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ABSTRACT
We benchmark state-of-the-art methods for forecasting elec-
tricity demand on the household level. Our evaluation is
based on two data sets containing the power usage on the
individual appliance level. Our results indicate that with-
out further refinement the considered advanced state-of-the-
art forecasting methods rarely beat corresponding persis-
tence forecasts. Therefore, we also provide an exploration
of promising directions for future research.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION
In this study, we evaluate state-of-the-art forecasting meth-

ods for their applicability for household load forecasting. Ac-
curate load forecasts can greatly enhance the micro-balancing
capabilities of smart grids, if they are utilized for control op-
erations and decisions like dispatch, unit commitment, fuel
allocation and off-line network analysis [1]. Further, accu-
rate load forecasts can help utilities to select customers that
are suitable for demand response programs like proposed
by [6]. First studies have analyzed the potential of con-
sumption forecasts for individual households [7, 8]. However,
most work focuses on disaggregation of electricity consump-
tion (e.g., [2, 3, 4]). Our results show the forecasting meth-
ods provide little value, if not embedded into a framework
that adapts to individual household attributes, motivating
an exploration of promising directions for future research.

2. EXPERIMENT
The technical details of the data pre-processing and ex-

perimental setup are explained in the technical report [5].
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Figure 1: MAPE for varying window sizes.

We use two data sets measuring the power consumption of
individual appliances of a household at intervals of 1 to 3
seconds. The TUM data set covers nine month and has
a very stable consumption pattern. The Reference Energy
Disaggregation Data Set (REDD) [4] covers 18 days and has
more frequent and higher fluctuations in consumption. We
use different forecasting methods that are all provided by
the R forecast package: As benchmark, we use the per-
sistence method, where forecasts equal the last observation.
Further, we use Autoregressive Integrated Moving Average
(ARIMA), i.e., auto.arima(), exponential smoothing state
space models, i.e., bats() and tbats() and feed-forward
neural networks with a single hidden layer, i.e., nnetar().
We used three sampling strategies: The sliding window strat-
egy divides the data set into windows, moving forward on
the data, after a model has been trained and tested. The day
type strategy joins each day of the week of consecutive weeks
into separate data sets. The hierarchical day type strategy
first forecasts individual appliances to then compute the ag-
gregated forecast. We use data granularities from 15 to 60
minutes intervals, forecasting horizons from 15 minutes to
24 hours and window sizes from 3 to 7 days. We measure
the model quality by the Mean Absolute Percentage Error
(MAPE), because it is a relative measure and can be used
to compare the performance on different data sets.

3. EXPERIMENTAL RESULTS
Overall we observe that the considered advanced state-of-

the-art forecasting methods rarely beat corresponding persis-
tence forecasts. This is especially true for the TUM data
set. Further, our results differ largely between the two data
sets, i.e., the accuracy on the TUM data set is almost con-
stantly higher than on the REDD data set. This could be
due to the more stable consumption pattern in the TUM
data set, which is easier to predict. In addition, Figure 1
shows boxplots and linear trend lines of MAPE for different
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Figure 2: MAPE for varying horizons and granular-
ities.
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Figure 3: Mean MAPE for ARIMA with different
strategies.

window sizes in the sliding window strategy. The results in-
dicate that increasing window sizes improve the results of the
ARIMA, NNET and TBATS methods on the REDD data
set, but not on the TUM data set. Because the days in the
TUM data are so similar, additional training data might not
provide new important information. Further, Figure 2 shows
heatmaps of MAPE from the sliding window and day type
strategies for different granularities and forecasting horizons.
The results indicate that for almost every method, longer
forecasting horizons lead to lower accuracy. However, the ex-
ponential smoothing methods BATS and TBATS seem more
robust against increasing horizons than the other methods.
Further, especially on the REDD data set, lower granular-
ities lead to better accuracy. In particular, the exponential
smoothing strategies BATS and TBATS and the neural net-
work outperform the persistence method for granularities of
30 and 60 minutes. Furthermore, Figure 2 shows that for
almost every method a division of the data into day type
windows improves the forecast accuracy. In addition, Fig-
ure 3 compares all three strategies for the ARIMA method
indicating that the hierarchical strategy can greatly improve
accuracy on the TUM data set. This is a surprising result,
as generally the prediction of aggregated loads tend to result
in higher precision.

4. DISCUSSION AND FUTURE WORK
We have evaluated a wide range of state-of-the-art meth-

ods and strategies for short-term forecasting of household
electricity consumption based on actual data. Although our
current data is limited, we were able to gain useful insights.
Overall, the considered advanced forecasting methods only
rarely beat the accuracy of persistence forecasts. Further,
most of the methods benefit from larger training sets, split-

ting the data into sets of particular day types and predict-
ing based on disaggregated data from individual appliances.
Furthermore, the achievable accuracy in terms of average
MAPE is surprisingly low, ranging between 5 and 150%.
Thus, our work motivates more research investigating how
accuracy can be increased. First, introducing further fea-
tures, e.g., from occupancy, temperature or brightness sen-
sors, could improve prediction accuracy, because when a de-
vice is switched on/off it takes time until the average wattage
accounts for the change. Second, many devices have a very
predictable consumption pattern once switched on. Thus,
it could be beneficial to detect concrete events (e.g., on/off)
and based on these events derive a future consumption pat-
tern. Third, we only considered consistent data sets. How-
ever, in real world settings load forecasts need to be per-
formed even in situations with missing data. Thus, future
work should investigate how to handle temporary sensor out-
ages, which could distract the prediction algorithms. Last,
our results differ largely between the two data sets. It is
unclear, how common the characteristics of these data sets
are. However, the necessary data for carrying out more rep-
resentative studies is currently missing. Future work will
focus on the design of such frameworks.
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