of W
as defined in (18) and (19).

Lemma 4.8 (Semidefinite Reformulation of P3-PO). Let
symmetric positive definite matrices Xmin,u, Xmax,u, Xmin,s,
and Xmax,s be defined as follows

X(·),u=

[
ηu U (·) + (1− λ)Γ
∗ 2W

]
, X(·),s=

[
ηs S(·) + Γ
∗ W

]
,

where (·) can be either max or min, and ηu and ηs are auxil-
liary variables. Then P3-PO can be solved via the following
semidefinite program

minimize ηu + λ(1− λ)ηs (23a)

subject toΓ min ≤ Γ ≤ Γmax, 0 < W ≤ Wmax, (23b)

Xmin,u, Xmax,u, Xmin,s, Xmax,s ≽ 0. (23c)

33



Proof. The result follows from Schur complement. See Ap-
pendix B for details.

We close this section by discussing several implications of
the performance theorem.

Remark 4.9 (Optimality at the Fast-Acting Limit). Let
the length of each time period be ∆t. At the limit ∆t →
0, the online algorithm is optimal. Indeed, as discussed in
Section 2, both |Umin| and |Umax| are linear in ∆t, such that
|Umax| → 0 and |Umin| → 0 as ∆t → 0. Meanwhile, λ → 1
as ∆t → 0. So by Remark 4.7, it is easy to verify that the
sub-optimality M/W converges to zero as ∆t → 0.

Remark 4.10 (Operational Value of Storage and Percent-
age Cost Savings). Operational Value of Storage (VoS) is
broadly defined as the savings in the long term system cost
due to storage operation. Such an index is usually calculated
by assuming storage is operated optimally. In stochastic en-
vironments, the optimal system cost with storage operation
is hard to obtain in general settings. In our notations, let
uNS denote the sequence {u(t) : u(t) = 0, t ≥ 1} which cor-
responds to no storage operation. Then

VoS = JP1(u
NS)− J⋆

P1,

and it can be estimated by the interval
[
JP1(u

NS)−JP1(u
⋆(P3)), JP1(u

NS)−JP1(u
⋆(P3))+

M
W

]
.

Additionally, for a storage operation sequence u, the per-
centage cost savings due to storage can then be defined by
(JP1(u

NS) − JP1(u))/JP1(u
NS). An upper bound of this for

any storage control policy can be obtained via (JP1(u
NS) −

JP1(u
⋆(P3)) + M/W )/JP1(u

NS), which to an extent sum-
marizes the limit of a storage system in providing cost re-
duction.

5. RESULTS FOR NETWORKED SYSTEMS
For completeness, we provide a summary of results for

networks with more than one buses and storages; detailed
discussions and proofs can be found in [21]. For each bus
v ∈ V , we use Xv to denote the corresponding variable X
defined for single bus systems in Section 4, and X to de-
note the vector {Xv}v∈V . The online optimization, which
corresponds to P3 in the single bus systems, is as stated in
(8). Suppose that Assumption 4.1 is in force for each bus
v ∈ V . The following results hold for the control sequence
(u⋆(P3), f⋆(P3)) obtained from Algorithm 1.

Theorem 5.1 (Feasibility). Suppose the initial storage level
satisfies sv(1) ∈ [Smin

v , Smax
v ], for all v ∈ V , then the stor-

age level sequence {s(t) : t ≥ 1} induced by the sequence of
storage operation (u⋆(P3)) is feasible with respect to stor-
age level constraints, i.e., sv(t) ∈ [Smin

v , Smax
v ] for all t and

v ∈ V , provided that

Γmin
v ≤ Γv ≤ Γmax

v , 0 < W ≤ Wmax
v ,

for all v ∈ V .

Theorem 5.2 (Performance). The sub-optimality of control
sequence (u⋆(P3), f⋆(P3)) is bounded by M(Γ)/W , that is

J⋆
P1≤JP1(u

⋆(P3), f⋆(P3))≤J⋆
P1 +

M(Γ)
W

,

where

M(Γ) = Mu(Γ) +Ms(Γ),

Mu(Γ) =
∑

v∈V

Mu
v (Γv),

and

Ms(Γ) =
∑

v∈V

λv(1− λv)M
s
v (Γv).

The semidefinite program for minimizing the bound is as
follows.

Lemma 5.3 (Semidefinite Optimization of M(Γ)/W ). Let
symmetric positive definite matrices Xmin,u

v , Xmax,u
v , Xmin,s

v ,
and Xmax,s

v , v ∈ V , be defined as follows

X(·),u
v =

[
ηu
v U (·)

v + (1− λv)Γv

∗ 2W

]
, X(·),s

v =

[
ηs
v S(·)

v + Γv

∗ W

]
,

where (·) can be either max or min, and ηu
v and ηs

v are aux-
iliary variables, for any v ∈ V . Then the sub-optimality
bound M(Γ)/W can be optimized by solving the following
semidefinite program

minimize
∑

v∈V

ηu
v + λv(1− λv)η

s
v (24a)

subject toΓ min
v ≤ Γv ≤ Γmax

v , (24b)

0 < W ≤ Wmax
v , (24c)

Xmin,u
v , Xmax,u

v , Xmin,s
v , Xmax,s

v ≽ 0, (24d)

where constraints (24b)-(24d) hold for all v ∈ V .

6. NUMERICAL EXPERIMENTS

6.1 Single Storage Example
We first test our algorithm in a simple setting where the

analytical solution for the optimal control policy is avail-
able, so that the algorithm performance can be compared
against the true optimal costs. We consider the problem of
using a single energy storage to minimize the energy imbal-
ance as studied in [9], where it is shown that greedy storage
operation is optimal if λ = 1 and if the following cost is
considered

g(t) = |δ(t)− (1/µC)u+(t) + µDu−(t)|.

As in [9], we specify storage parameters in per unit, and
Smin = 0. Let µC = µD = 1 so that the parameter-
ization of storage operation here is equivalent to that of
[9]. We assume each time period represents an hour, and
−Umin = Umax = (1/10)Smax. In order to evaluate the
performance, we simulate the δ(t) process by drawing i.i.d.
samples from zero-mean Laplace distribution, with standard
deviation σδ = 0.149 per unit obtained from NREL data
[9]. The time horizon for the simulation is chosen to be
T = 1000. Figure 3(a) depicts the performance of the our
algorithm and the optimal cost J⋆

P1 obtained from the greedy
policy, where it is shown that the algorithm performance is
near-optimal, and better than what the (worst-case) sub-
optimality bound predicts. 6

6By an abuse of notation, in this section, we use J⋆
P1 and JP1

to denote the results from simulation, which are estimates
of the true expectations.
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A slight modification of the cost function would render a
problem which does not have an analytical solution. Con-
sider the setting where only unsatisfied demand is penalized
with a higher penalty during the day (7 am to 7 pm):

g(t)=

{
3
(
δ(t)−(u+(t)/µC) + µDu−(t)

)−
, t ∈ T Day,(

δ(t)−(u+(t)/µC) + µDu−(t)
)−
, otherwise,

(25)

where T Day = {t ≥ 1 : 7 ≤ t mod 24 < 19}. We run
the same set of tests above, with the modification that now
µC = µD = 0.95. Note that the greedy policy is only a sub-
optimal heuristic for this case. Figure 3(b) shows our online
algorithm performs significantly better than the greedy al-
gorithm. The costs of our algorithm together with the lower
bounds give a narrow envelope for the optimal average cost
J⋆
P1 in this setting, which can be used to evaluate the perfor-

mance of other sub-optimal algorithms numerically. In both
experiments, we also plot the costs of predictive/nominal
storage control, whose solution can be shown to be u(t) = 0
for all t. Consequently, the costs of such operation rule are
the same as the system costs when there is no storage.
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Figure 3: Performance of algorithms in a single bus
network. Note that, different from the setup in Re-
mark 4.7, we scale Umin, Umax together with Smax in
this and the following numerical examples.

Figure 4 translates the results in Figure 3 into percentage
cost savings due to storage operation, which are computed
following the discussion in Remark 4.10. Using the cost
of our online algorithm and the theoretical sub-optimality
bound, we obtain an upper bound of percentage cost reduc-
tion of energy storage for any control policy (see black curve
in each panel of Figure 4). It indicates the systemic limit of
using storage to provide cost reduction, and is useful for sys-
tem design considerations especially when the optimal cost
cannot be calculated efficiently.

6.2 Storage Network Example
We consider a setting similar to that in the single storage

numerical example, in which now distributed storages are
coordinated to minimize the power imbalance over a tree
network with N buses. We assume the storage network is
homogeneous, i.e., the storage installed on each bus of the
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Figure 4: Percentage cost savings of a single storage
operated for balancing.

network has the same specifications and the same cost func-
tions. Two cases with different cost functions are considered.
In the first case, time homogeneous costs of the form

gHv (t) =

(
δv(t)− (1/µC

v )u
+
v (t) + µD

v u
−
v (t) +

∑

e∼v

fe(t)

)−

,

(26)
are considered, where µC

v = µD
v = 0.95, and δv(t) is i.i.d.

following the same distribution as in the single storage ex-
ample. In the second case, each bus has a cost function
similar to (25):

gv(t) =

{
3gHv (t), t ∈ T Day,

gHv (t), otherwise,

with gHv (t) as defined in (26). We consider non-idealized
storages which are operated frequently such that λv = 0.999
for all v ∈ V . As in the single storage example, we fix
−Umin

v = Umax
v = (1/10)Smax

v . The storages are connected
in a star network, with N = 5 and Fmax

e = σδ for each
line e ∈ E. The time horizon for the simulation is cho-
sen to be T = 1000. Figure 5 shows the percentage cost
savings, where it is demonstrated that the online algorithm
performs consistently superior to the greedy heuristic, and
leads to percentage cost savings values that are close to the
derived upper bound. Therefore near-optimal performance
is achieved by our algorithm in both cases.

7. CONCLUSIONS AND FUTURE WORK
This work is motivated by the fundamental question of

how to optimally shift energy over space and time to achieve
uncertainty reduction and to facilitate renewable integra-
tion. To this end, we consider the problem of optimal control
of generalized storage networks under uncertainty. The no-
tion of generalized storage is proposed as a dynamic model
to capture many forms of storage conveniently. An online
control strategy is then proposed to solve the corresponding
constrained stochastic control problem, whose performance
is analyzed in detail. We prove that the algorithm is near op-
timal, and its sub-optimality can be bounded by a constant
that only depends on the parameters of the storage network
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Figure 5: Percentage cost savings of a storage net-
work operated for balancing.

and cost functions, and is independent of the realizations of
uncertainties.

Although we have provided analysis for a relatively gen-
eral setting (see [21] for more details), potential improve-
ments can be achieved in many directions. (i) Our formu-
lation starts by minimizing the long run expected average
cost, and lands on an online algorithm that has robust per-
formance guarantees in the form of a sub-optimality bound
that holds for all uncertainty realizations. Relaxing such
requirements may result in approaches that trade risk with
performance. Better performance guarantees (in terms of
smaller sub-optimality) may hold with large probability (in-
stead of with probability one), which leads to, in a sense,
probably approximately correct (PAC) algorithms[22]. (ii)
While our online control solves deterministic optimization
respecting network constraints, the sub-optimality bound is
derived independent of network topology and network pa-
rameters such as line capacities. Utilizing such informa-
tion may lead to a tighter performance bound or a more
informed choice of algorithmic parameters. (iii) It can be
an advantage or a disadvantage that our online algorithm
does not use any statistical information about the uncer-
tain parameters, depending on whether such information is
readily available. Observe that our approach in fact can be
generalized immediately to settings with additional same-
stage variables which do not affect the (temporal) states of
the system. Incorporating statistical information and fore-
cast updates may improve the performance of the algorithm,
and make the algorithm applicable to other settings where
lookahead variables (such as wind farm contract level for the
next stage) are considered together with storage operation.
(iv) While the focus of this paper is on energy networks,
the algorithm may be applied to other networks since our
analysis does not rely on properties of the given constraints
on network flow. This also implies that a more accurate
AC power model can be used in this study as long as the
online optimization can be solved efficiently. Recent ad-
vances in tight convex relaxation of AC optimal power flow
[23] can be utilized for such purposes. (v) This paper pro-
vides a procedure to convert the hard stochastic problem
to a sequence of easy deterministic problems which fit into

today’s grid operational paradigms (especially for transmis-
sion grids operated by centralized system operators). For
the future, the integration of distributed energy resources
would require a decentralized solution to these problems.
We note that many methods have been developed for dis-
tributed/decentralized deterministic optimization (cf. [24]);
incorporating these methods for solving the online problems
is an important future direction.
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APPENDIX
A. STRUCTURAL PROPERTIES OF THE ON-

LINE OPTIMIZATION
We consider replacing the g(t) defined in (3) with an ex-

tended real-valued function

g(t) = φt(u(t),κ(t)), (27)

where κ(t) is a vector of auxiliary parameters that captures
both stochastic parameters and deterministic parameters,
and it is supported on a compact set CK . Observe that this
would make our analysis applicable to general cost functions.
Similar to discussions in Section 4, we are interested in solv-
ing the following optimization in each time period t for u(t)

minimize λs̃(t)u(t) +Wφt(u(t),κ(t)) (28a)

subject to Umin ≤ u(t) ≤ Umax, (28b)

after observing the realization of κ(t).

Lemma A.1 (Structural Properties of Single Bus Online
Optimization). For an extended real valued function φt(u(t),κ(t)),
let φ̂κ(u) ! φt(u,κ), where κ is equal to the observed value
of κ(t). The following statements hold, regardless of the re-
alizations of κ(t).

1. if λs̃(t) +WDφ̂κ(u) ≥ 0, then uol(t) = Umin;

2. if λs̃(t) +WDφ̂κ(u) ≤ 0, then uol(t) = Umax.

Here,

Dφ̂κ(u) ! inf

{
ξ ∈ ∂φ̂κ(u)

∣∣∣∣
u ∈ [Umin, Umax],
κ ∈ CK

}
,

Dφ̂κ(u) ! sup

{
ξ ∈ ∂φ̂κ(u)

∣∣∣∣
u ∈ [Umin, Umax],
κ ∈ CK

}
.

and ∂φ̂κ(u) is the sub-differential of φκ(u)7.

Proof. To show the set of sufficient conditions for uol(t) takes
Umax (or Umin), notice that the condition

λs̃(t) ≤ −WDφ̂κ(u)

implies ∂Jκ,s̃
t (u) ⊆ (−∞, 0] for any u(t), κ(t), s̃(t). Thus,

for every given u ∈ [Umin, Umax], if β is a constant such that

Jκ,s̃
t (v)− Jκ,s̃

t (u) ≥ β · (v − u), ∀v ∈ [Umin, Umax],

then the sub-differential condition implies that β ≤ 0. Now,
by substituting u = Umax in the above expression, one ob-
tains β · (v − u) ≥ 0 and Jκ,s̃

t (v) ≥ Jκ,s̃
t (Umax), for all v ∈

[Umin, Umax]. Therefore, one concludes that u(t) = Umax

attains an optimal solution in problem (28). Similarly, the
condition

λs̃(t) ≥ −WDφ̂κ(u)

implies ∂Jκ,s̃
t (u(t)) ⊆ [0,∞). Based on analogous argu-

ments, one concludes that u(t) = Umin attains an optimal
solution in problem (28).

B. PROOF OF SINGLE BUS RESULTS
Proof of Theorem 4.5 We first validate that the intervals
of Γand W are non-empty. Note that from Assumption 3.1,
Wmax > 0, thus it remains to showΓ max ≥ Γmin. Based on
(20), W ≥ 0, and Dg ≥ Dg, one obtains

W (Dg −Dg) ≤λ(Smax − Smin)− (Umax − (1− λ)Smax)+

− ((1− λ)Smin − Umin)+.

Re-arranging terms results in
[
−WDg + (Umax− (1− λ)Smax)+

]
− λSmax

≤
[
−WDg −

(
(1− λ)Smin− Umin

)+]
− λSmin

7We say β is a sub-derivative of an extended real-valued
function φ at u0 ∈ if β · (u − u0) ≤ φ(u) − φ(u0), for
any u ∈ , and denote the set of all such β, namely the
sub-differential of φ at u0, by ∂φ(u0).
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which further impliesΓ max ≥ Γmin.
We proceed to show that

Smin ≤ s(t) ≤ Smax, (29)

for t = 1, 2, . . . , when u⋆(P3) is implemented. The base
case holds by assumption. Let the inductive hypothesis be
that (29) holds at time t. The storage level at t+ 1 is then
s(t + 1) = λs(t) + uol(t). We show (29) holds at t + 1 by
considering the following three cases.
Case 1. −WDg ≤ λs̃(t) ≤ λ(Smax + Γ).
First, it is easy to verify that the above interval for λs̃(t) is
non-empty using (18) andΓ ≥ Γmin. Next, based on Lemma
4.3, one obtains uol(t) = Umin ≤ 0 in this case. Therefore

s(t+ 1) = λs(t) + Umin ≤ λSmax + Umin ≤ Smax,

where the last inequality follows from Assumption 2.1. On
the other hand,

s(t+ 1) = λs(t) + Umin ≥ −WDg − λΓ+ Umin

≥−WDg − λΓmax + Umin

≥
(
(1− λ)Smin− Umin

)+
+λSmin + Umin ≥ Smin,

where the third line used Dg ≥ Dg.
Case 2. λ(Smin + Γ )≤ λs̃(t) ≤ −WDg.
The above interval for λs̃(t) is non-empty by (19) and Γ ≤
Γmax. Lemma 4.3 implies uol(t) = Umax ≥ 0 in this case.
Therefore, using Assumption 2.1,

s(t+ 1) = λs(t) + Umax ≥ λSmin + Umax ≥ Smin.

On the other hand,

s(t+ 1) = λs(t) + Umax ≤ −WDg − λΓ+ Umax

≤−WDg − λΓmin + Umax

≤−(Umax− (1− λ)Smax)++λSmax + Umax≤ Smax,

where the third line again is by Dg ≥ Dg.
Case 3. −WDg <λ s̃(t) < −WDg.
By Umin ≤ uol(t) ≤ Umax, one obtains

s(t+ 1) = λs(t) + uol(t) ≤ λs(t) + Umax

<−WDg − λΓ+ Umax

≤−WDg − λΓmin + Umax

≤−(Umax− (1− λ)Smax)++λSmax + Umax≤ Smax.

On the other hand,

s(t+ 1) = λs(t) + uol(t) ≥ λs(t) + Umin

>−WDg − λΓ+ Umin

≥−WDg − λΓmax + Umax

≥
(
(1− λ)Smin− Umin

)+
+λSmin + Umin ≥ Smin.

Combining these three cases, and by mathematical induc-
tion, we conclude (29) holds for all t = 1, 2, . . . .

Proof of Theorem 4.6 Consider a quadratic Lyapunov
function L(s) = s2/2. Let the corresponding Lyapunov drift
be

∆(s̃(t)) = [L(s̃(t+ 1))− L(s̃(t))|s̃(t)] .

Recall that s̃(t+1) = s(t+1)+Γ= λs̃(t)+u(t)+ (1−λ)Γ,
and so

∆(s̃(t)) =
[
(1/2)(u(t) + (1− λ)Γ)2 − (1/2)(1− λ2)s̃(t)2

+ λs̃(t)u(t) + λ(1− λ)s̃(t)Γ|s̃(t)
]

≤ Mu(Γ)− (1/2)(1− λ2)s̃(t)2

+
[
λs̃(t)u(t) + λ(1− λ)s̃(t)Γ|s̃(t)

]

≤ Mu(Γ) + [λs̃(t)(u(t) + (1− λ)Γ)|s̃(t)] . (30)

It follows that, with arbitrary storage operation u(t),

∆(s̃(t)) +W [g(t)|s̃(t)] (31)

≤Mu(Γ) + λ(1− λ)s̃(t)Γ+
[
JP3,t(u(t))|s̃(t)],

where it is clear that minimizing the right hand side of the
above inequality over u(t) is equivalent to minimizing the
objective of P3. Given that ustat(t), the disturbance-only
stationary policy of P2 described in Lemma 4.2, is feasible
for P3, the above inequality implies

∆(s̃(t)) +W [g(t)|s̃(t), u(t) = uol(t)] (32)

≤Mu(Γ) + λ(1− λ)s̃(t)Γ+
[
J⋆
P3,t|s̃(t)]

≤Mu(Γ) + λ(1− λ)s̃(t)Γ+
[
JP3,t(u

stat(t))|s̃(t)]
(a)
=Mu(Γ) + λs̃(t)

[
ustat(t) + (1− λ)Γ

]
+W [g(t)|ustat(t)]

(b)

≤M(Γ) +W [g(t)|ustat(t)]
(c)

≤ M(Γ) +WJ⋆
P1.

Here (a) uses the fact that ustat(t) is induced by a disturbance-
only stationary policy; (b) follows from inequalities |s̃(t)| ≤(
max

(
(Smax + Γ )2, (Smin + Γ )2

))1/2
and

∣∣ [
ustat(t)

]
+ (1− λ)Γ

∣∣ ≤
(1 − λ)(max((Smax + Γ )2, (Smin + Γ )2))1/2; and (c) used
[g(t)|ustat(t)] = J⋆

P2 in Lemma 4.2 and J⋆
P2 ≤ J⋆

P1. Taking
expectation over s̃(t) on both sides gives

[L(s̃(t+ 1))− L(s̃(t))] +W
[
g(t)|u(t) = uol(t)

]

≤M(Γ) +WJ⋆
P1. (33)

Summing expression (33) over t from 1 to T , dividing both
sides by WT , and taking the limit T → ∞, we obtain the
performance bound in expression (21).

Proof of Lemma 4.8 Based on the following re-parametrizations:

ηu = Mu(Γ)/W,η s = Ms(Γ)/W,

(since W > 0) one can easily show that problem P3-PO
has a same solution as the following optimization problem:

minimize ηu + λ(1− λ)ηs

subject toΓ min ≤ Γ ≤ Γmax, 0 < W ≤ Wmax,

2ηuW ≥
(
Umin + (1− λ)Γ

)2
,

2ηuW ≥ (Umax + (1− λ)Γ)2 ,

ηsW ≥
(
Smin + Γ

)2
, ηsW ≥ (Smax + Γ )2 .

The proof is completed by applying Schur complement on
the last four constraints of the above optimization.
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