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ABSTRACT
Distance-to-Empty (DTE) in vehicles depends on several un-
certain factors, such as speed, terrain, traffic and driving be-
havior. Accurate estimation of DTE is vital for not only the
scheduling for refueling, but also for the choice of routes for
the budget- and/or environmentally-conscious. Traditional
approaches often rely on a single driver’s personal history.
In this paper, we explore a social approach by using other
drivers’ data to predict the fuel consumption for a given
driver along a new route that is not traveled previously. We
develop a least-squares regression model and corroborate the
performance empirically by an on-road, multi-driver experi-
ment. Our results can enable a new kind of social platform
for trip planning based on the shared data among drivers.

1. INTRODUCTION
While in-vehicle information systems are increasingly so-

phisticated, the information presented from vehicles is not
always accurate. One of the major features is Distance-to-
Empty (DTE) or alternatively, the fuel consumption for the
remaining journey, which are hindered by several uncertain
factors, such as speed, terrain, traffic and driving behavior,
as well as the intrinsic characteristics of vehicles (e.g., fuel
tank capacity, engine load). Accurate prediction of fuel con-
sumption, and thereby DTE, is vital in allowing drivers to
know not only when they need to refuel, but also the fuel
consumption along different possible routes. In addition,
the estimation of DTE is useful for scheduling of refueling,
which can optimize the waiting time in the gasoline station.

Previous work relies on using a single driver’s personal
history for prediction. In contrast, we focus on a social ap-
proach by using other drivers’ data to predict the DTE for
a given driver along a new route. For example, if drivers
A, B and C have driven a set of routes X and Y , and only
drivers B and C have driven a route Z, we will be able to
obtain an estimation for driver A and route Z based on the
differences among the routes, and the differences among the
drivers’ fuel consumption patterns on the same routes.

To this end, we build on the linear regression approach de-
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veloped by [4] using a single driver, and extend it to consider
multi-driver settings.

2. METHODOLOGY
We adapt the least-squares regression used in [4] to es-

timate DTE for an electrical vehicle, which also applies to
internal combustion vehicles. We first describe the single-
driver approach. The drivers’ running fuel consumption is
computed using a formula provided in [3], with the engine
data as inputs, for each slice of sampling time, and added
up over a trip to give the total consumption. Training the
regression model using the trip data from each driver, we
can estimate the DTE for the same drivers in real time. We
then extend this single-driver modeling technique to a multi-
driver setting. The multivariate regression model in [2] is a
blackbox approach, without the detailed knowledge of driv-
ing conditions. The regression model estimates the fuel con-
sumption for a route i by

Fi(Dj) = βi0 + βi1χi1 + βi2χi2 + . . .+ βimχim (1)

where (βik) is a set of (m) unknown coefficients that are
determined from the historical data (i.e., the training set).
The variables (χ) are the measurable data obtained from the
vehicle (e.g., speed, engine parameters), and the response
variable, (Fi), is the fuel consumption in a particular route
(i) given the data of driver (Dj). Solving (βi) in Eqn. 1:

βi = (χTχ)−1χTFi (2)

We focus on internal combustion vehicles. The variables χ
we employ are listed as follows:

χ =

⎡
⎢⎢⎣

1 ΔTa(ri, D1) Vave(ri, D1) It(ri, D1) Dc(ri, D1)

...
...

...
...

...

1 ΔTa(ri, Dj) Vave(ri, Dj) It(ri, Dj) Dc(ri, Dj)

⎤
⎥⎥⎦

where (Ta(ri, Dj)) denotes the ambient temperature of route
(i) for the historical data, included to consider that the am-
bient temperature will affect engine load via the heater or
the air conditioner. (Vave(ri, Dj)) denotes the average speed
of driving in route (i), since different speeds will cause dif-
ferent fuel consumption in the route. (It(ri, Dj)) denotes
the total idle time in route (i); we assume that different
traffic condition results in different idle time in the route.
(Dc(ri, Dj)) denotes the driver and the displacement of the
vehicle, since the fuel consumption rate is different for dif-
ferent vehicle types. Here, (j) is the total number of the
historical data points.

We next describe the multi-driver extension. Say driver
(a) never drove in route (x) before, and we want to esti-
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mate the fuel consumption (Fx(Da)) of that driver in that
route given the ambient temperature, the average speed,
and the idle time. We can establish the relationship be-
tween the route (x) and routes (1 . . . r) using the multi-
variate regression model shown in Eqn. 3. The regression
model (Fr(D1...m)) is the training data set. Since we want
to use the data of driver (k) in a different route to determine
their fuel consumption in the route they have never driven,
the training data set should be (Fr(D1...m), k ∈ {1 . . .m}).
However, since (Fx) does not include the data of driver (a),
the regression model has to be trained without the data of
driver (a), resulting in Eqn. 3. Also note that the number of
drivers (m) should be greater than the number of routes (r)
in order to avoid the ill-condition of the regression model.

Fx(D1...m) = γ0 + γ1F1(D1...m) + . . .+ γrFr(D1...m) (3)

where a /∈ {1 . . .m} and (Fi(D1...m)) denotes the fuel con-
sumption of drivers (1 . . .m) in route (i) given ambient tem-
perature, average speed and idle time. Solving for γi in
Eqn. 1:

γi = (F
T
F )−1F

T
Fn (4)

where

F =

⎡
⎢⎢⎣

1 F1(D1) . . . Fr(D1)

...
...

...
...

1 F1(Dm) . . . Fr(Dm)

⎤
⎥⎥⎦Fn =

⎡
⎢⎢⎣

Fx(D1)

...

Fx(Dm)

⎤
⎥⎥⎦

Since we have F1...r(D1...m), k ∈ {1 . . .m}, F1...r(Dk) can
be determined and substituted into Eqn. 3 to compute Fx(Da).

1

3. EXPERIMENT
We carried out an experiment to corroborate the perfor-

mance of our approach empirically. The data from three
vehicles of different classes were gathered. Our data col-
lection apparatus consisted of Bluetooth ELM327 dongles
plugged into the vehicles’ onboard diagnostic (OBD) ports
and paired with drivers’ smartphones and a app is developed
for collection and upload of OBD data from the vehicles. 2

1
If we use only historical data of the driver to predict her fuel con-

sumption, requires dividing the route into many segments based on
the characteristic, and is complicated and needs a complete knowl-
edge of fuel consumption of different type of route. On the other
hand, social approach allows us to find the fuel consumption between
different routes, some of them are very difficult to be separated into
segments for analyzing. For the social approach, distance, terrain and
traffic data over routes are part of the input of the model, but the
model itself is constructed based on how other drivers are affected by
these factors at the time they were driving the routes. If something
like road blockage or construction affects traffic for a significantly long
time, it will also be reflected by the models since the models are pe-
riodically updated. Google Maps also provides estimation of traffic
and time to destination (TTD), which has already included social ap-
proach. Although using a better estimation of TTD may give a better
estimation of average speed, it still require a complicated model to
take into account of the nuances of a new route with the same average
speed, idle time and other conditions.
2
A) Ford Fusion 2012, 4 cylinder, 2.5 L. B) Hyundai Veloster 2014, 4

cylinder, 1.6 L and C) Lincoln MKX 2007, 6 cylinder, 3.7 L. We chose
a 36.3 kilometer-long triangular circuit for the experiment, split up
into three segments (routes) of lengths 10km. Each vehicle’s driver
was assigned a particular driving style: A) cautious, B) moderate,
and C) aggressive. The data collection run consisted of two rounds
of the circuit, which adds up to about 73 km. Hence, each route was
covered twice. The OBD data are mass air-flow, manifold absolute
pressure, intake air temperature and engines’ RPM, which are then
utilized to compute the fuel consumption rate. Furthermore, the ge-
olocation data, accelerometer readings and device identification from
the smartphone are also recorded for driving behavior parameters of
the model.

4. RESULTS
Using linear regression for the prediction of DTE for each

driver along the circuit, we demonstrated that this approach
can outperform the vehicles’ own DTE estimation models,
as seen in Fig. 1. We then applied multi-driver approach to
predict fuel consumption for each driver along each run along
each route, using the data from them along other routes
and other drivers along all routes. The resulting matrix of
estimations, and their difference from actual consumption
data, is shown in Table 1.

Figure 1: DTE estimated with different-sized terms of fuel intensity
(plong). Red dots are estimates given by in-vehicle displays.

Route Driver A Driver B Driver C

1
1.71 (10.0%) 1.23 (17.5%) 1.77 (18.8%)
1.70 (12.1%) 1.18 (19.4%) 1.84 (18.6%)

2
0.88 (9.6%) 0.61 (10.9%) 0.81 (22.5%)
0.88 (14.6%) 0.59 (22.1%) 0.75 (30.7%)

3
0.67 (10.2%) 0.57 (7.8%) 0.73 (8.7%)
0.65 (4.8%) 0.40 (23.2%) 0.73 (20.8%)

Table 1: Estimation of fuel consumption in litres for each run of
each route by each driver, with error in parentheses

5. DISCUSSION AND FUTURE WORK
The accuracy of the prediction is limited by the number

of training routes, which is in turn limited by the number of
drivers. However, the data acquisition system we developed
for use in this experiment has been linked to the CloudThink
platform [1], which is being expanded to include a network of
diverse vehicle data acquisition devices. Apart from the data
gathered by running more experiments of our own, we will
be acquiring more data from this platform as its user base
expands. More data from more drivers over the same routes,
and in different climactic and traffic conditions, will help us
address the paucity of data and the short, low-consumption
trips in the experiments adversely affecting the accuracy of
fuel consumption prediction in this particular demonstra-
tion. We will also build a social platform for trip planning
based on the shared data among drivers.
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