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ABSTRACT

The accelerated adoption of EVs in the last few years has
raised concerns that the power grid can get overloaded when
a large number of EVs are charged simultaneously. A promis-
ing direction is to implement large scale automated schedul-
ing of EV charging at public facilities, by exploiting the
time elasticity of charging requests. In this work, we study
the problem of online EV charging for maximizing the total
value of served vehicles minus the energy cost incurred. In
contrast to most previous works that assume a fixed capac-
ity constraint while ignoring the electricity cost, we adopt
a convex cost model for the system operator together with
a concave valuation model for the vehicle owners. We de-
sign an online algorithm for balancing the two and prove a
bound on its competitive performance for a general class of
valuation and cost functions.

Categories and Subject Descriptors

I.2.8 [Problem Solving, Control Methods, and Search]:
Scheduling; I.1.2 [Algorithms]: Analysis of algorithms

Keywords

Electric vehicle charging; deferrable load control; online al-
gorithms

1. INTRODUCTION
The past few years have witnessed increasing interest in

Electrical Vehicles (EVs) including both plug-in hybrid elec-
tric vehicles (PHEVs) and fully electric vehicles, driven by
the advances in battery technology and the necessity of re-
ducing carbon emissions and dependence on petroleum. It
is projected that the adoption of EVs is likely to accelerate
in the next decade. For instance, the U.S. government calls
for deploying 1 million PHEVs by 2015 [17], and a recent
Gartner report estimates that by 2020, 10% of all vehicle
sales will be EVs [13].
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The accelerated adoption of EVs, however, leads to the
concern that when a large number of EVs are charged si-
multaneously in a local area, which is likely to happen in
the near future, the local power grid can easily get over-
loaded. To address the problem, a promising direction is to
investigate large scale automated scheduling of EV charg-
ing [1, 8, 10]. The key observation is that vehicle owners
often exhibit some flexibility in their charging requests, in-
cluding the time period of getting charged, and in the case
of PHEVs, the total amount as well. By exploiting the sta-
tistical multiplexing gain and the time elasticity of charging
requests, coordinated charging can greatly improve energy
efficiency while meeting the utility of vehicle owners. Such a
scheme can be implemented in public areas such as parking
garages and working places, as envisioned in [8].

In this work, we study the problem of online EV charg-
ing for maximizing the total value of served vehicles minus
the energy cost incurred. As in [10, 18, 19], each request is
characterized by a time window that models the time elas-
ticity of the vehicle owner, a concave function that models
the non-increasing marginal valuation for incremental unit
of electricity, and a charging rate limit. Moreover, we model
the energy cost at any time as a convex function of the total
load at that time. The convex cost model has been widely
adopted for modeling energy cost, and reflects the fact that
each additional unit of power for meeting the increased load
is more expensive to obtain [14,16].

We have designed an online algorithm to this problem
that requires no knowledge of future requests while achiev-
ing a comparable efficiency as the optimal offline solution.
Our analysis is built upon a recently developed primal-dual
framework for competitive analysis of online algorithms [6,
12], while allowing a more general class of utility and cost
functions. In addition to EV charging, our study applies
to welfare maximization of other types of resources where
the demand side has a concave utility and exhibits time
elasticity, while the supply side incurs a convex cost, e.g.,
scheduling of computing tasks in a data center and allocat-
ing bandwidth in a communication network.

There are several online algorithms designed for coordi-
nated EV charging [7,8,10,19]. In [10], a greedy algorithm is
proposed for maximizing the total valuations of vehicle own-
ers subject to a capacity constraint of the distribution net-
work. To cope with the strategic behavior of selfish agents,
the algorithm is extended to an online mechanism by allow-
ing some pre-allocated units to be “burned.” The approach
is further extended in [19] to allow multiple charging rates.
In another direction, the problem of EV charging with com-
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mitment is considered in [7,8], where each agent requests a
fixed amount of resource, and a request has to be either ac-
cepted or rejected at its arrival time. A penalty is incurred
if an accepted request is not fulfilled by the deadline.

However, most previous works on EV charging assume a
capacity constraint while ignoring the electricity cost. One
exception is [8], where a linear cost is considered together
with a linear valuation. For a large system with high peak
load, however, it is often more expensive to generate the sup-
plementary power for meeting the peak load, and a convex
cost model better reflects the real cost of electricity [14,16].
On the other hand, the problem of minimizing a convex en-
ergy cost for serving deferrable electric load has also been
considered, under the assumption that all the requests have
to be satisfied in full [14]. In practice, however, the charging
demand of an EV often exhibits some flexibility in terms of
the total amount needed, which is better captured by a con-
cave valuation function. Moreover, the approach in [14] does
not provide any worst-case performance guarantee. Our
approach generalizes these two extreme cases by modelling
flexibilities in both the demand and the supply, a better re-
flection of the reality, while ensuring a performance bound
even in the worst-case. In the offline setting, welfare max-
imization for electrical load management with general con-
cave valuations and convex costs has been considered in [16].
However, the problem has not been studied in the online
setting to the best of our knowledge. In a different context,
a recent work considered the problem of pricing a set of
items with general production cost to a sequence of buyers
to maximize social welfare or profit [3]. The approach does
not apply to expiring resources like electricity and does not
consider the time elasticity of demand.

Our main contribution can be summarized as follows.

• We develop an online algorithm that balances the total
value of served vehicles and the total energy cost for
charging.

• For continuous charging rate (and under some further
assumptions to be defined precisely in Section 4), we
establish a performance bound of our online algorithm
compared with the optimal offline algorithm, based on
a characterization of the concavity (resp. convexity)
of the valuation functions (resp. cost functions). We
further study the competitive performance of our al-
gorithm for concrete examples of valuation and cost
functions.

• Simulation results show that our algorithm achieves
close to optimal performance even when the charging
rate is discrete, compared with the optimal offline so-
lution with continuous charging rate.

The remainder of this paper is organized as follows. We
present the system model and the welfare optimization prob-
lem in Section 2. Our online algorithm is developed in Sec-
tion 3, where we also present two heuristics as baselines.
The competitive performance of our algorithm is studied in
Section 4. We evaluate our algorithm in Section 5, and con-
clude the paper in Section 6.

2. SYSTEM MODEL AND PROBLEM FOR-

MULATION
In this section, we discuss our system model and major

assumptions made, and present the optimization problem to
be studied.

Consider a system operator that manages multiple charg-
ing points. As in [10,19,20], we assume that there are enough
charging points so that no agent needs to wait to be charged.
A time-slotted system is considered. In any time-slot t, the
operator incurs a cost gt(zt) for serving a total amount zt
(kWh) of charging request. Note that gt(·) may vary over
t in general. We assume that gt(·) is non-decreasing and
convex, gt(0) = 0, and gt(·) is known to the operator 1. Let
N = {1, ..., N} denote a set of agents, each operating a sin-
gle EV on behalf of its owner. Each agent i is described by
its type θi = (fi, ai, di, Xi, Yi), where fi(·) specifies its valu-
ation function, Xi denotes its maximum charging rate, i.e.,
the maximum amount of electricity that i can charge in any
time-slot, and Yi is the maximum amount of electricity that
i would like to obtain, beyond which, there is no extra value.
Agent i arrives at the beginning of time-slot ai, and departs
by the end of time-slot di, and obtains a valuation fi(yi) if it
receives a total amount of electricity yi on departure. Such a
total energy requirement model with continuous service rate
has been used in [1, 9] for modeling energy demand of EVs
and other deferrable electric loads. As in [19], we assume
that fi(·) is non-decreasing and concave, and fi(0) = 0 for
any i. Note that Yi can be incorporated into the definition of
fi. We choose to separate them for the sake of clarity. We
assume that the agents always report their true types on
their arrivals. Extension of our online algorithm to a truth-
ful online mechanism will be part of our future study. Let
D = maxi(di − ai + 1) denote the maximum time elasticity
of any requests.

Agents are sorted by their arrival times (ties are broken
arbitrarily). Let T denote the last departure time, i.e., T =
maxi∈N di. Let xit denote the amount of electricity that
agent i obtains at time t, and let x , {xit : 1 ≤ i ≤ N, 1 ≤
t ≤ T}. Our objective is to maximize the social welfare
of both the system operator and the customers, that is, the
total valuations of customers minus the total electricity cost:

max
x

N∑

i=1

fi(
T∑

t=1

xit)−
T∑

t=1

gt(
N∑

i=1

xit)

s.t. 0 ≤ xit ≤ Xi, ∀i, t,
xit = 0, ∀i, t 6∈ [ai, di],

T∑

t=1

xit ≤ Yi, ∀i.

We note that the offline problem is a convex optimization
problem, which can be solved to any accuracy in polynomial
time for a large class of f and g. Our objective, however,
is to study the problem in the more challenging online set-
ting, where agents of different types arrive on the fly, and
at any time t, the system operator only has the information
of agents that are currently in the system and that have left
the system by t. Our objective is to design online algorithms
that are competitive with respect to the optimal offline algo-
rithm. An online algorithm is q-competitive for some q ≥ 1
if it achieves at least 1/q of the optimal offline social welfare
in the worst case [4].

As we will discuss in Section 4, our analysis focuses on
the “continuous” setting when fi and gt are continuously
differentiable, and xit are continuous. However, our algo-

1At any time t, it is sufficient for our algorithm to know gτ (·)
for τ ∈ {t, t+1, ..., t+D− 1}, where D = maxi(di − ai+1).
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Table 1: Notation List

N Set of agents (charging requests)

N Total number of requests

T Last departure time

gt Cost function at time t

ct,k Marginal cost for serving the k-th unit at time t

zt Total amount of electricity consumed at time t

fi Valuation function of agent i

vi,k Marginal valuation of the k-th unit for agent i

ai, di Arrival time, departure time of agent i

θi Type of agent i, where θi = (fi, ai, di,Xi, Yi)

D maxi∈N (di − ai + 1)

xit Amount of electricity given to agent i at time t

yi Total amount of electricity given to agent i

Xi Maximum charging rate of agent i

Yi Maximum amount of electricity required by agent i

δ Charging unit

γ Revocation coefficient

rithm applies to more general forms of fi and gt, and to the
“discrete” case when the values of xit need to be a multi-
ple of some charging unit δ. In the discrete case, we define
vi,k = fi(kδ) − fi((k − 1)δ) as the k-th marginal valuation

to agent i. Then we have fi(yi) =
∑⌊yi/δ⌋

k=1 vi,k. The concav-
ity of fi implies that vi,k ≥ vi,k+1,∀i, k. Hence, a discrete
valuation function can be equivalently defined as a vector
of marginal valuations. Similarly, we define ct,k as the k-
th marginal cost for the cost function gt. The convexity of
gt then implies that ct,k ≤ ct,k+1, ∀t, k. Note that the con-
tinuous case can be viewed as an extreme of the discrete
case when δ → 0. To simplify the notation, we also use
marginal valuation (cost) to denote the derivative of a con-
tinuous valuation (cost) function. Simulation results show
that our algorithm achieves close to optimal performance
even when xit are discrete, compared with the continuous
offline optimal (note that in general, it is NP-hard to find
the optimal (offline) solution in the discrete case).

In our analysis and evaluation, we will consider the fol-
lowing commonly adopted valuation and cost functions as
examples (our analysis applies to more general f and g). For
cost functions, we will consider gt(zt) = ctz

α
t for some ct > 0

and α ≥ 1, where ct varies over time, which has been widely
adopted for modeling energy cost [14]. We also consider two
extensions to this model that incorporate free renewable en-
ergy and base load, respectively (see Section 4.3). For valu-
ation functions, we will consider f1

i (yi) = vi log(1 + yi) and

f2
i (yi) = viy

β
i for vi > 0 and β ∈ [0, 1]. Note that when

the parameter vi is identical for all the agents, f1 and f2
are closely related to the well-known notions of proportional
fairness and α-fairness [15], respectively.

3. ONLINE ALGORITHMS
In this section, we present our online algorithms for the

EV charging problem. We first consider the case when f
and g are continuously differentiable, and xit are continuous.
Extensions to more general f and g and to discrete xit will be
discussed at the end of the section. We start with two simple
online solutions adapted from existing algorithms proposed
in related settings [12, 19] (Section 3.1). A careful study of
these algorithms reveals their weakness in our context. They
also serve as baselines in our simulations (see Section 5). We
then propose a more sophisticated solution in 3.2.

3.1 Two Simple Algorithms
The first algorithm we consider is adapted from an online

algorithm for a multi-speed EV charging problem proposed
in [19], where instead of the electricity cost, a capacity con-
straint is considered. The objective is to maximize the total
valuations of all the agents subject to a constraint on the
total amount that can be served at any time. For any agent
i, let yit denote the total amount of electricity that agent i
received by time t. An agent i is active at time t if t ∈ [ai, di]
and yit < Yi. The online algorithm greedily serves the active
requests in each time-slot as follows. At any time t, active
agents are served in a non-decreasing order of f ′

i(yit) sub-
ject to the capacity constraint and the charging rate limit
of each agent. Let zt denote the current load at time t. To
adapt this algorithm to our problem, we observe that when
electricity cost is introduced, it is beneficial to serve agent i
at time t only if f ′

i(yit) > g′t(zt). We therefore modify the
algorithm as follows.

Per-Time Allocation (PT): At each time t, active agents
are served in a non-decreasing order of their marginal valua-
tions, subject to their charging rate constraint. The process
repeats until maxi f

′
i(yi) ≤ g′t(zt).

Note that PT does not exploit time elasticity explicitly. As
an illustrative example, consider a system of three agents,
and assume gt(zt) = 0.5z2t for all t. Agent 1 and 2 arrive at
time 1, where θ1 = (1.5y1, 1, 2, 1, 1) and θ2 = (1.5y2, 1, 1, 1, 1)
(see Figure 1 (a)). Since the two agents have the same
marginal valuation, they can be served in any order. Assum-
ing they are served with equal chance, each of them receives
0.75 units in the first time-slot, so that the marginal valu-
ation of each agent equals to the marginal cost in the first
time-slot, both equal to 1.5. Agent 2 then departs at the end
of time-slot 1 and agent 3 arrives at the beginning at time-
slot 2 where θ3 = (2y3, 2, 3, 2, 3). Note that at time 2, agent
3 receives 2 units while agent 1 (still in the system) is not
served as it has lower marginal valuation than agent 3. Fi-
nally, at time 3, agent 3 receives 1 more unit since Y3 = 3 and
then departs. The total welfare achieved can be computed
as 1.5× (0.75+0.75)+2×3−0.5× (1.52 +22+12) = 4.625.

The second algorithm that we consider is originally pro-
posed for serving computing tasks using a single machine
with speed scaling [21]. In this context, each job requires
certain amount of CPU cycles, and the power consumption
at any time is a function of the processor speed. The objec-
tive is to minimize the total energy consumption for serving
all the requests (partial fulfillment is not beneficial) subject
to their deadline constraints. We consider the greedy online
algorithm recently proposed in [12]. In contrast to PT, a
plan is made for each request at its arrival time to exploit
the time elasticity of requests. The algorithm can be inter-
preted in our context as follows. A schedule is found for each
request at its arrival time, which remains fixed for its entire
lifetime in the system. To serve agent i, the time slots in
[ai, bi] of minimum load (given the current allocations made)
are first considered, subject to the charging rate constraint.
The process repeats until i’s request is satisfied. The algo-
rithm then moves on to the next agent. A simple approach
to adapt this algorithm to our setting is to stop allocation
for agent i when f ′

i(yi) ≤ minτ∈[ai,bi] g
′
τ (zτ ).

On-Arrival Allocation (OA): At each time t, for each
agent i that arrives at t, the load of all the time slots τ ∈
[ai, di] with minimum g′τ (zτ ) are increased for serving i, sub-
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Figure 1: An example of EV charging with three agents.

ject to the charging rate constraint, until f ′
i(yi) ≤ minτ∈[ai,bi]

g′τ (zτ ).
Consider the three agent example again. In the beginning

of time-slot 1, a plan is made for agent 1 first. Agent 1
receives 0.5 unit in time-slot 1 and 0.5 unit in time-slot 2
(see Figure 1(b)). Agent 2 then receives 1 unit in time-
slot 1. When agent 3 arrives at time 2, time-slot 3 is first
considered for serving agent 3 as it has the minimum load.
Once the load of time 3 increases to 0.5, the load of time-
slot 2 increases together with that of time-slot 3 until agent
3 receives its maximum required amount of 3 units, with
1.25 unit served in time 2 and 1.75 unit served in time 3.
The total welfare achieved in this case is 1.5× (1 + 1) + 2×
3− 0.5× (1.52 + 1.752 + 1.752) = 4.8125.

Discussion: The main problem with the PT algorithm is
that the time elasticity of requests is largely ignored. In
particular, the algorithm tends to serve requests as fast as
possible subject to the charging rate constraint, which can
lead to a high cost. Consider a simple example with m
agents of the same type θi = (yi, 1, m, 1, 1), and gt(zt) =
0.25z2t for all t. Then PT will serve all the agents in the first
m/2 time-slots, with two agents served together in each of
these time-slots, leading to a welfare of m − m/2 = 0.5m.
On the other hand, in the optimal solution, each agent is
served 1 unit in a different time-slot, leading to a welfare
of m − 0.25m = 0.75m. This result can be made worse
when the marginal cost is smaller. In general, we expect
that PT performs worse when the average time elasticity
is high and traffic load varies over time (so that the time
elasticity can potentially be exploited), which is confirmed in

our simulations. The example reveals that instead of making
decisions for each time-slot separately, a plan for the future
is needed to reduce the cost.

On the other hand, the OA algorithm tends to reduce
electricity cost by making a plan for each agent as early as
possible. However, since a schedule for each request is fixed
at its arrival time and cannot be modified for its entire life-
time, it can prevent future requests with higher marginal
valuations from being served. This can happen especially
when the system load is relatively high. For instance, con-
sider the three agent example in Figure 1(b) again. The key
observation is that the welfare can be improved if part of
the allocation to agent 1 can be revoked to serve agent 3.
Note that the decision for agent 3 is made at the beginning
of time 2, where the allocation for agent 1 at time 2 can still
be modified. In making the scheduling decision for agent
3, when the load of both time-slots 2 and 3 increase to 1.5,
the marginal cost in both time slots equals to the marginal
valuation of agent 1. Starting from that point, instead of
further increasing the load, it is more efficient to displace
the allocation made for agent 1 at time 2 and reassign the
units to agent 3 (see Figure 1(c)). The total welfare is then
improved to 1.5× (1+0.5)+2×3−0.5× (1.52 ×3) = 4.875.

3.2 An Online Algorithm with Revocation
Based on the above discussion, we then design an online

algorithm that combines two key ideas: (1) for any request,
a tentative schedule that looks into the future is needed for
exploiting the time elasticity of requests; (2) tentative allo-
cations made for existing requests should be revocable for
serving new requests with higher valuations. Our algorithm
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is built upon the framework of OA, where for any agent i,
a tentative schedule is determined at its arrival time ai. In
making the decision, however, allocations within the interval
[ai, di] made for previous agents can be reassigned to agent
i if the marginal valuation of the latter is higher than the
marginal valuation of the former by a factor γ ≥ 1. The pa-
rameter γ is called revocation coefficient and is selected
by the algorithm according to the shapes of the valuation
and cost functions. Approaches for determining a desired γ
will be studied in Section 4.

We now discuss our On-Arrival Allocation with Revoca-
tion (OAR) algorithm in detail. The algorithm maintains
the total amount of electricity consumed in each time-slot
t, denoted as zt, which is initialized to 0. At any time t,
for each agent i that arrives at t, a tentative schedule is
made for i as follows. For each time-slot τ ∈ [ai, bi], let xiτ

denote the amount of electricity given to i in time τ , and
let yi =

∑
τ xiτ denote the total amount that i receives.

These variables are initialized to 0. The tentative schedule
for agent i is made in multiple iterations (lines 3-41). In
each iteration, certain amount of electricity is allocated to
i until yi equals to Yi, the maximum amount that agent i
requires, or when there is no benefit of serving more for i.

In each iteration, let H denote the set of time-slots in
[ai, di] where agent i can receive more electricity subject to
its charging rate limit (line 4). Let dc denote the minimum
marginal cost in these time-slots, and let H ′ denote the set of
time-slots in H that achieves this minimum (line 9). These
are the most cost-effective time-slots for serving i. More-
over, let J denote the set of agents from which the current
allocation can potentially be revoked for serving i (lines 10-
11). These agents have to satisfy the following necessary
conditions:

• They arrived before i;

• They have received some amount in H ′;
• Their marginal valuation (with respect to their current

allocations) is less than f ′
i(yi)/γ, where γ ≥ 1 is the

revocation coefficient, and no larger than dc.

If J is nonempty, let dv denote the minimum marginal val-
uation for agents in J , and let J ′ denote the set of agents in
J that achieves the minimum. Otherwise, let dv = dc and
J ′ = ∅ (lines 12-18).

If neither dc nor dv is less than f ′
i(yi), there is no benefit of

serving more for agent i. The algorithm moves on to the next
agent (lines 19-21). Otherwise, we set H ′ = ∅ if dv < dc,
since in this case, it is more cost-effective to revoke existing
allocation instead of allocating more. The algorithm then
invokes a procedure Increment to identify a small increment
δτ for each τ ∈ H ′, and a small amount δj to be displaced for
each j ∈ J ′ (line 25). The procedure Increment identifies the
maximum possible amount of increment (revocation) while
meeting the following criteria:

• The new value of yi after increment (revocation) is
bounded by Yi;

• The new marginal cost (valuation) of these time-slots
(agents) after increment (revocation) should still equal
to each other, and no larger than the derivatives of
untouched time-slots in H and agents in J , and that
of f ′

i(yi);

• If δj > 0 is applied to an agent j ∈ J ′, then δj should
be small enough so that f ′

j(yj) ≤ f ′
i(yi)/γ after revo-

cation.

On-Arrival Allocation with Revocation (OAR)

zt ← 0,∀t
γ ← γ∗ as determined by Equation (12)
In each time-slot t

1: for each agent i that arrives at t do
2: xiτ ← 0, yi ← 0, ∀i, τ
3: while yi ≤ Yi do

4: H ← {τ : ai ≤ τ ≤ di, xiτ < Xi}
5: if H == ∅ then
6: break

7: end if

8: dc← minτ∈H g′τ (zτ )
9: H′ ← {τ ∈ H : g′τ (zτ ) == dc}
10: J ← {j < i : xjτ > 0 for some τ ∈ H′,
11: f ′

j(yj) < f ′
i(yi)/γ, f

′
j(yj) ≤ dc}

12: if J == ∅ then
13: dv ← dc
14: J ′ ← ∅
15: else

16: dv ← minj∈J f ′
j(yj)

17: J ′ ← {j ∈ J : f ′
j(yj) == dv}

18: end if

19: if f ′
i(yi) ≤ min(dc, dv) then

20: break

21: end if

22: if dv < dc then

23: H′ ← ∅
24: end if

25: ({δj}, {δτ})← Increment(H, J,H′J ′, yi)
26: for τ ∈ H′

do

27: zτ ← zτ + δτ , xiτ ← xiτ + δτ , yi ← yi + δτ
28: end for

29: for j ∈ J ′ do
30: δ0 ← δj
31: for τ ∈ H′ and xjτ > 0 do

32: δ1 ← min(δ0, xjτ , Xi − xiτ )
33: xjτ ← xjτ − δ1, yj ← yj − δ1
34: xiτ ← xiτ + δ1, yi ← yi + δ1
35: δ0 ← δ0 − δ1
36: if δ0 ≤ 0 then

37: break

38: end if

39: end for

40: end for

41: end while

42: end for

The load in each time-slot τ ∈ H ′ then increases by δτ , and
the allocation of i is updated accordingly (lines 26-28). Sim-
ilarly, for each agent j ∈ J ′, total amount of δj is displaced
from the time-slots in H ′ where j has non-zero allocation,
which is reassigned to i subject to the charging rate con-
straint of i (lines 29-40).

Remark 1: When the functions f and g have constant
or linear derivatives, the procedure Increment can be easily
implemented to identify the maximum possible increment
(revocation) subject to the required conditions. For general
f and g, however, it can be difficult to satisfy the criteria
above exactly while still making some progress in each step,
and some approximation might be needed. We will adopt
the following simple solution in our simulations. In each
iteration, only consider one time-slot τ in H ′ or one agent j
in J ′, and increase the load of τ or revoke the allocation of
j by a small fixed amount δ > 0, where δ can be adjusted
to trade off the accuracy and the time complexity. We call
this procedure Simple-Increment.
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One advantage of introducing a step size δ is that the
algorithm can then be easily extended to non-differentiable
f and g, and to the discrete case where xit requires to be
a multiple of a charging unit (a given system parameter).
In the later case, we can simply set δ to be the charging
unit, and replace all the derivatives by marginal valuations
or marginal costs. An extra unit of agent i is served at time
τ only if the marginal valuation of the next unit of i is higher
than the marginal cost for serving one more unit at time τ .
Similarly, a unit of agent j is displaced by a unit of agent i
only if the marginal valuation of the next unit of i is higher
than the marginal valuation of the last unit of j.

Remark 2: With Simple-Increment applied, the time com-
plexity of the OAR algorithm can be determined as follows.
Let N denote the number of agents, Y = maxi Yi the max-
imum battery size of an EV, and D = maxi(di − ai + 1)
the maximum time elasticity of any agent. Each agent then
requires O(Y/δ) iterations to schedule, and the time com-
plexity of one iteration is dominated by computing the set
J (lines 10-11), which requires O(ND) time. Therefore, the
algorithm has a time complexity of O(Y

δ
N2D).

4. ANALYSIS OF ONLINE ALGORITHMS
We next study the performance of our online algorithm

presented in the previous section, by adopting a primal-
dual framework [6, 12]. As a classic tool for the design and
analysis of approximation algorithms in the offline setting,
primal-dual approach has recently been successfully applied
to online optimization with linear objectives [5,6]. More re-
cently, this approach has been extended to online non-linear
optimization as well. In particular, it has been used in [12]
to prove competitive results for the online energy minimiza-
tion algorithm in the special case when the cost function is a
power function, as we mentioned in Section 3.1. Our analysis
extends this approach by considering both a general convex
cost and a general concave valuation function. To strike a
balance between the two, our approach is to properly de-
termine the value of the revocation coefficient γ according
to the shapes of the valuation and cost functions. In our
proof, we need the following assumption (in addition to the
assumptions made in Section 2).

Assumption 4.1. f and g are continuously differentiable
and strictly increasing; xit are continuous (and can be ar-
bitrarily small); and the Increment procedure (discussed in
Section 3.2) can by implemented exactly.

As we mentioned in Section 3.2, our algorithm applies to
the more general setting where a discrete charging unit δ
can be introduced. We expect that, when the unit δ can
be made small enough2, similar competitive results as the
ones established below can be obtained for more general f
and g, e.g., a piecewise linear concave or convex function,
with little loss, at the expense of a higher complexity of the
algorithm. Extending our results to the setting where δ is a
given system parameter is part of our future work. On the

2This can be made more precisely as follows. Consider a
system with a single request i and a single time-slot t, where
ai ≤ t ≤ di. Let Cit denote the optimal amount of request
i scheduled at time t that maximizes the welfare (ignoring
other requests and other time slots). Let C = mini,t Cit.
Effectively, C can be viewed as a notion of the capacity of
the system. Then we require that δ ≪ C.

other hand, we observe in our simulations (see Section 5)
that our algorithm achieves close to optimal performance
even under the discrete setting.

4.1 Preliminaries
To illustrate the primal-dual approach, we first rewrite the

primal problem as follows:

max
x,y

F (x,y) =
∑

i

fi(yi)−
∑

t

gt(
∑

i

xit)

s.t. yi ≤
∑

t

xit, ∀i, (1)

xit ≤ Xi, ∀i, t, (2)

xit = 0, ∀i, t 6∈ [ai, di], (3)

xit ≥ 0, ∀i, t, (4)

0 ≤ yi ≤ Yi, ∀i. (5)

where x , {xit} and y , {yi}.
We introduce a dual variable λi for the first constraint for

each i, and a dual variable µit for the second constraint for
each i and t. Let λ , {λi} and µ , {µit}. Let X denote
the set of x that satisfies constraints (3) and (4), and let
Y denote the set of y that satisfies the last constraint. We
consider the following dual function

G(λ, µ) = max
x∈X ,y∈Y

∑

i

fi(yi)−
∑

t

gt(
∑

i

xit)

+
∑

i

λi(
∑

t

xit − yi) +
∑

i,t

µit(Xi − xit)

= max
x∈X ,y∈Y

∑

i

(fi(yi)− λiyi) +
∑

i,t

µitXi

+
∑

t

[∑

i

(λi − µit)xit − gt(
∑

i

xit)
]

(6)

By the weak duality theorem [2], the dual function yields
an upper bound on the optimal solution of the initial prob-
lem for any λi ≥ 0 and µit ≥ 0,∀i, t. The main idea
of the online primal-dual approach is to set dual variables

(λ̂, µ̂) based on the values of the primal variables (x,y) de-
termined by a (deterministic) online algorithm such that

G(λ̂, µ̂) ≤ qF (x,y) for some q ≥ 1, which then implies that
the online algorithm is q-competitive.

4.2 Analysis
We now study the performance of OAR. Our analysis is

centered at the choice of revocation coefficient γ based on a
characterization on the level of concavity (resp. convexity)
of f (resp. g). By the concavity of f and the assumption
that f(0) = 0, f(y) ≥ 0, ∀y ≥ 0, we have f ′(y)y ≤ f(y) for
any y ≥ 0 (a formal proof can be found in [2]). Based on

this observation, we use φf (y) =
f ′(y)y
f(y)

to characterize the

convexity of f at point y (see Figure 2 for an example), and
define φf = maxy≥0 φf (y). For instance, when f(y) = vyβ

for some v > 0, β ≤ 1, we have φf = β. Similarly, we

consider φg(z) =
g′(z)z
g(z)

as a characterization of the convexity

of g at point z, and define φg = minz≥0 φg(z). Moreover,
for a given set of agents N and a time horizon T , we define
Φf = maxi∈N φfi ,Φg = mint∈T φgt .

Consider an agent i scheduled by OAR. Let {x̃it} denote
the initial allocation made for i at its arrival, ỹi =

∑
t x̃it
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y

f (y) f ′(y)y

φf (y) =
f ′(y)y
f (y)

z

g(z)

g′(z)z

φg(z) =
g′(z)z
g(z)

(a) φf (b) φg

Figure 2: Characterization of concavity (convexity) by φf (φg).

the total amount of electricity given to i initially, and z̃i,t
the load in time-slot t right after the initial decision for i is
made. Let {xit}, yi, and zt denote the corresponding values
in the final allocation. We then set the dual variables as

λ̂i =

{
maxτ :x̃iτ>0 g

′
τ (z̃i,τ ) if ỹi = Yi,

f ′
i(ỹi) if ỹi < Yi.

µ̂it =

{
λ̂i − g′t(z̃i,t) if x̃it > 0,
0 if x̃it = 0.

That is, if ỹi = Yi, λ̂i is set to the maximum marginal
cost for time slots where i has been initially allocated some

amount. Otherwise, λ̂i is set to the derivative of fi at ỹi.
Moreover, µ̂it satisfies the following complementary slack-
ness condition.

Lemma 4.1. µ̂it = 0 when x̃it < Xi.

Proof. For any agent i and time-slot t, if x̃it = 0, then
µ̂it = 0 by the definition. Assume x̃it > 0. We need to

show that λ̂i = g′t(z̃i,t). First note that when agent i is ini-
tially scheduled in OAR, time-slots with minimum marginal
cost are always considered first. Therefore, we must have
g′t(z̃i,t) = maxτ :x̃iτ>0 g

′
τ (z̃i,τ ) by the assumption that x̃it <

Xi. If ỹi = Yi, we then have λ̂i = maxτ :x̃iτ>0 g
′
τ (z̃i,τ ) =

g′t(z̃i,t). Next consider the case ỹ < Yi. We must have
f ′
i(ỹi) ≥ g′t(z̃i,t) since x̃it > 0. Moreover, since x̃it < Xi,
we must have f ′

i(ỹi) = g′t(z̃i,t); otherwise i can be served
a larger amount at time-slot t by the assumption that the

derivatives are continuous. Therefore, we again have λ̂i =
g′t(z̃i,t).

Our objective is to establish an upper bound of G(λ̂, µ̂)
in terms of the objective value obtained by the online al-
gorithm, namely,

∑
i fi(yi) − ∑

t gt(zt). Our analysis is
built upon the framework in [12]. We first consider the

last term in (6), maxx∈X
∑

t

[∑
i(λ̂i− µ̂it)xit−gt(

∑
i xit)

]
.

Let {x̂it} denote the values of {xit} that maximize
∑

i(λ̂i −
µ̂it)xit − gt(

∑
i xit) subject to the constraints (3) and (4).

Let j = argmaxi:ai≤t≤bi
λ̂i − µ̂it. It is then clear that, with-

out loss of optimality, we can set x̂it = 0 for i 6= j, and the

problem can be simplified to maxxjt≥0(λ̂j−µ̂jt)xjt−gt(xjt).

Since λ̂i − µ̂it = g′t(z̃i,t) for any agent i with x̃it > 0, and
the load of a time-slot never decreases, we can take j as any
agent that is served in time-slot t in its final allocation, and
the objective is maximized at x̂jt = zt. Therefore, the last
term in (6) becomes

∑
t(g

′
t(zt)zt − gt(zt)).

We then consider the first term in (6), maxy∈Y
∑

i(fi(yi)−
λ̂iyi). For each i, let ŷi denote the value of yi ≤ Yi that

x1t x2t x3t x4t

gt

g′t(
∑

j≤3
xjt)x3t

gt(
∑

i xit)

Figure 3: An example that shows
∑

i g
′
t(
∑

j≤i xjt)xit ≥

gt(
∑

i xit) in (8).

maximizes fi(yi)− λ̂iyi. Then we must have f ′
i(ŷi) = λ̂i or

ŷi = Yi. By the definition of λ̂i, we observe that ŷi = ỹi.

Hence, the first term becomes
∑

i(fi(ỹi) − λ̂iỹi). We then
have

G(λ̂, µ̂) =
∑

i

(fi(ỹi)− λ̂iỹi) +
∑

i,t

µ̂itXi

+
∑

t

(g′t(zt)zt − gt(zt))

=
∑

i

fi(ỹi)−
∑

i

(λ̂iỹi −
∑

t

µ̂itXi)

+
∑

t

(g′t(zt)zt − gt(zt)). (7)

Consider the second term in (7), we have
∑

i

(λ̂iỹi −
∑

t

µ̂itXi) =
∑

i

(
∑

t

λ̂ix̃it −
∑

t

µ̂itXi)

(a)
=

∑

i

∑

t

(λ̂i − µ̂it)x̃it

=
∑

i

∑

t

g′t(z̃i,t)x̃it

(b)

≥
∑

t

∑

i

g′t(
∑

j≤i

xjt)xit

(c)

≥
∑

t

gt(zt). (8)

where (a) follows from Lemma 4.1, (b) follows from the fact
that xit never increases after initial allocation in OAR and
the convexity of gt (recall that agents are sorted by their
arrival times), and (c) follows from the convexity of gt (see
Figure 3 for an explanation).

From (7) and (8), we now have

G(λ̂, µ̂) ≤
∑

i

fi(ỹi) +
∑

t

g′t(zt)zt − 2
∑

t

gt(zt). (9)

Recall that our objective is to derive an upper bound of

G(λ̂, µ̂) in terms of
∑

i fi(yi) −
∑

t gt(zt). To this end, we
first make the following key observation, which establishes
an upper bound for

∑
i fi(ỹi) in terms of

∑
i fi(yi) as shown

in the lemma.

Lemma 4.2.
∑
i

fi(ỹi) ≤ γ
γ−1

∑
i

fi(yi).

Proof. We will show
∑

i(γ−1)(fi(ỹi)−fi(yi)) ≤
∑

i fi(yi),
which implies the lemma. To simplify the description, we
prove the statement for the discrete version of OAR. To this
end, we view the charging opportunity in each time-slot as
multiple units of size δ. To abuse the notation a little bit,
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we redefine fi in terms of units, and let ỹi and yi denote the
number of units allocated to agent i in the beginning and
in the end, respectively. The k-th unit that agent i obtains
has a marginal valuation vi,k = fi(k) − fi(k − 1). Assume
yi < ỹi. User i went through a sequence of revocations af-
ter its initial allocation, where units of higher indices (and
hence lower marginal valuations) are displaced first. All the
units with index yi and less are not reallocated. We note
that by allowing units of different sizes, the following proof
applies to the continuous case as well.

For agent i, each unit with index yi + 1 or higher went
through a sequence of reallocations, represented by (i1, k1),
(i2, k2), ..., (in, kn), where in each pair, the first element de-
notes the agent that holds the unit, and the second element
denotes the index of the unit for that agent. Each agent
obtains the unit from the previous owner, and i1 is the first
agent that is allocated the unit and in the last. Let S denote
the set of units over all the time-slots that has even been real-
located. For each unit s ∈ S, let (is1, k

s
1), (i

s
2, k

s
2), ..., (i

s
ns
, ks

ns
)

denote the corresponding sequence of reallocations. Define
Vs =

∑ns−1
m=1 vism,ks

m
, the sum of marginal valuations over

all the agents in the sequence except the last one. We then
observe that

∑
i(fi(ỹi)− fi(yi)) =

∑
s∈S Vs, since any real-

location is with respect to a unit in S. On the other hand,∑
i fi(yi) ≥

∑
s∈S visns

,ks
ns

, where the righthand side is the
sum of marginal valuations of all the units in S with respect
to the final agent that has the unit. The inequality follows
from the fact that some units, once allocated to an agent,
are never reallocated.

By the above observation, to prove the lemma, it is then
sufficient to show that (γ − 1)Vs ≤ visns

,ks
ns

for any s. Con-

sider one such unit with sequence (i1, k1), (i2, k2), ..., (in, kn),
where s is omitted to simplify the notation. According to
OAR, (im−1, km−1) is displaced by (im, km) only if vim,km ≥
γvim−1,km−1

. We prove by induction on n ≥ 2. For n = 2,
(γ − 1)V = (γ − 1)vi1,k1

≤ vi2,k2
. Assume the statement

holds for n ≤ r. For n = r + 1, we have

(γ − 1)V =(γ − 1)

r∑

m=1

vim,km

=(γ − 1)

r−1∑

m=1

vim,km + (γ − 1)vir ,kr

≤vir,kr + (γ − 1)vir ,kr

=γvir,kr

≤vir+1,kr+1
.

We then establish connections between the total valuation
obtained and the total cost incurred by our algorithm in
the following lemma and its corollary, which paves the way
toward our main result.

Lemma 4.3. γ
∑
i

f ′
i(yi)yi ≥

∑
t

g′t(zt)zt.

Proof. Consider any time instance in serving requests
using algorithm OAR. Let xit denote the current allocation
made for agent i in time-slot t, yi the total allocation cur-
rently made for agent i, and zt the current load in time-
slot t. We claim that γf ′

i(yi) ≥ g′t(zt) for any t such that
xit > 0. Otherwise, there must be a piece of demand from
another agent j with derivative at least γf ′

i(yi) that is served
by increasing the load at t, which, however, should have
been served by displacing the allocation of i. It follows that

γf ′
i(yi) ≥ g′t(zt) for any t where xit > 0. Therefore,

γ
∑

i

f ′
i(yi)yi =

∑

i

∑

t

γf ′
i(yi)xit

≥
∑

i

∑

t

g′t(zt)xit

=
∑

t

g′t(zt)
∑

i

xit

=
∑

t

g′t(zt)zt.

We further have the following corollary.

Corollary 4.1.
∑
i

fi(yi) ≥
Φg

γΦf

∑
t

gt(zt).

Proof. By the definition of Φf and Φg , we have
∑

i

fi(yi) ≥
∑

i

f ′
i(yi)yi/Φf

≥
∑

t

g′t(zt)zt/(γΦf ) (Lemma 4.3)

≥ Φg

γΦf

∑

t

gt(zt).

From (9), Lemmas 4.2 and 4.3, and Corollary 4.1, we have

G(λ̂, µ̂) ≤
∑

i

fi(ỹi) +
∑

t

g′t(zt)zt − 2
∑

t

gt(zt)

(a)

≤ γ

γ − 1

∑

i

fi(yi) +
∑

t

g′t(zt)zt − 2
∑

t

gt(zt)

(b)

≤ γ

γ − 1

∑

i

fi(yi) + γ
∑

i

f ′
i(yi)yi − 2

∑

t

gt(zt)

(c)

≤(
γ

γ − 1
+ γΦf )

∑

i

fi(yi)− 2
∑

t

gt(zt) (10)

(d)

≤
( 1
γ−1

+ Φf )Φg − 2Φf

1
γ
Φg − Φf

[∑

i

fi(yi)−
∑

t

gt(zt)
]
.

(11)

where (a) follows from Lemma 4.2, (b) follows from Lemma 4.3,
(c) follows from the definition of Φf , and (d) follows from
Corollary 4.1 and simple algebra. Given Φf and Φg , the co-
efficient in (11) can be minimized by choosing the revocation
coefficient to be

γ∗ =

Φg − 2 +

√
Φ2

g

Φf
− (1 + 1

Φf
)Φg + 2

Φg − 1
. (12)

Therefore, we obtain the following main result:

Theorem 4.1. OAR is
( 1
γ∗

−1
+Φf )Φg−2Φf

1
γ∗ Φg−Φf

-competitive, where

γ∗ =
Φg−2+

√
Φ2
g

Φf
−(1+ 1

Φf
)Φg+2

Φg−1
.

Remark 3: The fact that the total valuation obtained is at
least a factor ρ ,

Φg

γΦf
of the total cost incurred in algorithm

OAR, as proved in Corollary 4.1, is critical for deriving the
competitive factor in (11) from the weaker form of (10). It
can be seen that for a fixed γ, a larger ρ implies a smaller
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competitive factor. In particular, for a given problem in-
stance, the factor ρ can be improved by replacing Φf and
Φg with maxi φfi(yi) and mint φgt(zt), respectively. A fur-
ther improvement is discussed in Example 4 below.

4.3 Examples
We now apply Theorem 4.1 to some concrete examples of

valuation and cost functions. In the examples, all the agents
are assumed to have the same type of valuation functions
and the system operator has the same type of cost functions
in all the time-slots. But the parameters of the functions
vary over agents and time, respectively.

Example 1: fi(yi) = vi log(1 + yi) for some vi > 0, and
gt(zt) = ctz

α
t for some ct > 0 and α ≥ 1. In this case, we

have Φf = 1 since φfi(yi) =
[log′(1+yi)]yi

log(1+yi)
→ 1 as yi → 0, and

Φg = α since (zα)′z = αzα. Therefore, γ∗ =
α−2+

√
(α−1)2+1

α−1
.

In particular, consider the case when the cost function has a
linear derivative, that is, α = 2, we have γ∗ =

√
2, and OAR

is 2

(
√
2−1)2

(< 12)-competitive. In general, the competitive

factor obtained at γ∗ increases as α approaches to 1 (see
Figure 4(a)). On the other hand, we observe that φfi(yi) is
decreasing on yi and approaches to 0 as yi → ∞. Hence,
for a given problem instance, when yi is relatively large for
most requests, a smaller competitive factor can be expected.

Example 2: fi(yi) = viy
β
i for some vi > 0 and β ∈ [0, 1],

and gt(zt) = ctz
α
t for some ct > 0 and α ≥ 1. In this case,

we have Φf = β and Φg = α. In particular, when α =
2, β = 1/2, we have γ∗ = 2, and OAR is 4-competitive. In
general, the competitive factor increases as α/β approaches
to 1 (see Figure 4(b)). However, we note that in the extreme
case when α = β = 1, that is, when both the valuation and
the cost functions are linear, the algorithm OA proposed in
Section 3.1 is optimal and revocation is not needed.

In both examples, we observe that the value of γ∗ in-
creases as α/β increases in most cases, and is minimized
when α/β → 1. This can be explained from Corollary 4.1
and Lemma 4.2. When Φg/Φf is small, a small γ is needed
to maintain the multiplicative factor in Corollary 4.1. On
the other hand, when Φg/Φf is large, a large γ is desirable
as it minimizes γ

γ−1
, the multiplicative factor connecting

the valuations of the initial and final allocation proved in
Lemma 4.2.

Example 3 (free renewable energy): gt(zt) = ct[(zt −
z0t )

+]α for ct > 0, α > 1, z0t > 0, where (x)+ , max(x, 0).
We use z0t to model the amount of free renewable energy
available at time t. Note that gt(zt) is continuously differ-
entiable for α > 1, and g′t(zt) = ctα[(zt − z0t )

+]α−1. Hence,
g′t(zt)zt ≥ αgt(zt), and φgt ≥ α. Therefore, a non-zero re-
newable energy supply actually helps with the competitive
performance (assuming it is predictable).

Example 4 (non-zero base load): gt(zt) = ct[(zt+z0t )
2−

(z0t )
2] for some ct > 0, z0t > 0, where z0t models the base load

in the system that is out of the control of the operator. We

have φgt = 1 since φgt(zt) =
g′t(zt)zt
gt(zt)

=
2(zt+z0t )

zt+2z0t
→ 1 as

zt → 0. On the other hand, φgt(zt) is increasing on zt and
approaches 2 as zt → ∞. Therefore, a single worst-case φgt

is not very expressive. Below we outline an approach for
improving Corollary 4.1, which can also be applied to other
cost functions with increasing φgt(zt).
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Figure 4: Competitive performance for two types of valuation
functions. In both (a) and (b), α is the power of the cost function,
and in (b), β is the power of the valuation function.

First, we define γt = maxi:xit>0
g′t(zt)

f ′

i
(yi)

. Then by a simi-

lar argument as in the proof of Lemma 4.3, we have γt ≤ γ,
and

∑
i f

′
i(yi)yi ≥

∑
t

1
γt
g′t(zt)zt. Now apply a similar proof

of Corollary 4.1, we get
∑

i fi(yi) ≥ 1
Φf

∑
t

φgt (zt)

γt
gt(zt).

For any time-slot with xit > 0, we must have f ′
i(yi) ≥

g′t(0). Therefore, γt ≤ g′t(zt)

g′t(0)
=

2(zt+z0t )

2z0t
; hence, zt ≥ (γt −

1)z0. It follows that φgt(zt) ≥ 2((γt−1)z0+z0)
(γt−1)z0+2z0

= 2γt
γt+1

; hence,

φgt(zt)/γt ≥ 2
γt+1

≥ 2
γ+1

. Therefore,
∑

i fi(yi) ≥ 2
(γ+1)Φf∑

t gt(zt). In contrast, if Corollary 4.1 is applied with Φg =
1, we get

∑
i fi(yi) ≥ 1

γΦf

∑
t gt(zt). Since

2
(γ+1)

> 1
γ
when-

ever γ > 1, a smaller competitive factor can be obtained
using this approach.

5. EVALUATION
In this section, we evaluate the performance of our on-

line algorithm using simulations. We compare our OAR al-
gorithm with PT and OA. The Simple-Increment approach
discussed in Section 3.2 is used to implement all the three
algorithms, where a discrete increment δ (i.e., the charging
unit) is applied in each iteration. For our algorithm, the
revocation coefficient γ is determined by Theorem 4.1. We
study the performance of these algorithms under different
values of δ, and compare them with the optimal offline so-
lution (with continuous charging rate), obtained using the
CVX toolbox [11]. Our results show that the OAR algorithm
performs clearly better than PT and OA and achieves close
to the offline optimal welfare under various settings. The
simulation results also illustrate scenarios when PT or OA

does not perform well.

5.1 Setup
In our simulations, we assume that the number of new

arrivals of charging requests in each time-slot follows a Pois-
son distribution with mean λarr, independent of other time-
slots. The active duration of each request follows an ex-
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Figure 5: Simulation results for logarithmic valuation function and quadratic cost.

1 3 5 7 9

160

180

200

220

240

260

Active duration mean (λ
dur

)

W
e

lfa
re

 

 

Offline
OAR
PT
OA

1 3 5 7 9
160

170

180

190

200

210

220

230

Active duration mean (λ
dur

)

W
e

lfa
re

 

 

Offline
OAR
PT
OA

1 2 3 4 5
160

180

200

220

240

260

New arrival mean (λ
arr

)

W
e

lfa
re

 

 

Offline
OAR
PT
OA

0.001 0.01 0.1 0.5 1
140

150

160

170

180

190

200

210

δ

W
e

lfa
re

 

 

Offline
OAR
PT
OA

(a) δ = 0.01, Yi = 5, λarr = 3 (b) δ = 0.01, Yi = 1, λarr = 3 (c) δ = 0.01, Yi = 3, λdur = 5 (d) Yi = 3, λarr = 3, λdur = 5

Figure 6: Simulation results for power valuation function and quadratic cost.

ponential distribution of mean λdur, independent of other
requests. All the time-slots have the same cost function
gt(zt) = z2t . All the requests have the same type of valuation
functions. Two types are considered: f1

i (yi) = vi log(1+ yi)
and f2

i (yi) = vi
√
yi. The coefficients vi are generated from

a uniform distribution in [1,10]. All the requests have the
same charging rate limit Xi = 1 and the same maximum
charging amount Yi. The charging unit δ is chosen from
{0.001, 0.01, 0.1, 0.5, 1}. Each figure below illustrates the av-
erage results over 50 independent scenarios generated under
a given set of parameters, where 50 requests are generated
in each scenario.

5.2 Results
The simulation results for logarithmic valuation function

together with the quadratic cost are given in Figure 5. We
first set δ = 0.01 and plot the results in Figures 5(a)-5(c).
Since δ is small enough compared with Xi and Yi, the results
closely reflect what can be expected in the continuous charg-
ing rate regime. In Figure 5(a), we fix Yi = 5 and λarr = 3,
and plot the welfare achieved by different algorithms versus
the active duration mean (λdur). We make the following ob-
servations: (1) Our algorithm achieves close to optimal wel-
fare; (2) All the algorithms achieve better welfare for a larger
λdur, which reflects the benefit of introducing demand-side
time elasticity; (3) The gap between PT and our algorithm
(and the offline optimal) increases for larger λdur, which is
due to the fact that PT does not take the time elasticity of
requests into account explicitly when making charging deci-
sions; and (4) Compared with PT, OA can better utilize large
λ, but it has the lowest welfare among the four algorithms.
The situation changes when we fix Yi = 1 instead as shown
in Figure 5(b). In this case, OA performs better than PT

except when λdur is very small. The intuition is that a small
Yi implies that the traffic load is relatively low (compared to
the cost). Hence, there is an opportunity to flatten the load
to reduce the cost when time elasticity allows, which, how-
ever, is not well utilized by PT. From Figures 5(a) and 5(b),

we also observe that our algorithm achieves close to optimal
performance even when the average time elasticity is low,
while the performance of PT and OA vary under different
scenarios.

Figure 5(c) shows the impact of mean arrival rate (λarr)
on the performance of the algorithms. Since we fix the num-
ber of requests to be 50, a larger λarr leads to a lower welfare
due to the higher density of the load. Moreover, since the
number of new requests in each time-slot follows a Poisson
distribution, a larger λarr also leads to a larger variance in
the arrival process. We observe that our algorithm always
achieves close to optimal performance. On the other hand,
the gap between PT and the optimal increases for a larger
λarr. This is also the case for OA, and can be more easily
seen when the valuation functions are power functions (see
Figure 6(c)). For PT, the problem is due to the fact that
time elasticity has been largely ignored, which, however, is
beneficial especially when the variance in workload is high.
On the other hand, OA suffers from the weakness that re-
quests of high valuations can be blocked especially when the
system load is high.

We then study the impact of different charging unit δ.
The results are given in Figure 5(d), where we fix λarr =
3, λdur = 5, and vary δ in {0.001, 0.01, 0.1, 0.5, 1}. The of-
fline optimal is still computed by assuming a continuous
charging rate since finding an optimal solution for a dis-
crete charging rate is computationally difficult. We observe
that there is little performance loss for the three online al-
gorithms when δ is changed from 0.001 to 0.1. Therefore,
a good competitive performance can be achieved at a rela-
tively low complexity (recall that OAR has a time complex-
ity of O(Y

δ
N2D) as discussed in Section 3.2). On the other

hand, the performance of the online algorithms clearly drop
when δ is lose to 1, the charging rate limit, due to the inher-
ent integrality gap. However, we observe that our algorithm
still performs better than the other two even in this regime.

The simulation results for power valuation function and
quadratic cost are given in Figure 6, where we observe sim-
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ilar trends as in the logarithmic valuation case discussed
above.

6. CONCLUSION
To improve the energy efficiency in supporting large scale

EV charging, an effective approach is to study coordinated
charging schemes that can exploit the flexibilities at both
the demand side and the supply side. In this work, we pro-
pose an online algorithm for scheduling deferrable charging
requests to balance the total value of vehicle owners and
the total cost for providing charging service. Assuming that
the charging rate is continuous, we characterize the com-
petitive performance of our algorithm in terms of the con-
cavity of the valuation function and the convexity of the
cost function. Numerical results demonstrate that our algo-
rithm achieves close to optimal performance even for discrete
charging rates.

7. ACKNOWLEDGMENTS
This work is supported in part by a grant from the Na-

tional Science Foundation ECCS-1232118.

8. REFERENCES
[1] A. Subramanian, M. Garcia, A. Domı́nguez-Garćıa, D.
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