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ABSTRACT
We study the problem of designing sensor sets for capturing energy
events in buildings. In addition to direct energy sensing methods,
e.g. electricity and gas, it is often desirable to monitor energy use
and occupant activity through other sensors such as temperature
and motion. However, practical constraints such as cost and de-
ployment requirements can limit the choice, quantity and quality of
sensors that can be distributed within each building, especially for
large-scale deployments. In this paper, we present an approach to
select a set of sensors for capturing energy events, using a measure
of each candidate sensor’s ability to predict energy events within a
building. We use constrained optimisation – specifically, a bounded
knapsack problem (BKP) – to choose the best sensors for the set
given each sensor’s predictive value and specified cost constraints.
We present the results from a field study of 4 UK homes with tem-
perature, light, motion, humidity, sound and CO2 sensors, showing
how valuable yet expensive sensors are often not chosen in the op-
timal set.
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1. INTRODUCTION AND PRIOR WORK
To tackle the problem of energy usage reduction in buildings,

researchers have used sensing technology to capture and analyse
buildings’ energy use so that efficiency can be improved and meth-
ods of lowering energy demand can be explored, e.g. through
changing occupants’ energy-related behaviour. The first step in en-
abling behavioural change is the gathering and sensing of pertinent
data. As such, key questions emerge about how best to approach
energy sensing: what sensors should we use? How many do we
need? How intrusive and costly is the installation? Direct energy
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sensing with electricity and gas sensors is commonplace [3], but
direct sensing alone does not account for total energy use, nor does
it allow for non-trivial analyses of the often individualistic causal
factors involved in energy consumption. There are two key contri-
butions in this paper:

• A method for assigning a value to a sensor in terms of its
utility in capturing human activities that involve energy con-
sumption in a building.

• A method for the selection of maximal value sensor sets sub-
ject to practical constraints such as budget and sensor quan-
tities.

The closest work to the study in this paper is Zhang et al.’s study
of feature selection for occupancy classification in office spaces [6].
Here, the authors explore the relative information gain – or uncer-
tainty coefficients – as a value measure for a small range of sensors
using intermittent ground truth gathered in an office environment.
We use a different measure of sensor value in a domestic environ-
ment, but our results broadly support Zhang et al.’s, which show
that sound and CO2 sensors appear to be the most effective at de-
tection; albeit for energy events in ours, and occupancy events in
theirs. By incorporating sensor costs, however, we show that these
sensors are not always the best ones to choose for maximising sen-
sor value given a set of constraints.

2. APPROACH

2.1 Constrained Optimisation
The knapsack problem is a simple integer linear program that

seeks to find the optimal combination of n distinct items that max-
imises the total value of a weight-constrained knapsack, given that
each item has a value and a weight. More formally, given n distinct
items, where each item i has a corresponding value vi, number of
copies xi and weight wi, and an overall weight constraint W , the
knapsack problem seeks to:

maximise:
n∑

i=1

vixi

subject to:
n∑

i=1

wixi ≤W xi ∈ {0, . . . , ci}
(1)

Where ci is an upper bound on the number of copies of each
item. ci could be viewed as a sensor quantity limit, e.g. a stock
limit. The above problem is a bounded knapsack problem (BKP),
which does not restrict the items in the knapsack to one copy each.
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Figure 1: Mean Gini impurity decrease over all features for
each sensor.

2.2 Defining Sensor Values and Costs
To perform feature selection, we use a random forest process on

a set of extracted features. A random forest is an ensemble learn-
ing method that combines a set of decision tree classifiers, each
of which is comprised of a random sample of input variables (in
our case, extracted features). For brevity, we refer the reader to
Breiman’s description of the random forest method for a detailed
overview [1]. We use random forests to measure the value of each
extracted sensor feature using the average decrease in node impuri-
ties (Gini measure) from splitting the decision trees on that feature.

As with the choice of value measure, the choice of cost measure
is likely to be context-dependent. An obvious choice is the finan-
cial cost of each sensor, but more complex cost functions could be
designed that incorporate, for example, sensor energy costs, instal-
lation effort or sensor reliabilities. In addition to budgetary con-
straints, logical constraints can be introduced that restrict the cho-
sen sensor set to particular subsets of the overall power set (all 2n

possible choices of sensor set from n sensors).

2.3 Field Study
In order to demonstrate how a sensor set for capturing energy

events can be chosen, we present the results of a field study in a set
of domestic buildings in the UK. We recruited 4 homes to be stud-
ied for 7 consecutive days. Within certain rooms in each home –
each room common to each home – we installed the following sen-
sors: temperature in ◦C, light in lux, CO2 in ppm, motion in {0, 1}
and sound level in dB, each sampled once per minute.

To capture a record of ground truth events in each home, we
asked the primary occupant to record energy-related events around
the home throughout the week in a diary study. To define the en-
ergy events, we used Oxford University’s Multinational Time Use
Study (MTUS) data [2], selecting domestic event codes that clas-
sify energy-consuming events around the home. We dismissed data
during which the occupants did not log anything, i.e. the ground
truth was unknown.

For each of the sensors, we calculated the following features:
raw value at timestep k, yk; first order difference: ∆(yk) = yk+1−
yk; second order difference, ∆2(yk) = ∆(yk+1) − ∆(yk); and
simple moving average over a m minute window.

3. RESULTS
For the random forest process, data is split .7 training, .15 vali-

dation and .15 test. Each forest consists of 500 trees, with 4 vari-
ables randomly sampled per split; no replacement. We used the R
package “randomForest” [4] to run the random forest process with
the aforementioned parameters. This package uses Breiman’s ap-
proach [1].
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Figure 2: Example sensor set as output by the BKP algorithm
for W=500 and c=5.

For the BKP, we use Pferschy’s O(nW ) BKP algorithm de-
scribed in [5]. For the moving average feature, we set m – the
moving average window – to 20 minutes for each sensor. The sen-
sor values for the BKP are set to the mean Gini decrease measures
for each sensor. For the sensor costs, we use the approximate fi-
nancial cost of the sensors in our study setup: 215 for CO2, 20 for
humidity, 16 for light, 115 for sound and 17 for temperature. The
study participants logged 392 events in total over the 7 days (A =
119, B = 59, C = 77, D = 137).

Figure 1 shows the mean Gini impurity decrease for each sen-
sor, averaged over the sensor’s features. Figure 2 shows a set of
example sensor sets output by the BKP algorithm for given weight
constraints W and upper bounds on the sensor quantities ci.

4. DISCUSSION AND CONCLUSION
The key implication of this work relates to the utilisation of envi-

ronmental sensors as predictors of energy events in buildings. The
sensors in our study are designed to measure a particular environ-
mental property, e.g. temperature, rather than direct energy use –
something that devices such as current clamps attached to electric-
ity meters and plug power monitors do. The sensor values show
that temperature, humidity, light, CO2, sound and motion sensors
are useful predictors of energy use, though their predictive values
do vary both across sensors and between homes. The main limi-
tations of our work relate to the context of sensing, the range of
sensors and the study size.

In this paper, we presented a process for designing sensor sets
to capture energy events in buildings. The key contributions lie
in the use of random forests to produce a measure of sensor value
a priori, and the implementation of a bounded knapsack problem
(BKP) solver that chooses an optimum sensor set given a set of
costs and values.
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