
Unobtrusive Power Proportionality for HPC Frameworks ∗

Arka Bhattacharya
University of California, Berkeley
arka@eecs.berkeley.edu

David Culler
University of California, Berkeley

culler@cs.berkeley.edu

ABSTRACT
Building power proportional High Performance Computing
(HPC) clusters comprising of servers which are not power-
proportional is a well-studied problem, and has the potential
to provide large energy savings [2]. However, a large empha-
sis on maintaining cluster uptime disincentivizes system ad-
ministrators from deploying prior research techniques that
introduce changes to existing software configurations, mod-
ify the existing cluster job management framework, change
user job submission procedures, or fail in unpredictable ways
due to frequent server power cycling [3].

We present Hypnos, a meta-system that tackles the chal-
lenge of implementing power proportionality unobtrusively
in an HPC cluster with an existing job management frame-
work. Hypnos makes no changes to the existing cluster soft-
ware or network stack, and uses only the standard inter-
faces exposed by the existing cluster framework to (a) obtain
server state and job information, (b) add/remove servers
from the existing framework’s purview, (c) infer the clus-
ter’s scheduling logic, and (d) handle reliability challenges
when servers fail to run jobs, boot up, or race conditions
develop between Hypnos and the existing cluster scheduler.

We evaluated Hypnos by deploying it on a production
HPC cluster running the framework - Torque [4]. Hypnos
was able to achieve a 36% reduction in energy consumption
(compared to an optimal of 37.5%) while circumventing over
1500 network and software faults over a 21-day deployment.

Categories and Subject Descriptors
C.4 [Performance Of Systems]: Reliability, availability,
and serviceability; C.5.5 [Performance Of Systems]: Com-
puter System Implementation—Servers

∗For a full version of this work, refer to [1]. This work was
funded by NSF Grants CPS-0932209 and CPS- 0931843.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
e-Energy’14, June 11–13, 2014, Cambridge, UK.
ACM 978-1-4503-2819-7/14/06.
http://dx.doi.org/10.1145/2602044.2602085 .

Keywords
Power Proportionality; Unobtrusive; Meta-system; High-
Performance Computing; Reliability

1. HYPNOS DESIGN
Hypnos uses the observation that most existing HPC job

management frameworks (e.g Torque, Oracle Grid Engine,
IBM Load Sharing Facility) expose three interfaces which
allow unobtrusive power management - (a) An interface to
add / remove servers from the cluster framework’s purview
(b) An interface exposing server state information, and (c)
An interface exposing details of jobs submitted to the cluster
and their constraints. Hypnos resides on the existing clus-
ter framework’s master node, and comprises of three mod-
ules - the Framework Interface Layer, a Server State Ma-
chine(SSM) and Failure Handler(FH) for each server, and
the Power Management Algorithm(PMA).

Torque (Resource Manager)

Server State
Interface:
pbsnodes

Server 1

Maui (Scheduler)
EXISTING CLUSTER FRAMEWORK

MASTER NODE

Job Constraints
Interface:
checkjob

Server 2

..

Server n

SSM 1

SSM 2

..

SSM n

Server State Machines (SSM)
and Failure Handlers(FH)

Framework Interface Layer

FH

FH

FH

FH

Power
Management

Algorithm
(PMA)

Queued Jobs
Interface:
qstat

SLAVE
NODES

Server
ShutDown

Script

HYPNOS	

Figure 1: Hypnos System Design. The interfaces Hypnos
uses on an HPC cluster running Torque is pbsnodes, qstat
and checkjob. Other HPC frameworks have analogous inter-
faces which Hypnos could use.

Framework Interface Layer: This layer obtains the in-
formation required by the other Hypnos modules from the
interfaces exposed by the cluster’s job management frame-
work, and can be re-written for different cluster frameworks.
The Torque-specific interfaces used in our implementation is
shown in Figure 1.

Power Management Algorithm(PMA): The PMA
implements a wakeup and shutdown control loop using the

239

job information obtained through the Framework Interface
Layer and the server state information reported by the Server
State Machines. The PMA wakes up servers if existing
queued jobs cannot be bin-packed on to the set of already
powered-up servers (or the set of servers that are currently
waking up). The shutdown control loop shuts down servers
in case they have been idling for more than a user-specified
threshold, provided powering them down does not affect the
cluster’s minimum spinning-reserve1 capacity.

Waking

Offline

Down

Problematic

STATE DIAGRAM
FOR EACH SERVER

Online

Figure 2: State Machine maintained for each server

Server State Machine(SSM), Failure Handler(FH):
Hypnos utilizes the information obtained through the clus-
ter framework’s interfaces and the state transitions ordered
by the PMA, to implement a Server State Machine (SSM)
and a failure handler (FH) for each server. Each server can
be in 5 possible states(Figure 2):

(a) Online: signifying that the server is powered up and
is either executing jobs or is idle;

(b) Down: signifying that the server is powered off;
(c) Offline: a state a server goes through before it tran-

sitions to the Down state from the Online state. If a job has
been scheduled on it due to a race condition between Hyp-
nos and the existing cluster framework, the server is brought
back to the Online state.

(d) Waking: is an intermediate transition state between
Down and Online to account for the time elapsed between
servers being commanded to power up and when they be-
come ready to execute jobs.

(e) Problematic: signifying that Hypnos has inferred ei-
ther (a) a failure which renders the server incapable of ex-
ecuting jobs, or (b) some discrepancy between the server’s
state as maintained by Hypnos and the information obtained
from the cluster framework’s interfaces. Such inference may
happen when a server was presumed by Hypnos to be in the
Online, Offline or Waking states. Depending on the state
a server transitions to Problematic from, Hypnos considers
the possible reasons for such a discrepancy, and gracefully
handles them through that server’s Failure Handler (FH)
module. (For details, see [1])

Hypnos thus achieves unobtrusiveness by virtue of its meta-
system design, where it sits on top the cluster’s master node
and only uses the interfaces exposed by the existing clus-
ter framework. Hypnos achieves reliability by maintaining
a state-machine for each server, and periodically corrobo-
rating its presumed state of the server with the information
obtained from the cluster framework’s interfaces. Hypnos
is also extensible, due to the decoupling of the Framework

1The spinning reserve is a set of idle servers kept powered
up to service smaller/interactive HPC jobs

Interface Layer, the Power Management Algorithm, and the
server-specific SSM and FH modules. The wakeup and shut-
down control loops in the PMA can be optimized in isolation
(without having to worry about reliability) to take into ac-
count cluster-specific workload features such as its diurnal
patterns or its burstiness (e.g [5]).

2. EVALUATION

0

15

30

45

60

0 7 14 21

S
erv

ers

Time (Days)

Powered On Servers Active Servers

Figure 3: Number of servers kept powered-on closely
matched the number of active servers when Hypnos was de-
ployed

Hypnos was evaluated over 21 days on a 57-server clus-
ter consisting of 51 Dell PowerEdge 1850 servers (192W idle
/ 292W peak), and 6 Dell PowerEdge 1950 servers (253W
idle / 387W peak). It achieved a 36% energy savings (37.5%
ideal), while serving over 3650 jobs and subverting over 1500
failures, such as a server failing to load essential networked
services (e.g the Networked File System) or local filesystem
errors which caused the inability of a powered-up server to
run jobs. Figure 3 shows that Hypnos was able to power
down idle servers, thus, closely matching the number of
powered-up servers to the number of active servers (servers
running jobs).

3. REFERENCES
[1] Arka Bhattacharya and David E. Culler. Hypnos:

Unobtrusive power proportionality for hpc frameworks.
Technical Report UCB/EECS-2014-29, EECS
Department, University of California, Berkeley, Apr
2014.

[2] Luiz André Barroso and Urs Hölzle. The case for
energy-proportional computing. Computer,
40(12):33–37, December 2007.

[3] Edmund B. Nightingale, John R. Douceur, and Vince
Orgovan. Cycles, cells and platters: an empirical
analysisof hardware failures on a million consumer pcs.
In Proceedings of the sixth conference on Computer
systems, EuroSys ’11, pages 343–356, New York, NY,
USA, 2011. ACM.

[4] Torque Resource Manager.
http://www.adaptivecomputing.com/products/

open-source/torque/.

[5] Kai Wang, Minghong Lin, Florin Ciucu, Adam
Wierman, and Chuang Lin. Characterizing the impact
of the workload on the value of dynamic resizing in
data centers. In ACM SIGMETRICS Performance
Evaluation Review, volume 40, pages 405–406. ACM,
2012.

240

http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/

	Hypnos Design
	Evaluation
	References

